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Abstract

The work presented in this paper deals with the chal-

lenging task of learning an activity class representation us-

ing a single sequence for training. Recently, Simplex-HMM

framework has been shown to be an efficient representa-

tion for activity classes, however, it presents high compu-

tational costs making it impractical in several situations.

A dimensionality reduction of the features spaces based

on a Maximum at Posteriori adaptation combined with a

fast estimation of the optimal parameters in the Expecta-

tion Maximization algorithm are presented in this paper.

As confirmed by the experimental results, these two mod-

ifications not only reduce the computational cost but also

maintain the performance or even improve it. The process

suitability is experimentally confirmed using the human ac-

tivity datasets Weizmann, KTH and IXMAS and the gesture

dataset ChaLearn.

1. Introduction

In recent years, the focus of activity recognition research

has moved from constrained scenarios where videos were

recorded under controlled settings to unconstrained scenar-

ios such as videos shared on the Internet. Thanks to this

shift, better generalization of recognition is obtained, allow-

ing the use of trained systems in open domain. Neverthe-

less, many applications like surveillance, gesture recogni-

tion or ambient assisted living assume constrained scenar-

ios, being a specific location or a specific subject, and there-

fore the learning of some specific features can improve the

performance. The use of cross domain approaches and the

use of even limited training data from the target domain may

boost the system accuracy.

As mentioned before, the first datasets in activity recog-

nition were constrained to controlled laboratory settings as

the examples of Weizmann [5], KTH [19] or IXMAS [24].

Currently, many recognition systems obtain almost perfect

performance on them, assuming training with substantial

data. On the other hand, more recent datasets are composed

by lots of training examples from unconstrained scenarios,

obtained for instance from Youtube or movie extractions,

such as HMDB51 [8], UCF101 [21] or OlympicSports [12].

A lot of work has been done in feature extraction design

over the years. Recognition in constrained scenarios was

properly solved with global descriptors such as Motion His-

tory Images, Motion Energy Images [2] [3], spatio-temporal

shapes [27] or spatio-temporal volumes spanned by silhou-

ette images [5]. The change of research focus from con-

strained to unconstrainted scenarios resulted to a shift from

global descriptors to local descriptors, being local spatio-

temporal descriptors more robust to variabilities [9] [4] [10]

[7]. Recent state-of-the-art ad-hoc descriptors are based

on hybrid models where spatio-temporal interest points are

tracked during some frames obtaining a trajectory around

which the descriptor is computed, being Dense Trajecto-

ries (DT) [22] and Improved Dense Trajectories (IDT) [23]

the most successful method thus far. Finally, the improve-

ment in computer computational capacities and encourag-

ing results in many disciplines have inspired researches us-

ing Deep Neural Networks [25].

In spite of the system versatility obtained by the combi-

nation of the above training datasets and recognition algo-

rithms, the achieved accuracy is not yet at the level required

in many commercial applications and if any constrains are

present in the target domain, other approaches can be ex-

plored. Fixing some of the settings such as the background,

the viewpoint or the subject performing the activity has the

advantage of suppressing in some degree the clutter intro-

duced by them, leading to higher reliability. However, the

acquisition of sequences of activities in a new scenario is

expensive in time and may be tedious. While most meth-

ods obtaining state-of-the-art results use several examples

of the same class for training, the use of a reliable one-shot

learning method facilitates a correct modeling from the first

recorded sequence and therefore accelerates the working of

a customized system in a target scenario. Little research has

been done in training human activity recognition systems

with limited number of labeled examples although being an

essential feature for such practical situations [20] [14] [26]
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[17]. On the other hand, a wider study has been done in

one-shot learning for gesture recognition, triggered by the

ChaLearn gesture dataset and the 2011/2012 challenge [6].

The recent work presented in [18] shows an approach for

modeling human activities using only one domain sequence

in the called Simplex Hidden Markov Model (SHMM),

which is presented in a framework that benefits from a trans-

fer learning stage based on a Maximum at Posteriori (MAP)

adaptation. The following division of one-shot learning

problems was suggested. First, strict-one-shot-learning as-

sumes only one training example available which is used to

model a single class. After training several models (one per

available example) of different classes separately, it is pos-

sible to combine these models in order to train a recogni-

tion system. Seo and Milanfar [20] follows this approach

using a nearest-neighbor classifier. Second, relaxed-one-

shot-learning process uses simultaneously multiple training

examples available, assuming one per class. This relaxation

allows sharing some information among the examples in or-

der to model the classes or directly training a recognition

system. Most approaches follow this description as Yang

et al. [26] and Orrite et al. [14] do by creating a vocab-

ulary of features using sequences of the different classes.

The framework created in [18] is designed for the strict

model although both models were tested. However, follow-

ing the framework description a drawback in the SHMM

arises. The computational cost of training an adaptation

and an SHMM per training sequence is high. In this paper

we propose to reduce this cost by modifying some of the

framework stages and also we propose to extend the study

to a different domain. So, the contributions proposed in this

paper are summarized below:

1. Reduce computational cost by decreasing the num-

ber of Gaussians in a Universal Background Model

(UBM) and by doing a fast estimation of the Expec-

tation Maximization optimum. We call this novel ap-

proach Fast-SHMM.

2. Verify the versatility of the method in different do-

mains by applying it to gesture recognition, in addition

to human activity recognition.

The rest of the paper is divided in the following sections.

Section 2 describes the MAP adapted SHMM. Section 3

introduces the two modifications that reduce the computa-

tional cost presenting the Fast-SHMM. Experiments con-

ducted in Weizman, KTH, IXMAS and ChaLearn datasets

using Strict One-shot Learning are presented in Section 4.

Finally, conclusions are discussed in Section 5.

2. Simplex-HMM with MAP adaptation

This section briefly describes the SHMM framework

complemented with an MAP adaptation of the features

space.

In Figure 1 a flow diagram of the system proposed in

[18] is depicted. From the wide range of features extrac-

tors available in the literature, IDT [23] has shown state-of-

the-art performance in several challenging datasets and so

it has been selected in the Features Extraction stage. The

method extracts the IDTs from videos in public datasets of

human activities, considered the source domain, and cre-

ates a UBM vocabulary modeled with a Gaussian Mix-

ture Model (GMM) as in [16], representing general, per-

son and scenario independent features. Once selected the

target scenario, the first performance of each activity class

is recorded and labeled. The corresponding IDTs are ex-

tracted from this initial training video and used in a twofold

task. First, with the unordered IDTs, the UBM vocabulary

is transferred to the target scenario using an MAP adapta-

tion, and obtaining a sequence specific vocabulary. Second,

the IDTs are grouped into temporal windows where they are

soft-assigned to the adapted vocabulary, obtaining a Bag of

Features (BoF) per window. Each BoF histogram is normal-

ized so that it sums one, equivalent to say it belongs to a unit

simplex. Finally, given an activity video, the proposed en-

coding represents the activity as a sequence of normalized

BoF, O = {O1, · · · , OT }, each one belonging to the sim-

plex ∆ = {vλ ∈ R
K : vλi

≥ 0 :
∑K

k=1 vλk
= 1}. These

observations are RK vectors although the real dimensional-

ity of the space is (K−1). The sequence of normalized BoF

can be used for training a classifier based on HMM, suitable

for modeling time sequences. As HMM presents numer-

ical problems when working with limited training data of

high dimensionality [11], the use of an observation emis-

sion function in a simplex can be used to prevent these nu-

merical instabilities.

Formally, the parameters of the HMM are θ =
{N,A,B, π}, N is the number of states, i.e., S =
{S1, . . . , SN}. Each observation, Ot is the emission pro-

duced by the hidden state zt. A set of hidden states forms

a sequence, Z = {z1, . . . , zT } where zt ∈ S. A = {aij}
is the state transition matrix where aij represents the tran-

sition probability from state i to state j, aij = p(zt+1 =
Sj |zt = Si). π = {πi} is the initial state probability dis-

tribution where πi = p(z1 = Si), 1 ≤ i ≤ N being Si the

state at the beginning of the time series. Finally, B repre-

sents the observation probability distribution in every state

where bj(Ot) = p(Ot | zt = Sj). As previously men-

tioned, the observation space is the simplex ∆, which is a

continuous space where SHMM finds a stable solution sim-

plifying the observation model by fulfilling the condition

bj(Ot) ≥ 0 ∀Ot, Ot ∈ ∆. Specifically, bj(Ot) should be

designed as a decreasing function with a maximum equal to

1 in a point in ∆, and its value decreases while it separates

from that point, being always non-negative.

A fair comparison between histograms is the exponential
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Figure 1. Flow diagram of the Simplex-HMM with MAP adaptation.

of the negative Hellinger distance. As vectors in the simplex

may be considered normalized histograms then equation 1

is a valid observation model.

bj(Ot) = e
−ϕ

√

∑

K
k=1

(
√

vt
λk

−
√
mjk)2

(1)

Given one, or several training observations, the HMM

parameters can be estimated using the Maximum Likeli-

hood through a Baum-Welch algorithm. This iterative es-

timation is obtained by maximizing the Baum’s auxiliary

function Q(θ̂, θ) [15] [1].

Q(θ̂, θ) =
∑

Z

p(Z|O, θ) ln p(O, Z|θ̂) (2)

Defining γt(i) = p(zt = Si|O, θ) and ξt(i, j) = p(zt =
Si, zt+1 = Sj |O, θ), the function Q can be expressed as:

Q(θ̂, θ) =

N∑

j=1

γ1(j) lnπj +

T−1∑

t=1

N∑

i=1

N∑

j=1

ξt(i, j) ln aij+

T∑

t=1

N∑

j=1

γt(j) ln(bj(Ot)) (3)

The proposed bj(Ot) requires a special modification on

the EM algorithm. First, a change in notation is done

in order to simplify the equations. The terms
√
vtλk

are

named without the square root so
√

vtλk
→ ṽtλk

. This

change implies a notational change in the constraints so∑K
k=1 vλk

= 1 → ∑K
k=1 ṽ

2
λk

= 1. On the other hand,

the same change can be done for the terms
√
mjk, naming

them m̃jk directly. Now, the observation model is defined

by equation 4.

bj(Ot) = e
−ϕ

√

∑

K
k=1

(ṽt
λk

−m̃jk)2
(4)

With this observation model the EM algorithm is pro-

cessed modifying the M-step in order to maximize the third

term in equation 3 with respect to m̃jk.

∑

t

∑

j

γt(j) ln(bj(Ot)) =

∑

t

∑

j

γt(j)


−ϕ

√√√√
K∑

k=1

(ṽtλk
− m̃jk)2


 (5)

By setting ∂
∂m̃jk

= 0, the following equation is obtained:

ϕ

T∑

t=1

γt(j)
(ṽtλk

− m̃jk)√∑K
k′=1 (ṽ

t
λk′

− m̃jk′)2
= 0 (6)
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Since m̃jk does not depend on t and γt(j) are treated

as constants in the M-step once computed in the E-step,

parameters maximization is performed by using the fixed

point iteration explained in Algorithm 1.

Algorithm 1

Randomly initialize m̃jk ∋ ∑K
k=1 m̃

2
jk = 1

ǫm = ∞
while ǫm > ǫ do

m̃′
jk =

∑T
t=1 γt(j)

ṽtλk√∑K
k′=1 (ṽ

t
λk′

− m̃jk′)2

∑T
t=1 γt(j)

1√∑K
k′=1 (ṽ

t
λk′

− m̃jk′)2

ǫm = maxk |m̃jk − m̃′
jk|

m̃jk = m̃′
jk, k = 1...K

end while

It should be noted that the optimization process can be

performed separately for each j.

3. Fast Simplex Hidden Markov Model

An important drawback of the SHMM algorithm pro-

posed in [18] is its high computational cost. In this section

we identify two stages that negatively affect the computa-

tional cost and we propose two methods to reduce their in-

fluence. First, the soft-assignment of the local features in

a high dimensional space is performed for every extracted

feature in both training and testing stages. Such a high di-

mensionality not only slows down the soft-assignment but

also any computation in the method. We propose to re-

duce this dimensionality by taking advantage of the MAP-

adaptation performed in the training process. Second, the

iterative method previously described in Algorithm 1 in-

creases the needed time for training. We propose the ac-

celeration of the process by making a fast estimation of the

optimum avoiding the iteration.

3.1. Reduced MAP Adaptation

One of the pillars that supports SHMM framework is

the MAP adaptation of the features space. In the Strict

One-shot learning process the MAP adaptation is processed

for every training sequence in the target scenario, obtain-

ing a GMM per sequence λ̂n(µ̂n,Σ), 1 ≤ n ≤ N . The

proposed framework assumes shared covariance matrices

among models and no weights for the Gaussians, restrict-

ing the modification per model to the centroids only. For a

BoF encoding the number of Gaussians, K, is several thou-

sands and if we have N training sequences we need to store

KN centroids. But the computational cost is even higher,

because the evaluation of every new descriptor should be

made against all these KN centroids. Given the set of de-

scriptors Q = {qm}, qm ∈ R
D, 1 ≤ m ≤ M , for every

Gaussian λ̂ni in the MAP-adapted UBMs, the probabilistic

alignment of the feature vectors is computed by (7). If Q

represents the test set of descriptors, this equation should

be processed KNM times in test time.

p(λ̂ni|qm) =
N (qm|µ̂ni,Σi)∑K

k=1 N (qm|µ̂nk,Σk)
(7)

On the other hand, if Q represents the set of training de-

scriptors in one sequence then, the MAP Adaptation uses

this same probabilistic alignment for the calculus of the

GMM transformation. In this case the UBM is represented

only by one GMM, λ(µ,Σ). These probabilistic alignments

and the feature vectors are used to compute the sufficient

statistics where the initial step is the estimation of the global

probabilistic alignment using (8).

ni =
M∑

m=1

p(λi|qm) (8)

For each Gaussian λi in the UBM the global probabilis-

tic alignment gives the information on how related are the

training data to the specific Gaussian. A large ni means that

there are some qm samples close to the Gaussian and then

this Gaussian is representative for the data, a small ni means

that the data is separated from the Gaussian and this Gaus-

sian has low relevance to the samples in Q. Therefore, we

can use ni not only for the MAP-adaptation but also as an

activation parameter per Gaussian. Thus, we use a thresh-

old over ni. An ni ≥ ξ means that the Gaussian is active

and therefore MAP adapted, otherwise the Gaussian is dis-

carded, as depicted in Figure 2. Finally, the MAP-Adapted

GMM is composed by the adapted Gaussians that fulfil the

threshold restriction as described in (9).

λ̂ = {λ̂i}, ∀i ∋ ni ≥ ξ (9)

Threshold ξ controls the reduction of the computational

cost and storage. An ideal value of ξ should lead to an ap-

propriate trade-off between computational cost and recog-

nition accuracy. After the reduction each model has a dif-

ferent number K of Gaussians, and if the average number

is K < K then, the final number of times the probabilis-

tic alignment equation should be processed is KNM <

KNM .

3.2. Fast Estimation of the Optimal Parameters

It is worth noting that in strict-one-shot-learning

paradigm the activity model is optimized using only one

sequence and an optimization of the model to this single ex-

ample might risk an over-fitting. Then, we propose to avoid

the optimization method and substitute it with a direct esti-

mation of the maximum of (5).
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Figure 2. Gaussian model reduction. Red dots represent Q and red

ellipses represent Gaussians fulfilling ni ≥ ξ.

Figure 3. Difference between the position of the maximum in (5)

and the fast estimation provided by (10) in a toy example of a

3-dimensional simplex. The green cross is the estimation and the

real values of (5) are evaluated all over the simplex, with red colors

representing the highest values.

The maximum value of (5) might be estimated using a

trade-off among all the training observations, when higher

values of ln bj(Ot) are weighted by higher values of γt(j).
Although the trade-off can be different depending on the

emission function, we propose the simple direct weight of

the observations with the γt(j) values through (10).

m̂jk =

∑T
t=1 γt(j)v

t
λk∑T

t=1 γt(j)
(10)

Figure 3 shows the graphical representation of this ap-

proach in a toy example with a 3D simplex. γt(j) values

and Ot observations are randomly obtained. The triangle

represents the (ln bj(Ot)) values along the whole simplex

with colors, being red the maximum and blue the mini-

mum. Additionally, the estimated value is represented by

a green cross. The figure shows that the direct estimation

provides a satisfactory approximation. Since only one se-

quence is available for training, the optimum of (5) is spe-

cific for the sequence, which may not be the optimum for

the activity class, and the estimation is close enough to pro-

vide a good approach. Since this estimation is not optimal it

may lead to a decrease in the log-likelihood. Therefore, we

have included a condition in the EM algorithm so that the

iterative process will be terminated if the log-likelihood de-

creases. Thanks to this approach we avoid possible conver-

gence problems in EM and as shown in some experiments

the time reduction is significant in training.

4. Experiments

So far, we have explained the Fast-SHMM framework

where a MAP adaptation of the UBM of features space is

computed per training example. This novel framework in-

cludes two methods to reduce the high computational cost

of the original SHMM described in the previous section.

However, the speed and the accuracy after the modifica-

tions should be tested. The following experiments show

the performance of the Fast-SHMM proposed in this pa-

per compared with the original method described in [18].

The comparison is performed using the same three datasets

tested in the cited paper. In addition, a novel experiment is

conducted in order to evaluate the framework adaptability

to a different domain. Other one-shot learning algorithms

have been previously proposed for gesture recognition and

therefore the Fast-SHMM is tested in that domain.

4.1. Datasets

Fast-SHMM is focused on human activity recognition

applied on constrained scenarios, where videos are ob-

tained by fixed viewpoint cameras. The proposed algorithm

is trained using human motion information from external

video sources using MAP adaptation, as described in Sec-

tion 2. The method is evaluated using several datasets that

accomplish the source and target domain constraints. We

have selected three source domain datasets that include a

high variability in unconstrained video clips that simulate

the easily obtainable ones from the Internet. On the other

hand, we have selected three popular datasets in the human

activity recognition field as target domain where the videos

are recoded from fixed cameras.

The configuration proposed in [18] is followed. IDTs

[23] features are extracted and used for creating a 5000

Gaussians UBM. On the other hand, the parameter ϕ of the

emission function is set to 1.57.

Source Domain Datasets Three public and extensive

datasets, HMDB51 [8], OlympicSprots [12] and Virat Re-

lease 2.0 [13], are used as source domain. They include

a high variability of movements in several locations. The

three datasets combined have 79 different activity classes

extracted from Youtube, movies or surveillance cameras in

7878 video clips. Randomly selecting 100000 IDTs from

the three datasets, a UBM of 5000 Gaussians is obtained

and used as base for all the experiments, including the ges-

ture recognition.

Target Domain Datasets The Weizmann dataset [5] is

composed by 93 low-resolution (180 x 144, 50 fps) video

sequences showing nine different people, each performing
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Figure 4. Target Domain Datasets: Weizmann (1st row), KTH (2nd

row), IXMAS (3rd row) and ChaLearn (4rd row).

10 natural activities: bend, jumping-jack, jump-forward-

on-two-legs, jump-in-place-on-two-legs, run, gallop-side-

ways, skip, walk, wave-one-hand and wave-two-hands.

The IXMAS dataset [24] is composed by 5 camera view-

points (390 x 291, 23 fps) of 11 actors performing 3 times

each of the 13 activities included: check-watch, cross-arms,

scratch-head, sit-down, get-up, turn-around, walk, wave,

punch, kick, point, pick-up and throw. The KTH dataset [19]

has been captured in 4 different scenarios where static cam-

eras have recorded, at low-resolution (160 x 120, 25 fps),

25 subjects performing several times six types of activities:

walking, jogging, running, boxing, hand-waving and hand-

clapping.

Additionally, a dataset designed for one-shot-learning

gesture recognition has been selected for validating the

adaptability of the method to a different domain. The

ChaLearn gesture dataset [6] includes more than 50000 ges-

tures recorded with the KinectTM sensor, providing both

RGB and depth videos. The gestures are grouped into more

than 500 batches of 100 gestures, each batch including one

example per class for training. The gestures come from over

30 different vocabularies and were performed by 20 differ-

ent users. For the sake of comparison with the literature

we only use the final 40 batches used in two challenges (fi-

nal1 and final2) composed by 20 batches each and the 20

batches provided for validation (valid). Frame examples of

these datasets are shown in Figure 4.

4.2. Computational cost improvement

In order to validate the usefulness of the reduced MAP

adaptation, the computational cost of three stages of the al-

gorithms are evaluated: training of SHMM (TR), activity

encoding (AE) and log-likelihood computation in SHMM

(LgC). Experiments are run in Matlab in an Intel i7-4790

CPU at 3600 GHz using the Weizmann dataset. As done

in [18] we select a UBM composed by K = 5000 Gaus-

sians. For the reduction stage we select ξ = 10−10, which

Table 1. Comparison of spent time (s) in the original UBM and the

reduced adaptation evaluating three stages of the process: train-

ing (TR), activity encoding (AE) and log-likelihood computation

(LgC).

K = 5000 K = 373

TR 0.7035 0.1324

AE 0.8653 0.042

LgC 0.0054 0.0012

Table 2. Comparison of spent time (s) training the Simplex-HMM

using the optimization of Algorithm 1 and the fast estimation of

(10).

Alg. 1 Fast

K = 5000 0.7035 0.1631

K = 373 0.1324 0.0313

is a small activation value despite producing a significant

reduction, for Weizmann dataset an average of K = 373.

Table 1 shows the spent time in each of the stages evaluated

using the original UBM or the reduced model.

Results support the advantage of using the reduced

model as the computational cost is significantly lower. In

the SHMM training only a 18.8% of time is required with

the proposed method. Even greater is the benefit obtained

in the activity encoding (discarding the IDT computation)

where only a 4.8% of the original time is required for com-

putation. Moreover, this is the slower stage of the process

and is used in both, training and testing stages. Finally, the

less restrictive stage is the log-likelihood computation be-

cause it was fast even before the reduction. However, the

reduction to a 22.2% of the original time is worth noting as

it is computed in testing and after the improvement in the

activity encoding its cost is representative.

On the other hand, the computational cost benefits exper-

imented with the fast estimation are tested using Weizmann

dataset again and the previously described computer. Ta-

ble 2 shows the time spent in the HMM training comparing

the EM using Algorithm 1 (Alg. 1) and the fast estimation

(Fast). Thanks to the fast estimation the training time is re-

duced to a 23% of the original time in both cases: using

K = 5000 Gaussians or using the reduced model with only

K = 373 Gaussians.

4.3. Recognition accuracy

In this section the validity of the Fast-SHMM is firstly

tested using two experiments conducted in the three con-

strained datasets previously mentioned: Weizmann, KTH

and IXMAS. Table 3 represents the accuracy of the meth-

ods evaluated. The performance of the Seo and Milan-
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Table 3. Accuracy in Strict One-shot learning using the proposed

improvements and comparison with other researches.

Weizmann KTH IXMAS

Seo and Milanfar [20] 75% 65% -

SHMM [18] 81.9% 70.4% 44.6%

SHMM + K Reduction 81.1% 71.8% 46.6%

FSHMM 81.5% 74% 47.4%

far method, as reported in [20] and the original SHMM,

as shown in [18] are shown in the first two rows. Accu-

racy obtained with the reduced MAP adaptation is shown

in third row with the name (K Reduction). After reduc-

tion, the average number of Gaussians is different for each

dataset. Considering an original UBM of K = 5000 Gaus-

sians and using a threshold of ξ = 10−10, K = 373 in

Weizmann, K = 712 in KTH and K = 1155 in IXMAS.

Two justification may be given for the variety of the K

values: first, activities with varied movements have more

Gaussians activated; second, longer sequences have more

extracted features increasing the activated Gaussians as the

activation equation is a direct addition without normaliza-

tion. The last row shows results for the combination of the

reduced MAP adaptation and the fast estimation of optimal

parameters covering the proposed Fast-SHMM (FSHMM)

are shown.

All the experiments follow the strict-one-shot-learning

paradigm and, except in Weizmann dataset where differ-

ences are not meaningful, the K Reduction method im-

proves the original accuracy and Fast-SHMM increases this

improvement. Thanks to these experiments we can con-

clude that the proposed acceleration of Fast-SHMM not

only reduces the computational cost but also improves the

accuracy.

Finally, using the validated Fast-SHMM, final batches of

ChaLearn gesture dataset are tested. Table 4 shows the Lev-

enshtein distance, an error measure used in the ChaLearn

challenges [6], for the 20 batches provided for validation

(valid) and the two challenges of the ChaLearn gesture

dataset (final1 and final2) providing the average of the re-

sults as final score. Fast-SHMM is compared with the 15

best groups presented in the challenges and the baseline

methods provided by the organizers. The rows are ordered

from the lower Levenshtein distance (better) to the higher

(worse) in the average column.

Results for our proposal are divided into three rows de-

pending on the data used for the model. (K) uses only

depth data, (M) uses only RBG data and (T) combines both

by adding the computed log-likelihood of their respective

Simplex-HMM. It is important to note that our experiments

do not use the sequences in the development batches of the

ChaLearn dataset. The UBM trained with human activi-

ties, previously explained, does not contain samples of ges-

tures. Moreover, our proposal is strict-one-shot-learning,

Table 4. Levenshtein distances in ChaLearn gesture dataset for the

15 best groups of the challenges [6], the baseline methods pro-

vided by the organization and our proposal.

valid final1 final2 Average

Alfnie2 9,95 7,34 7,10 8,13

Alfnie1 14,26 9,96 9,15 11,12

Pennect 17,97 16,52 12,31 15,60

TurtleTamers 20,84 17,02 10,98 16,28

Joewan 18,24 16,80 14,48 16,51

Immortals 24,88 18,47 18,53 20,63

OneMillionMonkeys 28,75 16,85 18,19 21,26

Manavender 25,59 21,64 19,25 22,16

WayneZhang 28,19 23,03 16,08 22,43

FSHMM-T 26,37 21,08 20,69 22,71

SkyNet 28,25 23,30 18,41 23,32

Zonga 27,14 23,03 21,91 24,03

BalazsGodeny 27,14 23,14 26,79 25,69

FSHMM-M 28,08 25,09 24,68 25,95

HITCS 32,45 28,25 20,08 26,93

XiaoZhuWudi 29,30 25,64 26,07 27,00

FSHMM-K 29,30 26,37 25,46 27,04

Vigilant 30,90 28,09 22,35 27,11

Baseline method 2 38,14 29,97 31,72 33,28

Baseline method 1 59,76 62,51 56,46 59,58

which is more restrictive than the relaxed one-shot-learning

approach used by other methods. Finally, FSHMM ap-

proaches use a basic segmentation where all gestures has

the same length, as the baseline methods do. Nevertheless,

we can observe how results from FSHMM are among these

15 teams out of 85 and overcome both baseline methods, be-

ing FSHMM-T exactly the 10th best, despite of the above

experimental limitations.

5. Conclusions

Results have shown how the proposed algorithm modi-

fications have reduced significantly the computational cost.

Computational times can be further improved, if more effi-

cient languages as C or C++ are used for the implementa-

tion, instead of Matlab.

Accuracy improvement obtained in Fast-SHMM can be

explained as follows: On the one hand, most of the UBM

Gaussians only introduce noise in the encoding as a reduced

number of them provide better results in general. On the

other hand, optimizing the Simplex-HMM for one class us-

ing only one training example might over-fit the model as

using an approximation gives better results.

While this paper focuses on one-shot learning, the Fast-

SHMM could also be used if several training sequences are

available in the target domain. However, in this case, fu-

ture work should resolve the issue that the computational

cost would increase linearly with the increase of training

sequences in the target scenario. Another challenge is to
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make the algorithm adapt to new sequences, while they are

being recorded.

Finally, it is worth noting how the Simplex-HMM with

an MAP adaptation can be used in several contexts as the

case of gestures, even if the features space has been trained

in a different domain (namely human activities). Better re-

sults should be obtained in the ChaLearn datasets if the de-

velopment batches are used to create the UBM.
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