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Abstract

Protecting visual secrets is an important problem due to

the prevalence of cameras that continuously monitor our

surroundings. Any viable solution to this problem should

also minimize the impact on the utility of applications that

use images. In this work, we build on the existing work

of adversarial learning to design a perturbation mechanism

that jointly optimizes privacy and utility objectives. We

provide a feasibility study of the proposed mechanism and

present ideas on developing a privacy framework based on

the adversarial perturbation mechanism.

1. Introduction

With advancements in deep learning, machines are be-

coming extremely efficient at understanding visual scenes.

Many applications capture users’ surroundings in the form

of images or videos and process them to extract useful in-

formation. While the utility of these applications is highly

sought after, it is equally important to protect sensitive in-

formation that may be leaked through captured images or

videos to possibly malicious applications.

Consider a scenario where Alice wants to use a trans-

lation app that translates text in the captured images. The

app needs to access the camera feed in order to perform

text extraction and translation. However, she is worried that

sensitive objects accidentally captured by the camera (e.g.,

a medicine bottle or her credit card) will be disclosed to

the app. This raises an important question - How can Alice

enjoy the benefits of an untrusted third-party app without

sacrificing her privacy?

Prior methods of protecting visual secrets use vision al-

gorithms to classify images or objects as sensitive and re-

move them from the camera feed [11] or they only reveal

objects of interest and block everything else [4]. These

methods suffer from three major limitations. First, the un-

derlying object detection algorithms are not robust against

real-world scenarios such as occlusion and illumination

variation. Second, marking the extent of sensitive object

in training images is human intensive and error prone. Fi-

nally, these methods do not protect against an adversary

who can exploit known correlations between sensitive and

non-sensitive regions of the image [7, 8].

We propose a privacy mechanism that systematically ad-

dresses the above shortcomings. We adapt a game-theoretic

notion to design an adversarial perturbation mechanism

that hides visual secrets in the camera feed without signif-

icantly affecting the functionality of the target application.

In particular, we formulate this problem as a game between

two players – an obfuscator and an attacker. The goal of the

attacker is to identify visual secrets in the images perturbed

by the obfuscator, while the aim of the obfuscator is to per-

turb images such that the perturbed images are similar to the

original images as well as fool the attacker. With these com-

peting objectives, both players are pitted against each other.

As the game progresses, both obfuscator and attacker im-

prove their methods (of detecting secrets and perturbing the

image, respectively) until the attacker can no longer identify

sensitive information in the perturbed images.

In concurrent work, Edwards et al. [2] proposed a sim-

ilar approach with the goal of learning fair representations

of the data that minimizes an adversary’s ability to infer sen-

sitive information. However, they do not explicitly quantify

privacy or utility guarantees achieved by the mechanism.

The primary focus of our work is to empirically quantify

these guarantees. Moreover, we also discuss whether the

adversarial perturbation approach can become a basis for

formally defining privacy in images.

To summarize, we make the following contributions in

this paper. First, we build upon the adversarial nets [3]

framework to design a perturbation mechanism that jointly

optimizes both privacy and utility objectives. Then, we pro-

vide a feasibility study on a real-world dataset demonstrat-

ing and quantifying the effectiveness of the perturbation

mechanism in hiding sensitive information while preserv-

ing utility. We end with a discussion of whether privacy in

images can be formalized via adversarial nets.

2. Adversarial Perturbation Mechanism

We model the perturbation mechanism using the adver-

sarial nets framework. It consists of two competing net-

works – 1) an attacker network A that learns to identify

secrets in the obfuscated images, and 2) an obfuscator net-

work O that attempts to fool the attacker by learning the

correct transformation. We model the privacy and the utility
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requirements as optimization objectives of these networks

such that at the end of training the obfuscated images satis-

fies both privacy and utility requirements.

Let X represents the universe of all images. XS ⊆ X

is the set of images with some sensitive properties (private

images) and XU = X \XS is the set of public images. The

obfuscator O takes as input an image x ∈ X and outputs

an obfuscated image O(x, θO) ∈ X , where θO denotes the

parameters of O. One way to ensure that obfuscated images

satisfy privacy requirements is by ensuring that the distri-

bution of public images and the distribution of obfuscated

images are indistinguishable. We enforce this property by

defining an attacker A that attempts to distinguish between

these two distributions. In particular, A takes as input an

image x ∈ X and outputs a score A(x, θA) denoting the

probability of image x having secrets, where θA denotes

the parameters of A. For a specific obfuscator O, we find

the optimal attacker A by optimizing the following:

argmax
θA

Ex∈XS
A(x, θA) + Ex∈XU

(1−A(x, θA))

+ Ex∈XS
A(O(x, θO), θA)

+ Ex∈XU
(1−A(O(x, θO), θA))

(1)

The attacker that maximizes Equation (1) gives high scores

to private images and low scores to public images, irrespec-

tive of whether they are perturbed or not. In other words,

A(O(x), θA) can be interpreted as a privacy loss of the ob-

fuscator O. Thus, we train the obfuscator to minimize this

privacy loss by optimizing the following:

argmin
θO

λ Ex∈XA(O(x, θO), θA)

+ (1− λ) Ex∈XLU (x,O(x, θO))
(2)

Here, LU is a utility loss that measures the error in obfus-

cation. LU can be any error metric based on the user spec-

ified utility requirements. In this work, we use L1 distance

as the error metric for utility loss, i.e., LU (x,O(x, θO)) =
||x−O(x, θO)||1. This loss enforces the obfuscated images

to be similar to the original images (utility requirement)

while the first term enforces the obfuscated images to be in-

distinguishable from public images (privacy requirement).

The trade-off between privacy and utility can be controlled

by the λ parameter.

2.1. Network Architecture and Training

Our network architecture is inspired by the deep con-

volutional generative adversarial networks (DCGANs) [9].

The attacker network takes as input a color image. The in-

put layer is followed by four convolutional layers each with

a ReLU (rectified linear unit) activation. Each convolutional

layer uses filters of size 5× 5 with stride 2. The number of

filters in each layer are 64, 128, 256 and 512, respectively.

The final layer is a fully connected layer with a single unit.

We use sigmoid activation in the last layer to bring the out-

put in [0,1] range.

The obfuscator network is a denoising autoencoder. The

goal of a denoising autoencoder is to reconstruct a clean in-

put from the noisy input. We can think of the secrets as

the noise that we would like to remove from the input im-

age. Specifically, the obfuscator takes as input a color im-

age. The input layer is followed by two convolutional layers

with a ReLU activation. The number of filters in each layer

are 64 and 128, respectively. Each filter is of size 5 × 5
with stride 2. This is followed by a fully connected layer

with 8192 units and ReLU activation. The output of a fully

connected layer is upsampled by four deconvolutional lay-

ers. The first three layers have 512, 256 and 128 filters each

followed by ReLU activation. The final layer uses one filter

followed by tanh activation to produce a color image. Each

convolutional layer uses filters of size 5× 5 with stride 2.

We train both networks simultaneously using an itera-

tive algorithm proposed by Goodfellow et al. [3]. On ev-

ery iteration (epoch) we update parameters of both the net-

works as follows. First, we use the obfuscator to gener-

ate perturbed images using private as well as public train-

ing images. Then, we use both original (unperturbed) and

perturbed images to train the attacker. Finally, we use loss

from the attacker and utility function to update the obfusca-

tor. Initially, the obfuscator will either fail to hide the secret

(high privacy loss) or generate an image that is completely

different from the input image (high utility loss). After sev-

eral epochs, it will adjust its parameters to successfully hide

secrets from the attacker. The attacker will soon catch up by

learning the obfuscation process which will force the obfus-

cator to develop a better perturbation mechanism. Eventu-

ally, the obfuscator learns a correct perturbation such that

the attacker no longer differentiates between a perturbed im-

age with a secret and an image without a secret.

3. Experiments

We quantify the privacy achieved by our mechanism and

its impact on the utility on the image classification dataset

CIFAR10 [5]. It consists of 32 × 32 color images from

10 categories. We selected two categories – horse and air-

plane, for our experiments. Thus, we have 10,000 training

images and 2,000 test images, which together form the set

of public images (XU ). Using these images we generated

a set of private images (XS) as follows. For each image in

XU , we generated a new image by placing a random QR

code 1 of size 10× 10 at a randomly chosen location in the

image. The experiments evaluate the mechanism’s ability

to hide QR codes while preserving the overall structure of

the image. We trained both the networks using the Adam

1generated using qrcode library - https://pypi.python.org/pypi/qrcode
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(a) Input images (b) Perturbed images

Figure 1: Perturbation results on private and public images.

optimizer with a learning rate of 0.0001 for 1,000 epochs

and a batch size of 50. Both networks are implemented in

Tensorflow 2 and are trained on NVIDIA Tesla K80.

3.1. Qualitative Results

Figure 1 shows randomly sampled test images together

with their perturbation results. The first three rows are pri-

vate images while the last three rows are public images. We

can see that the obfuscator successfully removes QR codes

from all the private images. Moreover, it preserves the over-

all shape and color profile of both public and private images.

Note that during evaluation, the obfuscator only gets an im-

age as the input. It does not get an explicit label such as

whether the image is public or private. Moreover, we train

a single obfuscator that handles both public and private im-

ages. Given an image, the obfuscator automatically deter-

mines if the input image is public or private and removes

any sensitive content if present in the image.

3.2. Utility Evaluation

We quantify the utility of our mechanism in terms of how

well it classifies public objects (horse vs airplane) in the per-

turbed images. For this task, we used a CNN with four con-

volutional layers followed by two fully connected layers.

We trained the network for 100 epochs with a batch size of

50. When trained on original (unperturbed) images, CNN

achieved classification accuracy of 96% on original test im-

ages. We evaluate the accuracy on perturbed images against

this benchmark accuracy under two training scenarios – a)

without access to perturbed images, and b) with access to

perturbed images. For the first case we used CNN trained

on original images to classify perturbed images which re-

sulted into 86% accuracy. For the second case we retrained

CNN with available perturbed training images which im-

proved the classification accuracy to 91%. These results

demonstrate that the perturbation mechanism does not sig-

nificantly impact the utility and preserves the properties of

public objects. Thus, it can be used in a scenario described

2https://www.tensorflow.org/

in Section 1 to hide sensitive information without affecting

the functionality of the text translation app.

3.3. Privacy Evaluation

We quantify privacy in terms of 1) how well an adversary

can detect whether the perturbed image had QR code or not,

and 2) how well the adversary can detect position of the QR

code in the perturbed image.

For the first task we used CNN based binary classifier to

classify perturbed images into private (with QR code) and

public (without QR code). We consider two types of ad-

versaries – a weak adversary and a strong adversary. The

weak adversary does not have access to the perturbation

mechanism and hence can only use original training images

to train the CNN. We found that weak adversary achieved

50% classification accuracy. In other words it is as good

as randomly guessing whether the perturbed image was pri-

vate or public. Thus, without the access to the perturbation

mechanism, the attacker can not perform better than ran-

dom guessing. The strong adversary has a black box access

to the perturbation mechanism which it can use to gener-

ate perturbed images with label (public or private) for train-

ing. We found that training the CNN with perturbed im-

ages improved the adversary’s accuracy to 75%. Thus, even

with the knowledge of the perturbation mechanism adver-

sary had a significant error rate (25%).

For the second task, we used template matching to find

the position of QR code in perturbed images. Given a per-

turbed image we used a corresponding QR code as a tem-

plate and performed matching using normalized correlation

coefficient method. We say a QR code is found if the over-

lap between the predicted bounding box and the true bound-

ing box is more than 50%. In none of the perturbed images,

we were able to find QR codes which shows that the pertur-

bation mechanism successfully hides visual secrets. Thus,

the proposed mechanism successfully hides the sensitive

content and limits the adversary’s ability to learn whether

or not a secret is present in the perturbed image.

4. Discussion

In this section, we briefly outline key challenges of de-

signing privacy methods using deep learning and describe

how our mechanism addresses these challenges.

Deep nets as adversaries: Given that deep learning is ex-

tremely successful in understanding images, it seems the

right tool to address privacy issues in vision. Researchers

have used deep learning to exploit vulnerabilities in the ex-

isting methods of image obfuscation [7, 8]. Moreover, deep

learning based obfuscation techniques have been proposed

to hide sensitive information in the data [1, 2]. Neural net-

works are universal approximators [10] which make them

natural candidates for simulating various classes of adver-
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saries with different capabilities. It is an interesting future

direction to use this approach to design rigorous privacy

definitions that provide formal privacy guarantees against

such machine learning based adversaries.

Correlation attacks: Image data is rich in contextual in-

formation which makes it vulnerable to correlation attacks.

For instance, simply blocking faces is not enough to conceal

users’ identity because seemingly innocuous contextual in-

formation such as clothes, gait, etc. could reveal the true

identity [8]. We believe that the proposed adversarial per-

turbation mechanism will protect against such correlation

attacks. Intuitively, if the obfuscator network fails to hide

such correlations then the attacker network can exploit them

to distinguish private images from public images. We plan

to investigate this further through empirical analysis.

Post-processing: We say that a privacy mechanism M sat-

isfies the post-processing requirement with respect to some

algorithm A, if the composite mechanism A ◦M provides

the same privacy guarantees as provided by M [6]. For in-

stance, a mechanism Blur that protects the identity of indi-

viduals by blurring faces does not satisfy this property. One

can simply design a de-blurring algorithm A that negates

the blurring effect revealing the true identity of people. Our

hypothesis is that the adversarial perturbation mechanism

satisfies post-processing requirement under certain condi-

tions. Here, we provide an informal argument and leave the

formal proof for future work. The formulation of our opti-

mization problem forces the obfuscator to minimize privacy

loss against worst-case adversary A among all possible ad-

versaries in domain A. Hence, in principle, we can bound

the expected privacy loss of the obfuscator O via the ex-

pected success rate of the worst-case attacker A. In other

words, one can not find an adversary A′ ∈ A that is (in

expectation) strictly better than A simply because A is the

worst-case adversary with respect to the obfuscator O.

Privacy without obscurity: Algorithms that rely on obscu-

rity, or the fact that the algorithm or its parameters are se-

cret to achieve security are prone to various attacks. Thus,

it is important for a privacy mechanism to hide sensitive

information without relying on the principle of obscurity.

The Blur mechanism mentioned above is prone to infor-

mation leak even if the underlying blurring algorithm (or

parameters) is kept secret [7]. The adversarial perturbation

mechanism proposed in this work uses a deterministic trans-

formation to remove sensitive information from the image.

Hence, it can leak information if the adversary knows the

exact structure and parameters of the obfuscator network

O. For example, given a private image I and an obfuscated

image I ′, the adversary can verify if I ′ is the obfuscation of

I by simply passing it through O. Abadi et al. [1] address

this problem in the context of cryptography by providing

a randomized private key as an additional input to the net-

work. We plan to investigate if similar randomization can

can help our mechanism not be susceptible to such attacks.

Training data: One of the limiting factors of using neural

networks to build a privacy framework is the need for large

amount of labeled training data. We partially address this

issue by removing the requirement of labeling objects in

training images. Our framework only requires image level

labels such as whether the image is public or private. How-

ever, getting private images could be challenging in many

scenarios. Furthermore, it is not clear how the mechanism

will behave if given an image with a sensitive object that it

has never seen. One can address this issue using the concept

of one-shot learning [12] which is an active area of research.

5. Conclusions

We model the problem of protecting visual secrets as

an adversarial game between an obfuscator and an attacker

with the competing goals of protecting and revealing se-

crets, respectively. We quantified the privacy leak and util-

ity loss of our mechanism through empirical evaluation. We

also discussed various challenges in establishing the pro-

posed adversarial approach as basis for privacy in vision.
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