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Abstract

We present a comprehensive overview of the stereoscopic

Intel RealSense RGBD imaging systems. We discuss these

systems’ mode-of-operation, functional behavior and in-

clude models of their expected performance, shortcomings,

and limitations. We provide information about the sys-

tems’ optical characteristics, their correlation algorithms,

and how these properties can affect different applications,

including 3D reconstruction and gesture recognition. Our

discussion covers the Intel RealSense R200 and RS400.

1. Introduction

Portable, consumer-grade RGBD systems gained popu-

larity with the Microsoft Kinect. By including hardware-

accelerated depth computation over a USB connection, it

kicked off wide use of RGBD sensors in computer vision,

human-computer interaction and robotics. In 2015, Intel

announced a family of stereoscopic, highly portable, con-

sumer, RGBD sensors that include subpixel disparity accu-

racy, assisted illumination, and function well outdoors.

Previously documented features of the Intel RealSense

R200 were limited to an in-depth discussion of the electri-

cal, mechanical and thermal properties [13], or high-level

usage information when utilizing the provided software de-

velopment kit and designing end-user applications [14]. In

contrast, this paper presents a technical overview of the

imaging and computation systems in this line of products.

2. Theory of Operation

2.1. Stereo Depth

In general, the relationship between a disparity (d) and

depth (z) can be parametrized as seen in equation 1. Here

focal length of the imaging sensor (f ) is in pixels, while the

baseline between the camera pair (B) is in the desired depth

units (typically m or mm).

z =
f ·B
d

(1)

Figure 1: An overview of a RealSense R200 module, along

with examples of the data captured in outdoor conditions.

From left to right are the infrared, depth and color images.

Additionally, we can take the derivative, ∂z
∂d

, and substitute

in the relationship between z and d to generate an error re-

lationship with distance.

|ǫz| =
z2

f ·B · |ǫd| (2)

Given that errors in disparity space are usually constant for

a stereo system, stemming from imaging properties (such as

SNR and MTF) and the quality of the matching algorithm,

we can treat |ǫd| as a constant in passive systems (≈ 0.1
from measurements in Section 4.2) 1.

1In active systems, the projector’s 1

z2
falloff leads to lower SNR at

small disparities (e.g. longer distances), and therefore |ǫd| is only approx-

imately constant until imaging noise overwhelms projector intensity.
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2.2. Unstructured Light

Classical stereoscopic depth systems struggle with re-

solving depth on texture-less surfaces. A plethora of tech-

niques have been developed to solve this problem, from

global optimization methods, to semi-global propagation

techniques, to plane sweeping methods. However, these

techniques all depend on some prior assumptions about data

in order to generate correct depth candidates. In the Intel

RGBD depth cameras, there is instead an active texture pro-

jector available on the module. This technique was used by

classical stereo systems, going back to 1984, and was orig-

inally called unstructured light [22, 23].

Such systems do not require a priori knowledge of the

pattern’s structure, as they are used simply to generate tex-

ture which makes image matching unambiguous. A pro-

jected good pattern must simply be densely textured, pho-

tometrically consistent, and have no repetition along the

axis of matching, in matching range. To create a favorable

pattern for a specific optical configuration and matching

algorithm, one can perform optimization over a synthetic

pipeline that models a projector design. By modeling both

the optical system’s physical constraints and realistic imag-

ing noise, one can obtain better texture projectors [15].

3. RealSense R200 Family

There have been multiple stereoscopic depth cameras re-

leased by Intel. However, many of them share similar (or

identical) imagers, projectors and imaging processor. We

will refer to all these products as the Intel R200, although

this analysis also applies to the LR200 and ZR300.

These modules are connected and powered by a single

USB connector, are approximately 100x10x4mm in size,

and support a range of resolutions and frame-rates. Each

unit is individually calibrated in the factory to a subpixel

accurate camera model for all three lenses on the board.

Undistortion and rectification is done in hardware for the

left-right pair of imagers, and is done on the host for the

color camera.

3.1. R200 Processor

The R200 includes an imaging processor, sometimes re-

ferred to as the DS4, which follows a long lineage of hard-

ware accelerated stereo correlation engines, from FPGA

systems [30] to ASICs [31]. These systems are scalable

in terms of both resolution, frame-rate and accuracy, allow-

ing variation in optical configuration to result in trade-offs

while using only a single processing block [32].

The image processor on the R200 has a fixed disparity

search range (64 disparities), hardware rectification for the

left-right stereo pair, and up to 5 bits of subpixel precision.

Firmware controls auto-exposure, USB control logic, and

properties of the stereo correlation engine. In practice, the

processor can evaluate over 1.5 billion disparity candidates

per second in less than half a watt of power consumption.

In fact, the entire depth pipeline, including the rectification,

depth computation, imagers and an active stereo projector,

can be run with about one watt of power draw. Following

previous designs [31], the processor is causal and has min-

imal latency between data input and depth output; on the

order of tens of scan-lines.

3.2. R200 Algorithm

Building on top of previous hardware correlation engines

[31], the R200 uses a Census cost function to compare left

and right images [34]. Thorough comparisons of photomet-

ric correlation methods showed the Census descriptor to be

among the most robust to handling noisy imagining envi-

ronments [9]. After performing a local 7x7 Census trans-

form, a 64 disparity search is performed, with a 7x7 box

filter to aggregate costs. The best-fit candidate is selected,

a subpixel refinement step is performed, and a set of filters

are applied to filter out bad matches (see section 4.2.7 for

details). However, all these filters do is mask out bad can-

didates. No post-processing, smoothing or filtering is oth-

erwise performed. That is, no matches or depth values are

ever “imagined” or interpolated. All depth points generated

by the chip are real, high-quality photometric matches be-

tween the left-right stereo pairs. This allows the algorithm

to scale well to noisy images, as shown in Section 4.1.2.

The algorithm is a fixed function block inside the proces-

sor and most of its matching properties are not configurable.

The settings exposed to users are limited to selecting the

input resolution of matching (which determines accuracy,

minimum distance, etc.) and configuring the interest oper-

ators that discard data as invalid (detailed in Section 4.2.7).

Compared to many other depth generation algorithms,

the R200 is a straightforward stereo correlation engine. It

computes best-fit matches between left-right images to the

highest accuracy it is able to, and filters out results it has

low confidence in. There is no smoothing, clipping, or spa-

tial filtering of data outside of cost aggregation. This avoids

artifacts and over-smoothing of data, providing generally

higher quality matches than other methods. These compar-

isons are shown in Section 4.1.

3.3. R200 Imaging Hardware

A thorough overview of the R200 hardware is provided

in Intel’s datasheet [13]. We summarize and elaborate on

certain performance-relevant details here. Each unit is indi-

vidually calibrated in the factory for subpixel accurate rec-

tification between all three imagers. There is a high quality

stiffener, along with detailed guidelines on tolerances and

requirements to ensure that these cameras hold calibration

over their lifetime [13].
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Figure 2: An overview of the R200 pattern projector. From left to right, the spatial structure of the projected pattern, a

mechanical overview of the projector design, and an example emission spectrum from a measured unit.

3.3.1 Cameras

The R200 module includes three cameras: a left-right stereo

pair and an additional color camera. The left-right cameras

are identical, placed nominally 70mm apart, and feature

10bit, global shutter VGA (640x480) CMOS monochrome

cameras with a visible cut filter to block light approximately

below 840nm. This is because the active texture projector is

in the infrared band and the imaging system seeks to maxi-

mize the SNR of the active texture projector. Thus, without

a strong infrared light source such as the projector, incan-

descent light-bulbs, or the sun, the left-right cameras are

unable to see. On the other hand, because of the combina-

tion of texture projector and being able to capture sunlight,

the R200 is able to work both in 0 lux environments and

in broad daylight. The field of view of these cameras is

nominally 60 x 45 x 70 (degrees; horizontal x vertical x di-

agonal). The left-right cameras are capable of running at

30, 60 or 90 Hz.

The color camera on the R200 is a Full HD (1920x1080),

Bayer-patterned, rolling shutter CMOS imager. Available

on the R200 module is an ISP which performs demosiacing,

color correction, white balance, etc. This camera stream is

time-synchronized with the left-right camera pair at start-

of-frame. Undistortion of the color camera, unlike the left-

right pair, is performed in software on the host. The nominal

field of view is 70 x 43 x 77 (degrees; horizontal x vertical

x diagonal), and the camera runs at 30 Hz at Full HD, and

at higher frame rates for its lower resolutions.

Currently, the R200 family of cameras uses a rectilinear,

modified Brown-Conrady [1] model for all cameras. There

are three even-powered radial terms and two tangential dis-

tortion terms. The modification comes in the form of com-

puting tangential terms with radially-corrected x, y. The

open-source library for accessing the Intel RealSense cam-

eras details the distortion model exactly [12].The rectifica-

tion model places the epipoles at infinity, so the search for

correspondence can be restricted to a single scan line [31].

3.3.2 Projector

Each R200 also includes an infrared texture projector with a

fixed pattern. The pattern can be seen in Figure 2. The pat-

tern itself is designed to be a high-contrast, random dot pat-

tern. Patterns may vary from unit-to-unit and may slightly

change during usage of an individual camera module. Since

the projector is laser-based (Class 1), the pattern also ex-

hibits laser speckle. Unfortunately, the laser speckle pattern

seen from the left and right imagers is unique to each view;

this creates photometric inconsistency. This inconsistency

can cause artifacts in the matching, either creating matches

where there are none or adding correlation noise to high-

quality matches. Thus the R200 includes several techniques

to mitigate laser speckle artifacts, some of which are seen

in Figure 2, featuring wavelength and bandwidth diversity.

4. Performance

We decouple our discussion of performance into algo-

rithmic performance expectations and system performance

expectations. The algorithmic portion quantifies the al-

gorithm design and its performance on standard stereo

datasets; given that this is a local algorithm with block cor-

relation [9], its near state-of-the-art performance on some

metrics may be surprising. The system performance section

focuses on how actual R200 family units perform on real

world targets, which we hope is useful for those building

algorithms that consume data from these camera systems.

4.1. Algorithm Performance

In the design of stereo correspondence algorithms, there

exist multiple standard datasets in use. The two most com-

mon are the KITTI [4], and Middlebury datasets [28].

In our testing and development we prefer the Middlebury

dataset for multiple reasons. Middlebury is a higher reso-

lution dataset, with subpixel accurate disparity annotations

(KITTI tends to use 3 disparities as its threshold), and dense

annotations for both data and occluded regions (KITTI data
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Metric bad0.5 bad1.0 bad2.0 bad4.0 A50

Ranking 2nd 3rd 3rd 4th 1st

Table 1: R200 algorithm ranking on the on Middlebury

training sparse dataset, when configured with the high-

quality preset. There are presently 61 algorithms listed.

comes from a sparse LIDAR scan). All of these properties

make the Middlebury dataset better suited to evaluation for

a metrically accurate RGBD sensor, where both density and

subpixel precision (as seen in Table 5) are a key part of per-

formance.

4.1.1 Middlebury Results

The Middlebury dataset includes multiple metrics, and of

these, we focus on what Middlebury calls sparse results,

where an algorithm is allowed to discard data it feels it is un-

able to compute correctly. This is for multiple reasons, in-

cluding the fact that the R200 laser projector disambiguates

challenging cases, but primarily because the ability to re-

move outliers and mismatches is in fact, a key component

of measuring algorithm quality. RGBD camera users do

not simply want the highest quality correlations, but also

removal of noisy or incorrect data.

When targeting high quality results (using the high pre-

set described in Section 4.2.7), a summary of the R200’s

performance on the Middlebury images is described in Ta-

ble 1. When looking at how well the R200 algorithm is able

to generate accurate results, we can see that the R200 is able

to provide near state-of-the-art performance. For example,

using the median disparity error metric (Table 3), the R200

is the best performing algorithm, with a 15% improvement

compared to the second best algorithm, although its data

density is lower than other top-ranked results. On the other

hand, when looking at the fraction of pixels with less than

half a pixel of disparity error (Table 2), the R200 algorithm

would be second-best in the Middlebury rankings, despite

having higher density than the third-ranked result.

These results are somewhat surprising, as the R200 is lo-

cal matching algorithm implemented on an ASIC, with only

a few scan-lines of latency, whereas other comparison al-

gorithms use full-frame, global and semi-global techniques

to generate robust matches. This suggests that the R200

features carefully designed interest operators and subpixel

methods, as described in Section 3.2.

4.1.2 Noise Resilience

There exists a very large gap in the quality of images avail-

able in standard stereoscopic datasets such as Middlebury,

and the portable, compact image sensors used on the R200.

Algorithm bad0.5 Validity

SED [24] 0.87% 0.9%

R200 8.39% 17.6%

ICSG [29] 10.32% 16.5%

Table 2: Top ranked Middlebury training sparse results for

the bad 0.5 metric, the fraction of valid disparities that are

more than 0.5 disparities incorrect.

Algorithm A50 Validity

R200 0.25 px 17.6%

R-NCC 0.30 px 31.4%

3DMST [16] 0.30 px 100%

MCCNN Layout 0.31 px 100%

Table 3: Top ranked Middlebury training sparse results for

the A50 metric (median disparity error).

Algorithm Dataset bad0.5 avgErr Validity

ELAS [5] MQ 25.0% 3.5 px 78%

ELAS [5] MQN 33.7% 11.5 px 63%

R200 MQ 12.9% 4.9 px 68%

R200 MQN 13.1% 5.6 px 60%

Table 4: Comparing results between the standard Middle-

bury data (MQ) against a noisy version of the data (MQN).

These are on quarter sized Jadeplant image. While ELAS

degrades severely, the R200 algorithm is nearly robust to

this additional level of noise.

Middlebury images are collected with a high-quality DSLR

camera with large pixels and good optics. Whereas the

R200 module features compact, low-cost, webcam-quality

CMOS cameras. The R200 stereoscopic matching algo-

rithm is optimized to work better on such noisy image data,

but there isn’t a standard evaluation process for this type of

data.

Thus we construct our own Middlebury Noisy dataset,

which simply adds realistic imaging noise [7], in the form of

photon noise, read noise and a Gaussian blur to model MTF

differences. The magnitude of added noise roughly corre-

sponds to the noise level of the R200 CMOS image sensors.

The comparison of how well the R200 algorithm performs

on both the standard and noisy Middlebury Quarter-sized

images is shown in Table 4. The results show that the R200

algorithm is only minimally affected, especially in compar-

ison to the reference ELAS [5] algorithm provided by the

Middlebury evaluation.
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Metric Symbol Value

1% RMS Range rǫ% of z=1 4.1 m

95% Fill Range rρ=95% 6.0 m

Best Case RMS ǫmm 1.0 mm

RMS at 1 meter ǫmm 2.1 mm

RMS at 2 meter ǫmm 8.0 mm

Absolute Error at 1 m ǫcalib 5 mm

X-Y Detectable Size ǫxy
5 pixels

1% of distance

Minimum Distance zmin 0.53 m

Dynamic Range Imax

Imin
40x

Disparity RMS (static) ǫd 0.08 pixel

Disparity RMS (moving) ǫd 0.05 pixel

Table 5: Measured performance of an example R200 unit at

480x360 resolution at 30 Hz. Definitions are elaborated in

section 4.2.

4.2. System Performance

We use white walls to test our unstructured light sys-

tems, and textured walls to measure passive systems. Due

to the issues explained in section 4.2.6, the R200 obtains

higher accuracy results in passive, well-illuminated condi-

tions. A summary of results is available in Table 5. To avoid

over-sampling due to distortion loss, most of our measure-

ments are done at 480x360 resolution instead of the native

640x480 resolution.

4.2.1 Depth Range

The minimum distance that the R200 can detect is a func-

tion of its fixed disparity search range. Due to the relation-

ship in equation 1, this is a hard limit in real-world space,

of around 1

2
a meter at 480x360. At lower resolutions, the

minimum distance moves closer to the camera as the fixed

range covers a larger fraction of the field-of-view. For ex-

ample, it is roughly 1

3
of a meter at 320x240.
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Figure 3: R200 performance at different frame-rates, across

different distances. On the left is RMS error from a best-fit

planar surface, on the right is the density of measurements.

Since the R200 is a stereoscopic matching system, its

maximum distance varies depending on illumination and

texture conditions. In passive conditions, for a well textured

target, d = 1 corresponds to roughly 30 meters at 480x360,

and in a strict sampling sense, this is the last non-infinity

distance disparity, and is one definition of maximum z. In

indoor conditions, with the R200 projector being the only

source of texture, SNR tends to be limiting factor in deter-

mining distance. The metric we use in this paper is greatest

distance at which a perpendicular white wall returns greater

than 95% of its measurements in the center of the FOV. This

distance is roughly 6 meters at 30 Hz. See Section 4.2.8 for

how this measurement can be used to estimate performance

under other measurement conditions.

Higher frame-rates lead to shorter exposure times and

hence a decrease in SNR-limited range. This scales with

roughly with the square-root of frame-time in photon-

limited environments, as can be seen with 30, 60 and 90

Hz measurements in Figure 3.

4.2.2 RMS Error

To estimate the noise and accuracy of an R200, we again

use the wall targets described earlier. A best-fit plane is

fit to the data and the RMS error from the plane is com-

puted 2. These measurements are shown in Figure 4 and

Table 5, and are SNR limited even at 30 Hz, where faster

frame-rates show more error, see Figure 3. Of note is that

the R200 RMS noise is below that of pixel (≈ 0.1 dispari-

ties), in line with previous measurements of the R200 accu-

racy [27]. These results highlight the importance of using

a high-quality subpixel interpolation method. Traditional

curve fitting approaches have failure cases that sophisticated

methods are capable of addressing [20].

Unit conversions can make these RMS numbers easier to

work with. Simple manipulations of equation 2 give the fol-

lowing convenient expressions for depth accuracy as a func-

tion of distance, corresponding to the results in Figure 4,

ǫ% of z =
ǫmm

z
= ǫd

z

fB
. (3)

4.2.3 Spatial Accuracy

The spatial accuracy (the accuracy of edges in images

space) is often a weakness of stereoscopic matching sys-

tems based their need for spatial support structures. In the

R200’s case, with a fixed block size, this behavior is pre-

dictable and symmetric in x and y, with the R200 incor-

rectly merging gaps between edges of less than 5 pixels, or,

in world units, about 1% of distance at 480x360 resolution.

2This is done with an SVD in 3D Cartesian space, and the smallest

singular value corresponds to RMS error from the best-fit plane.
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Figure 4: RMS depth noise over distance is roughly con-

stant in disparity space (ǫpixel), linear as a fraction of dis-

tance (ǫ% of z), and quadratic in real-world units (ǫmm)

4.2.4 Calibration Tolerances

Due to imperfections in fitting an undistortion and rectifi-

cation model to the cameras, the R200 camera may con-

sistently return depth that has an offset relative to the real

world. This may be scale or distance dependent depend-

ing on which part of the model has fitting noise. Our mea-

surements of several R200s show that this calibration error

is zero mean, and typically small, on the order of 5mm at

1 meter. Additionally, the R200 is subject to stereo bias

[2] but a planar derivation of that bias can be calculated as

ǫ = − d
2d2

−1
(for d >

√
2), and this is dominated by imaging

noise for ranges below 10 meters on the R200.

4.2.5 Dynamic Range

By sweeping a camera exposure from its fastest exposure

and smallest gain to its longest exposure and longest gain,

we can measure at what points we are able to get 95% den-

sity. This ratio, from the darkest condition where data is

returned accurately (due to SNR bounds), to the brightest

condition where it is returned accurately (due to saturation),

is the system’s dynamic range. This is dependent on the

choice of emitter, imagers, optics, and algorithm. Our mea-

surements show this factor to be roughly 40x on most R200

units.

4.2.6 Reducing R200 noise

Once an R200 is placed at an appropriate distance from

a properly illuminated target, there are still two primary

sources of data noise that limit a user’s ability to acquire

high quality depth, laser speckle and data-dependent noise.

Both of them can be mitigated with physical motion.

Subjective speckle, as outlined in Section 3.3.2, con-

tributes noise into the matching algorithm and limits the

SNR of capturing the projected pattern. However, laser

speckle will start to disappear if either the camera or the

target is in motion. When the camera moves relative to

the scene, RMS error decreases and data density increases.

When doing the experiments in Figure 3, the camera was

hand-held and hence in motion; if this experiment is re-

peated on a tripod, the results will be worse. This effect

0 5 10 15 20 25 30
exposure(ms)

0.06

0.08

0.10

0.12

0.14

R200 Subpixel RMS
baseline
rpm=12

Figure 5: The left-most image is a graph of measured ǫd
versus exposure time for a spinning vs static target. The

right pair of images are the results of temporal averaging

with static camera and with a moving projector.

can be isolated by comparing the RMS error (over a sweep

of exposure) of both a static wall target and one with a spin-

ning target. These result are shown in Figure 5, and we can

see a nearly 40% reduction in RMS error at 33 millisecond

exposure time when the target is spinning at 12 rpm.

When looked at closely, the R200 tends to have “bumpy”

looking data, such as that seen in the center of Figure 5.

This is due to subpixel matching noise, and the high level

of subpixel precision (5 bits) returned by the R200. To gen-

erate the plating behavior seen on other subpixel estimating

RGBD sensors such as the ASUS Xtion, one can simply

clip the R200 data above its baseline noise level, at a lower

subpixel precision (such as 2 bits). A further problem is

that the image in the center of Figure 5 is actually the tem-

poral average of a static scene and static camera (over 1,000

frames). This fixed pattern noise stems from having fixed

input images, and hence fixed subpixel artifacts. In order to

obtain the results seen on the right in Figure 5, one needs

to simply move the projector while performing the time-

averaging, and then the R200 returns zero mean noise for

every pixel over time. An equivalent operation would be

to move the camera relative to a scene, while performing

registration and aggregation [21].

Additionally, the ripples seen in Figure 3 correspond

to increases and decreases in performance as the camera

moves from sampling integer disparity locations (better per-

formance) to half pixel disparity shifts between the left and

right images (worse performance). The dramatic effect on

density comes from an aggressive preset configuration.

4.2.7 Presets

Almost all depth systems natively generate a depth for every

pixel. It’s the responsibility of the algorithm to find cases

where it has low-quality matches. However, as these are

noisy measures, they generally require trading off sensitiv-

ity and specificity. This can be seen as walking along the

receiver operating characteristic. The R200 is able to sup-

port this mode of operation by controlling how aggressive

the algorithm is at discarding matches.

To measure the quality of a match, a set of interest oper-
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Preset FPR rρ=95% max(σx, σy) > σz

Off 91.3% 7.0 m 6.1 m

Low 19.8% 6.9 m 6.6 m

Medium 5.8% 5.8 m 6.7 m

High 0.5% 4.2 m 6.8 m

Table 6: Performance of different R200 present configura-

tions. FPR, false positive rate, is a percentage of data re-

turned when given a scene below minimum z. rρ=95% and

max(σx, σy) > σz columns contain distances where those

data conditions are satisfied, in meters. Further is better.

Figure 6: A visual example of the Off, Medium and High

presets on an R200

ators [31] is implemented, similar to those used in standard

matching literature [10]. They are, a minimum matching

score, maximum matching score, left-right threshold (in 1

32

pixels), neighbor threshold, second-peak threshold, texture

threshold (at least N pixels with difference δ in a local win-

dow), and median threshold (technically a percentile esti-

mator, computed stochastically [25]).

Each of these measures has a threshold and if pixel fails

any of them, it is marked invalid. There is no confidence

map provided, data is either returned or marked zero to in-

dicate that it is invalid. Raw costs are poorly correlated with

matching quality, and aggregation of multiple features into

combined threshold is a classification problem [6, 19].

To enable users the ability to trade-off density for ac-

curacy, the R200 software provides presets, or optimized

threshold sets, which constitute an example Pareto set of

configurations. Each of these presets is a (nearly) Pareto op-

timal configuration over a training dataset for a given trade-

off of accuracy and density when using R200 image data.

Using these presets, one can get nearly a 100% dense im-

age, with many erroneous matches, or a very sparse image

with very few bad matches as seen in Figure 6.

Additionally, this trade-off of accuracy and density can

be seen in some quantitative metrics computed using these

presets, shown in table 6. It is clear that higher presets,

which are more aggressive, have fewer false positives and

produce more accurate data, but suffer a decrease in data

density (or equivalently, the range at which a density thresh-

old is satisfied).

4.2.8 Extrapolating Performance

Based on some of the simple measurements computed in

Section 4.2, which use simply a flat white wall, we are able

to extrapolate the expected performance of the R200 into

other conditions and domains. This is possible because the

95% density metric (rρ=95%) is indicative of the algorithm

being at an SNR boundary. With indoor conditions that have

little ambient infrared, we can then use basic physics to esti-

mate how well the camera will perform under different mea-

surement conditions.

rexpected ≈ rρ=95%

√

cos(θtarget) · α · cos(θFOV)7

α is albedo or reflectance. rρ=95% is how far you can image

a white wall with 95% density (meters). θFOV is how far

off camera axis you are. θtarget is the tilt of your target rela-

tive to the camera plane, following Lambertian reflectance.

The seventh power comes from a cos(θ)4 lens vignetting

and approximately a cos(θ)3 projector falloff. The square

root comes from the inverse square law. For example, if we

have a dark (α = 0.2) floor, in the lower quarter of the ver-

tical FOV (θFOV = 15◦), and is tilted relative to the camera

(θtarget = 60◦), we’d get rexpected ≈ 1.4m. This matches

measured performance, where dark, tilted floors in the cor-

ners of the field-of-view are not visible at long distances in

the R200 depth stream. Performance issues such as this are

greatly mitigated in the RS400, as explained in Section 5.

4.2.9 Post-Processing

In developing the software shown in Section 6, there have

been several properties of the R200 RGBD data we have

found useful. First, many approaches struggle with the

sparse noise that occurs with the R200’s local stereo algo-

rithm; median filters or speckle removal filters (small con-

nected component tests) are efficient at removing it.

Additionally, the use of the color data to smooth and in-

paint the depth data with an edge-preserving blur is often

helpful, such as with a domain transform [3]. Such fil-

ters are best applied in disparity space, not depth space,

as the nonlinear relationship between them leads to differ-

ent results with most methods. As shown in Section 4.2.2,

errors are roughly constant in disparity space (with RMS

equal to ǫd), enabling more computationally and theoreti-

cally tractable denoising when operating in disparity space.

Lastly, as seen in Figure 5, when the R200 is at the limits

of its matching accuracy, the data exhibits a bumpy char-

acteristic. These bumps have standard deviation equal to

ǫd = 0.08. Due to scene texture and spatial aggregation,

this noise is temporally-consistent and spatially smooth, re-

spectively. To obtain smooth surfaces instead, one can sim-

ply quantize the data in disparity space, to some ǫq , where

ǫd < ǫq ≤ 1; this is done in other commercial depth sen-

sors, and we typically set ǫq to be 4 times that of ǫd.
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Figure 7: Top row is R200 algorithm, bottom row is RS400

algorithm. Input images are identical. The quality of depth

obtained with RS400 is superior to the R200.

5. RealSense RS400 Family

Intel has announced a follow up to the R200 family

RGBD sensors, the RS400. These follow the same ba-

sic principle of portable, low-latency, metrically accurate,

hardware-accelerated stereoscopic RGBD cameras. They

support the use of unstructured light illumination, as well

as additional time-synchronized camera streams. The basic

analysis, metrics, artifacts, and properties outlined above

hold true for the RS400. Its matching algorithm is a config-

urable superset of the method used on the R200, producing

a significant improvement in results. The design focus is

similar to that of the R200, working with noisy image data,

and emphasizing accurate, false-positive free depth data.

The basic improvements to the RS400 image proces-

sor include several more recent innovations in stereoscopic

matching algorithms. A qualitative example of the improve-

ments these innovations bring is shown in Figure 7. The al-

gorithm has been expanded to include various techniques to

move past local-only matching and intelligently aggregate

a pixel’s neighbors estimates into a final estimate. Exam-

ples of published techniques that accomplish this are semi-

global matching [8] and edge-preserving accumulation fil-

ters [33, 35]. Additionally, the correlation cost function

has been expanded beyond simple Census correlation, inte-

grating other matching measures [17]. The RS400 features

support for larger resolutions, along with a corresponding

increase in disparity search range. Additionally, optimiza-

tions in ASIC design allow the RS400 family to do all of

this while being lower power than the R200, when run on

the same input image resolutions. However, at the time of

this publication, there are no commercially available RS400

units, so we are unable to provide a quantitative analysis of

performance like that in Section 4.2.

6. Software and Applications

Intel provides a free, proprietary SDK [14], and an open-

source, Apache licensed, cross-platform library for stream-

ing camera data [12]. A thorough overview of the R200’s

usage is provided in Intel’s SDK presentation [14]. Re-

cently, this R200 family of depth cameras was considered

best-in-class for 3D skeletal tracking of hand-pose, praised

for its high accuracy and motion tolerance [18]. Addition-

ally, these cameras have been shown to be capable of high-

quality 3D volumetric reconstruction [21] and measurement

of exact object dimensions (see Figure 8). The R200 has

also been integrated into several commercially hardware

platforms, including the Yuneec Typhoon H multirotor, the

ASUS Zenbo home robot, the HP Spectre X2 computer, the

TurtleBot3 robotics platform and others.

Figure 8: Application examples of the R200 depth cam-

eras. The left image features a volumetric integration al-

gorithm [26], while the right image features a single-frame

box dimension estimation algorithm [11].

7. Conclusion

In this work, we have explored the design, properties and

performance of the Intel stereoscopic RGBD sensors. We

have profiled the stereo matching algorithm performance

on reference datasets, along with end-to-end system per-

formance of the R200. In this, we have discussed various

performance challenges in the system, and demonstrated

available mitigation strategies. We show how such RGBD

sensors work in a variety of situations including outdoors.
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