
Rear-Stitched View Panorama: A low-power embedded implementation for

smart rear-view mirrors on vehicles

Janice Pan

The University of Texas at Austin

janicepan@utexas.edu

Vikram Appia

Texas Instruments

vikram.appia@ti.com

Jesse Villarreal

Texas Instruments

jesse.villarreal@ti.com

Lucas Weaver

Texas Instruments

l-weaver@ti.com

Do-Kyoung Kwon

Texas Instruments

d-kwon@ti.com

Abstract

Automobiles are currently equipped with a three-mirror

system for rear-view visualization. The two side-view mirrors

show close the periphery on the left and right sides of the ve-

hicle, and the center rear-view mirror is typically adjusted to

allow the driver to see through the vehicle’s rear windshield.

This three-mirror system, however, imposes safety concerns

in requiring drivers to shift their attention and gaze to look in

each mirror to obtain a full visualization of the rear-view sur-

roundings, which takes attention off the scene in front of the

vehicle. We present an alternative to the three-mirror rear-

view system, which we call Rear-Stitched View Panorama

(RSVP). The proposed system uses four rear-facing cameras,

strategically placed to overcome the traditional blind spot

problem, and stitches the feeds from each camera together

to generate a single panoramic view, which can display the

entire rear surroundings. We project individually captured

frames onto a single virtual view using precomputed system

calibration parameters. Then we determine optimal seam

lines, along which the images are fused together to form the

single RSVP view presented to the driver. Furthermore, we

highlight techniques that enable efficient embedded imple-

mentation of the system and showcase a real-time system

utilizing under 2W of power, making it suitable for in-cabin

deployment in vehicles.

1. Introduction

A National Motor Vehicle Crash Causation Survey

(NMVCCS) conducted between 2005 and 2007 showed that

the critical reason, or the last failure in the causal chain of

events leading up to the crash, of approximately 94% of

traffic crashes can be assigned to a driver [1]. Research in

the scientific community as well as advancements in the

automotive industry have been improving safety systems.

Particularly within the past decade, more researchers and

manufacturers have been working toward developing suites

of intelligent on-board applications, called Advanced Driver

Assistance Systems (ADAS), to provide assistance to drivers

and ultimately improve safety in vehicles and on the road-

ways. ADAS applications may serve the purpose of simply

showing clearer and more useful displays, or they may even

make quick, intelligent decisions for the driver in safety-

critical situations.

A driver’s understanding and awareness of their surround-

ings is integral in keeping them defensive and safe on the

road, so an ADAS application that can increase a driver’s

field-of-view (FoV) can directly and positively influence the

safety of driving. Currently, most cars are equipped with

three rear-facing mirrors–two on the vehicle’s exterior by

the driver (left) and front passenger (right) side windows

and one in the vehicle’s interior, placed front and center and

adjusted to capture the scene through the rear window. In

order for the driver to gain a full rear-view visualization, they

must take their gaze off the road in front and look left, right,

and up, which takes critical time and poses a safety hazard.

We present an alternative to the current three-mirror rear-

view visualization system that involves a novel camera con-

figuration and a smart panoramic stitching algorithm for

creating a single rear-view display, which we refer to as the

Rear-Stitched View Panorama (RSVP). The camera set-up

(Figure 2) involves single cameras placed on either side of

the vehicle, which serve to replace the two external rear-

facing mirrors, as well as a stereo pair of cameras placed

externally on the vehicle’s rear, which serve to capture the

view typically seen through the interior rear-view center

mirror. The rear stereoscopic vision provides important in-

formation about objects in the rear FoV, which we use to

fuse the images as seamlessly as possible.

Another key feature of ADAS systems is reliability. In
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particular, the performance of embedded systems, such as

in-cabin electronic mirror-replacement systems, can be ad-

versely impacted by heat produced by the embedded pro-

cessor. Thus, for real-time implementation of our proposed

algorithm, we use the TDA3x SoC [2], which is a low-power

heterogeneous SoC containing a dual core of ARM Cortex-

M4, a dual core of C66x DSP, and a single core of Embedded

Vision Engine (EVE) for vector processing. It also provides

an integrated hardware Image Signal Processor (ISP) for

image signal conditioning and other hardware accelerators,

such as a 2-D spatial warp engine, and a hardware Dis-

play Subsystem (DSS) for compositing multiple video and

graphic output streams. The combination of such a diverse

set of compute cores along with the hardware peripherals

makes it suitable for our implementation. We showcase the

partitioning of the proposed algorithm on the device and

highlight the key optimization steps that enabled us to satisfy

real-time performance needs.

In this paper, we first discuss previous work related to

rear-view visualization (Section 2) in ADAS. Then we give

an overview of the proposed system (Section 3), explain how

the system is calibrated (Section 4), and describe in detail

the method for generating the output RSVP image (Section

5). We also discuss the embedded implementation for a

real-time ADAS application (Section 6) and conclude with a

discussion of limitations, possible modifications, and future

work.

2. Related Work

Vision is an integral sensor modality in ADAS and has

been used frequently in past research related to driver as-

sistance applications for relaying important information

about the environment and the vehicle’s surroundings to

the driver. Common vision-based ADAS applications fo-

cus on detection [3, 4, 5, 6, 7, 8, 9, 10], recognition

[11, 12, 13, 14, 15], and tracking [16, 17, 18] of objects,

with stereo vision being a popular tool in vision-based ap-

proaches [6, 7, 8, 9, 10, 12, 19, 20, 21].

Work has also been done specifically to replace the rear-

facing cameras with a single easily-accessible display [22],

and further, to combine the feeds from each camera to show

a single representative rear-view panoramic image [23, 24].

However, no method integrates stereo cameras to extract

depth information. Additionally, while previous work has

also been done in finding optimal seam lines and develop-

ing seamless stitching methods for mosaics and panoramas

[25, 26, 27, 28, 29, 30], most of these methods rely on prior

calibration, cost-minimization, or point correspondences.

No previous work combines all three or uses raw 3D depth

estimates in a scene, going beyond simply using point or

feature correspondences, in an intelligent seamless stitching

algorithm. Our proposed system learns global alignment

through an initial calibration step and then uses stereo esti-

mates to minimize an objective cost function to determine

an optimal seam line, along which adjacent image feeds are

simply alpha-blended together. We next provide a detailed

overview of our system.

3. System Overview

The RSVP display is meant to replace the rear-view mir-

ror system, which is currently an integral feature of most

automobiles. Instead of looking in each of the left, right, and

center rear-view mirrors, the driver should be able to look at

a single display and see at least the entire FoV that the trio

of mirrors is able to provide. The proposed RSVP system

uses four cameras: one each on either side to replace the side

external rear-view mirrors and a stereo pair of cameras on

the rear to replace the center interior rear-view mirror. Feeds

from both side cameras are fused with the feed from the ref-

erence (left) stereo camera to generate a seamless panoramic

image of the rear surroundings. The right stereo camera is

only used for stereo depth computations and is not used for

visualization. Figure 2 shows an example configuration of

the system.

In order to create this seamless display, the captured feeds

are transformed into the same visualization coordinate frame.

In other words, the system is calibrated, and the frames are

transformed independently so that each image looks as if

it was captured with the same virtual camera, which in the

case of RSVP, may be considered to be located above and in

front of the vehicle facing rearwards.

After each image is transformed, they must be combined

in such a way that minimizes visual distortion effects and

discontinuities in object representation. We refer to the

boundaries at which adjacent views are combined as seams.

We apply a novel seam-finding method that makes use of the

available depth information provided by the stereo camera

pair on the vehicle’s rear. Figure 1 shows the process to

create the RSVP view. Our stitching algorithm also includes

considerations for temporal sequences of frames, maintain-

ing smooth seam-changing transitions so the output frame

sequence neither looks jittery nor contains sudden large seam

shifts. This feature is represented by the feedback loop in Fig.

1. We also create a single blending look-up table (LUT), us-

ing the computed optimal seam lines, to specify the weights

used to fuse images together (in the ‘stitching’ block in Fig.

1). Each step in the algorithm, from transforming the input

frames to designing the blending LUT, was designed for an

efficient embedded implementation, as we explain in the

following sections.

4. System Calibration

Generating a single panoramic image from three views

requires calibration of the system, which enables us to com-

pute each camera’s extrinsic parameters, comprising the
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Figure 1: Algorithm flow to create the RSVP image

camera’s location and orientation. Using the extrinsic pa-

rameters, each view can be transformed, though likely not

without distortions, to appear as if it was taken by a virtual

camera with arbitrary location and orientation. This virtual

camera is what can be considered as the capture device for

the generated panoramic image.

A precisely designed set of three calibration charts with

known dimensions and relative locations are placed coplanar

with the ground plane for system calibration. As shown in

Figure 2, the system is aligned with the calibration patterns

such that one full square pattern is visible in each indepen-

dent camera capture. Determining the locations of the eight

corner points of each chart in the camera images provides

sufficient correspondences to known world coordinates to

calibrate the cameras, because every corner in each captured

image has an associated 2D coordinate in the image plane

and a real-world 3D coordinate. Using these correspon-

dences, we estimate the homography from the camera image

plane to world coordinates using a direct linear transforma-

tion. Furthermore, projecting the homography matrix on an

orthogonal sub-space can provide the extrinsic pose of the

camera in the world coordinate system. Since the points on

the chart are measured with physical dimensions, the same

physical interpretation is transitioned in the pose estimate

of the cameras. Optionally, one can also use additional non-

linear optimization approaches to improve the estimation.

In our particular example we use the Levenberg-Marquardt

approach to refine the camera pose estimations [31]. This

calibration is performed offline, and no online calibration is

required, because the camera positions are fixed.

5. Panorama Generation

After computing the calibration parameters, projections

from each image coordinate system to the world coordinate

frame can be computed, and vice versa. The captured frames

from each camera can then be transformed into the com-

mon coordinate frame of a predetermined virtual camera and

fused together. In this section, we discuss the image transfor-

mation process, how the optimal seam is selected, and how

the three views are stitched together. We also present an ap-

proach to maintaining smooth transitions across a temporal

sequence of captures.

Figure 2: Configuration of system showing the two cameras

to replace the side rear-view mirrors (Lmirror and Rmirror) and

the stereo pair on the back of the vehicle (Lstereo and Rstereo).

Three calibration charts are also shown as an example of a

pattern that can be used to calibrate the system.

5.1. Image Transformation

To generate a spatially-coherent output RSVP image,

each camera’s intrinsic and extrinsic parameters are used

to transform the originally captured images to the virtual

camera view. This process involves first projecting each

image pixel onto a flat surface behind the vehicle and then

using the predetermined virtual camera parameters to project

it into the virtual camera image. We can think of the virtual

world around the vehicle as represented by a flat surface

located some distance behind the vehicle, onto which the

appropriate FoV from each camera feed is projected. Other

world representations, e.g., cylindrical surfaces, could also

be used.

The right stereo camera is only used to compute depth,

so we first obtain the disparity map corresponding to the

reference image and then apply the same transformations on

the disparity map that were applied to the left stereo image

to obtain a virtual camera ‘view’ of the disparity as well.

Figure 3 shows an example set of captured images and the

pipeline that generates the output RSVP image. After the

images are transformed, the FoV of interest from each image,

outlined in red, are combined by stitching along seams, the

locations of which we determine with the seam detection

algorithm detailed in the following section.

Because we project the RSVP image on a virtual flat

surface behind the vehicle, a single projective transform

can be computed for each of the three visualization views

(Lmirror, Lstereo, and Rmirror). Specifically, for each input from

Lmirror, Lstereo, and Rmirror, we use four non-collinear points
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Figure 3: Pipeline of RSVP generation

in the RSVP image {pti}, compute the world-coordinate

projections of those image points using the virtual camera

parameters, and then project those world points back into

the input image to get points {poi}. We then compute a

projective transformation to map {poi} to {pti}. We thereby

obtain a separate projective transformation matrix for each

input, which can efficiently transform input frames as they

are continuously being captured.

Figure 4: Visualization of projecting the right mirror image

onto the RSVP display surface

If the surface onto which the RSVP image is projected

changes over frames, the transformations will need to be

dynamically computed, which may induce spatial artifacts,

as objects in the scene may appear to shift around, causing

the representation of relative distances to become confusing.

Maintaining a static RSVP projection surface is a safety-

critical feature, so the displayed output is always easy for a

driver to interpret.

5.2. Seam Detection and Image Stitching

The output RSVP image is a combination of the views

from cameras Lmirror, Lstereo, and Rmirror. Camera Rstereo

is used as part of the stereo system with Lstereo, and the

depth information extracted from these two views are used

to determine the optimal boundaries along which adjacent

views are combined, which we refer to as seam lines.

Because the RSVP image is essentially a projection onto

a flat surface with a predetermined depth, when seams are

selected such that they pass through objects at the surface

distance, those objects appear seamlessly stitched in the out-

put image. In other words, in the process of projecting from

each captured image to the virtual surface, a world location

that lies on the virtual surface and is captured by adjacent

cameras will project back to the same world location, and

thus look aligned, in the virtual view. Therefore, we use

stereo information to locate points in world space that are

close to the projection surface, so that a seam line that runs

through their corresponding image points can be computed.

Specifically, we compute disparities for each point on the

flat surface, DW , using its known location relative to the

stereo cameras. We then compare this flat surface of disparity

values with the transformed disparity map, D′, which was

computed between Lstereo and Rstereo and corresponds to 3D

locations of the scene captured in the stereo cameras. To

perform this comparison, we simply take the magnitude of

their difference:

D∆ = |D′ −DW |. (1)

Therefore, for each seam candidate s = {(xi, yi)}, de-

fined by a set of pixels in D∆, we define the accumulated

matching cost of the seam as D∆(s) and normalize by

the number of pixels in s, for which a valid disparity es-

timate exists, to obtain cost cs. Specifically, to compute

the cost cs of any candidate seam s, with discretized points

{(x1, y1), ..., (xhRSVP
, yhRSVP

)}, we use the following equa-

tion:

cs =

∑
i=1:hRSVP,D′(xi,yi)>0 D∆(xi, yi)

|D′(s) > 0|
, (2)

where |D′(s) > 0| is the number of points in s with valid

disparity estimates, and hRSVP is the height of the output

panorama in pixels in the transformed domain. Each seam

line candidate is specified by hRSVP points (one per row).

Our output display is 1920×480, so hRSVP = 480 in our im-

plementation. The minimum-cost seam, smin,W , that stitches

any two views together is the linear path with the lowest cost

that lies within the overlapping region between the views:

smin,W = argmin
s

cs. (3)

Figure 5 shows an example of the transformed disparity

map and the points in 3D it helped identify as being the

appropriate points along which to combine adjacent views

as seamlessly as possible.

In cases where there are no significant objects at the depth

of the specified flat surface, there will be insufficient matches

between projection surface disparities and the transformed

disparity image. The seam line on the right in Fig. 5b, for ex-

ample, was chosen somewhat arbitrarily, because the ground

plane dominated the set of 3D points at the virtual surface
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(a)

(b)

Figure 5: Example showing how disparities can be used

to identify seam lines. (a) Transformed disparity map; (b)

Low-cost pixels with min-cost seam lines.

location, so all seam candidates between the right two im-

age feeds were equally poor choices. In such instances, we

instead attempt to stitch along the ground plane, thereby

finding a seam that avoids objects in the scene. The same

method for determining smin,W can be applied to find smin,G,

the min-cost seam along the ground. Instead of matching the

transformed disparity map to the flat surface disparities, we

match it to ground-plane disparities, which are pre-calculated

based on the calibrated stereo camera pair. Figure 6 shows

an example scene where there are no significant objects at

the surface distance, so picking a seam line according to

surface disparities (Fig. 6a) is arbitrary. In these cases, we

match ground-plane disparities (Fig. 6b).

(a)

(b)

Figure 6: Selecting seams using (a) virtual surface disparities,

(b) ground disparities. In this scene, the seams along the

ground plane preserve the pole structure visible in the right

image feed in (b), which is not visible in (a).

To select the overall min-cost seam, we select the mini-

mum between the seams computed using matching the flat

surface disparities and matching the ground disparities, with

optional algorithmic constraints. A bias towards using the

surface or ground can be used if one method is preferred

over the other. Additionally, when computing matching flat

surface disparities, we can impose a constraint to only allow

surface pixels with disparity estimates less than some ∆w

to contribute to computing the cost of the seam. Without

constraining the valid disparity pixels using ∆w, seam se-

lection will be biased towards matching along the ground,

because the ground is a dominant feature in the majority of

driving scenes, so ground-plane matches are generally more

prevalent. This constraint can be used to modify the cost

computation of a seam candidate s:

cs =

∑
i=1:hRSVP,D′(xi,yi)<∆w

D∆(xi, yi)

|0 < D′(s) < ∆w|
, (4)

and the overall min-cost seam is simply

smin = min(smin,W , smin,G), (5)

which is computed independently for each RSVP frame.

5.3. Temporal Consistency

We also present a method for temporally smoothing the

seam movement, because there may be large jumps and jitter

in the stitching boundary, which could be distracting and

disorienting to the driver, if new seams are computed inde-

pendently in each frame. To maintain temporal consistency

in an RSVP video sequence, we add a feedback loop to our

seam-detection algorithm to consider the seam location in

the previous frame, as shown in Fig. 1.

With the goal to minimize both unnecessary jitter as well

as large jumps in seam locations between frames, we define

minimum and maximum distance thresholds, pmin and pmax,

for seam movement. If no points in smin are at least pmin

pixels away from the seam in the previous frame (st−1), we

do not update the seam, i.e., st = st−1.

However, if any points in smin are more than pmax pixels

away from st−1, then smin is scaled such that the largest

pointwise displacement between smin and st−1 is pmax.

Specifically, if the min-cost seam is smin at a time t, and

we consider the points comprising each seam:

smin = {(x1,min, y1,min), ..., (xhRSVP,min, yhRSVP,min)},

st−1 = {(x1,t−1, y1,t−1), ..., (xhRSVP,t−1, yhRSVP,t−1)},

st = {(x1,t, y1,t), ..., (xhRSVP,t, yhRSVP,t)},
(6)

with hRSVP = 480, then the x-coordinates of st can be com-

puted by scaling smin as follows:

∆x1 =|x1,min − x1,t−1|,

∆xhRSVP
=|xhRSVP,min − xhRSVP,t−1|,

r =
max(∆x1,∆xhRSVP

)

pmax

,

xi,t =xi,t−1 +
xi,min − xi,t−1

r
∀ i = [1, 480].

(7)

Figure 7 shows examples of how these displacement

thresholds can affect the way the new seam is chosen. When
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all the points of the new min-cost seam line, smin, are within

pmin pixels from the previous seam, st−1, then st = st−1

and remains unchanged (Fig. 7a). When smin is computed to

be far away from st−1, then instead of instantly jumping to

the new location in frame t, st is computed such that over a

sequence of frames, it gradually moves toward smin.

(a) (b)

Figure 7: (a) To avoid jitter, the minimum movement thresh-

old is used. (b) To avoid a large jump to a distant seam

line, the new smin is scaled such that st moves toward the

min-cost seam.

We considered using an alternate approach that computes

a weighted mean between a newly-computed smin and the

previous st−1, i.e.,

st = smin + αst−1, (8)

where α is chosen to bias the system towards either picking

the min-cost seam or maintaining more temporal consistency.

However, this method does not allow the seam location to

truly reach an optimal min-cost seam that is farther away

from st−1, as it will converge to somewhere in between.

By using our algorithm for updating st by scaling the seam

location based on pmax and allowing for displacements of

pmax, we avoid this problem.

5.4. Stitching

Once st is computed for each of the two overlapping

regions (one between Rmirror and Lstereo and one between

Lstereo and Lmirror), we compute a blending LUT with weights

specifying the alpha-blending coefficients for combining

pairs of images together. The alpha values are computed

such that they are 0.5 for each point in st and linearly de-

crease from 1 to 0 over a blending width around the seam.

We predefine the blending width, but it could be changed

dynamically over frames with knowledge about the scene

structure in an extension to this algorithm.

We only require a single blending LUT the same size

as the output RSVP image, because the left seam (between

Rmirror and Lstereo) always falls in the left half of the RSVP

image, and the right seam (between Lstereo and Lmirror) al-

ways falls in the right half of the RSVP image. Thus, we

can create the blending LUT under these assumptions and

define the weights with respect to the left image of each pair

that are being combined. An example of a blending LUT is

shown in Figure 8, and red lines are overlayed to indicate

seam locations. If the LUT is represented by

{Wij , i ∈ {1, ..., hRSVP}, j ∈ {1, ..., wRSVP}},

then the stitching block (in Fig. 1) will perform the following

computations for the left and right halves of the output RSVP

image, respectively:

• For j = {1, ..., wRSVP

2 } and ∀i,

RSVP(i, j) = WijR
′

mirror(i, j)+(1−Wij)L
′

stereo(i, j),
(9)

• For j = {wRSVP

2 + 1, ..., wRSVP} and ∀i,

RSVP(i, j) = WijL
′

stereo(i, j)+(1−Wij)L
′

mirror(i, j).
(10)

Figure 8: Blending LUT example with seam lines overlayed

for visualization. The weight at each point on both seam

lines is 0.5.

6. Embedded Implementation

Figure 9 shows the data flow for our embedded implemen-

tation on the TDA3x SoC. We used four raw Bayer image

sensors with a capture resolution of 1280 × 720 at 30 fps

while the display resolution is 1920 × 480 at 30 fps. The

image sensors are connected via FPD-Link to the SoC [2],

where TDA3x’s hardware ISP processes the video frames,

enabling centralized control of exposure and white balance

for all camera images. This produces a seamlessly stitched

image output with no color or intensity irregularities at the

seam (Figures 10 and 11). These images are then passed to

the 2D warp engine for Image Transformation (Section 5.1)

and Image Rectification needed for the Stereo Engine [32].

The 2D warp engine is a flexible and efficient back-mapping

hardware accelerator for 2D images, which we use for per-

spective transformations and rectifications of the images and

disparity map. By using bilinear interpolation and choosing

optimal block sizes, the total compute time for all image
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transformations and rectifications on the 2D warp engine

was minimized to 29.35 ms, which fits within our 30 fps

budget.

The image-rectified stereo pair is passed to the Stereo

Engine running on the EVE and DSP1, which creates the

disparity map needed for the Seam Detection algorithm in

30.8 ms. We use a stereo baseline of approximately 10 cm

and standard semi-global matching for our stereo algorithm,

but other dense correspondence methods may be used in-

stead. The Seam Detection and Stitching algorithms require

the perspective-transformed stereo disparity map in addition

to the transformed images as inputs. In order to meet the

real-time latency requirements, we use the disparity map

from the previous frame (t− 1) to detect the optimal seam

location in the current output frame (t).

Furthermore, as described in Section 5.2, we search for

the optimal seam by computing a cost on the disparity map

for each candidate seam. Here we use a projection surface

depth of 15 meters, measured from the stereo camera base-

line, i.e., the rear of the vehicle. To reduce the compute

complexity we use a coarse-to-fine search strategy, which

identifies the optimal vertical seam location and searches for

other linear (non-vertical) seams in the small neighborhood

of the identified best vertical seam location. Although this

strategy reduces computations, a vertical seam search is not

cache friendly for an embedded system. To improve cache

efficiency, we transpose the disparity map in the 2D warp en-

gine as part of the image transformation step, which converts

the search space to horizontal seams.

Since the location of the stitching seam can change in

each new frame, we must dynamically generate a new blend-

ing LUT. The blending LUT is only computed for the region

of the output where the center image overlaps with the left

and right images. These optimizations, along with targeted

DSP intrinsic optimizations in the blending LUT genera-

tion loop, reduce the compute time for the Seam Detection

algorithm to 9.5 ms on DSP2.

In the Stitching algorithm, the nonoverlapping portions of

the left and right images are simply copied to the output im-

age using efficient hardware Direct Memory Access (DMA)

memory transfers, since there is no blending in these regions.

For the blended regions, the algorithm was optimized using

DSP intrinsic functions to take full advantage of the C66x

SIMD architecture. The core software loops performing the

alpha-blend operation blends almost two output pixels per

one DSP cycle. Since the compute in this case is faster than

the memory access rate through the cache, the DMA engine

was employed using a ping-pong buffer scheme to bring

blocks of both images and the blending LUT from DDR into

the DSP2 L2 RAM and to write the output back from DSP

L2 RAM to DDR. With this scheme, the DDR data access

time and the blending compute time overlap, thereby reduc-

ing the overall time for the stitching algorithm to process

each output frame to 4.3 ms on DSP2.

Finally, we also note that the resulting RSVP image that

is displayed to the driver should be overlayed with a visu-

alization of part of the vehicle to orient the driver with a

sense of relative distances between objects in the scene, as

demonstrated in Figure 10. This overlay is fixed and loaded

in DDR memory in RGB565 format. The Display Subsys-

tem (DSS) supports reading three video streams and one

graphics overlay for color conversion, blending, scaling, and

compositing on the final video output port. In our imple-

mentation, we use one video stream for the stitched video

output and one graphics overlay for the vehicle visualization.

The DSS graphics overlay is configured with an alpha blend

in hardware which provides an efficient implementation of

transparent overlays. With these optimizations, we achieve

real-time performance with a system latency of 124 ms.

7. Discussion

Because this RSVP display is intended for automotive

applications, safety is, of course, critical. The typical way

drivers learn to adjust their rear-view mirrors creates huge

blind spots just past the FoV of their periphery, which drivers

can only see if they look over their shoulders. The camera

configuration in RSVP reduces the extent of this blind spot

significantly; however, it also introduces two additional blind

spots at either corner of the rear bumper. Figure 12 illustrates

this issue. An object right behind the bumper but outside

of the FoV of either stereo camera will not be captured by

any camera. Additionally, if an object is right next to the

bumper and captured in either L′

mirror or R′

mirror, stitching

the RSVP image together could remove the object from the

display entirely, or the object could appear ghosted, both

of which are problems. However, if the vehicle is traveling

at low enough speeds and/or in reverse, other integral parts

of ADAS, such as surround-view, parking assist, or backup

assist, would be preferred applications to use over RSVP.

Also, increasingly popular with ADAS is combining in-

formation from different sensor modalities. If a radar sensor

is able to detect the presence of an object visible in either

blind spot captured by L′

mirror or R′

mirror but not captured

by the stereo cameras, the seam selection algorithm can be

modified to bias the respective seam toward the center of the

output RSVP image, which would ensure as much of L′

mirror

or R′

mirror is included in the output as possible, so the object

will indeed be projected in the RSVP display.

8. Conclusion

We have introduced a novel system involving a new cam-

era configuration and RSVP-generation algorithm to replace

the three rear-facing mirrors in most current automobiles.

Our camera system comprises (1) two side cameras–one

on either side of the vehicle–to replace the side rear-view
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Figure 9: Block diagram for embedded implementation

Figure 10: Screenshot of the embedded demo comparing the

RSVP view and the traditional three-mirror view

Figure 11: Examples of generated RSVP images

mirrors, and (2) a stereo pair of cameras on the vehicle’s

rear to replace the center rear-view mirror looking through

the rear window and to provide a means of extracting depth

information from the scene. After initial calibration of the

entire system, transformations of each camera feed can be

computed to project the captured images onto a virtual sur-

face, which represents the output RSVP image and can be

Figure 12: Comparison between blindspots in the traditional

rear-view mirror system and blindspots in RSVP

thought of as being captured by a single rear-facing virtual

camera.

The three images used for visualization (Lmirror, Rmirror,

and Lstereo) and the disparity map, computed between the

stereo image pair, are transformed and passed to our seam-

detection algorithm, which uses disparity matching to then

determine optimal min-cost seam lines along which to com-

bine adjacent camera frames. Then a single weighting LUT

is generated using prior knowledge of where each camera

projects in the output, so the images can be combined ef-

ficiently. Our embedded implementation of this algorithm

demonstrates the efficiency and feasibility of integrating a

real-time RSVP display in current ADAS systems.
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