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Abstract

We propose a model for full body and face de-

identification of humans in images. Given a segmentation

of the human figure, our model generates a synthetic human

image with an alternative appearance that looks natural

and fits the segmentation outline. The model is usable with

various levels of segmentation, from simple human figure

blobs to complex garment-level segmentations. The level

of detail in the de-identified output depends on the level of

detail in the input segmentation. The model de-identifies

not only primary biometric identifiers (e.g. the face), but

also soft and non-biometric identifiers including clothing,

hairstyle, etc. Quantitative and perceptual experiments in-

dicate that our model produces de-identified outputs that

thwart human and machine recognition, while preserving

data utility and naturalness.

1. Introduction

Nowadays, the ever-increasing presence of cameras in

daily life is taken for granted. From smartphones and

CCTV to utility cameras in smart cars and smart home

surveillance systems, we are used to being watched, pho-

tographed and have our data stored online. Photo and video

sharing sites with dedicated smartphone apps make it as

easy as one click for anyone to capture and upload po-

tentially privacy-sensitive data to the cloud. Simultane-

ously, recent breakthroughs in deep learning have revealed

a tremendous potential of computer vision in a wide array

of real-world applications [17]. The community has been

moving in leaps and bounds, making significant progress in

solving very difficult problems including face recognition

[25, 15], person re-identification [3, 34], image classifica-

tion [11], etc. While these advances are immensely helpful

in various applications that improve our daily lives, com-

puter vision can very easily become an enabling technology

for various attacks on privacy [28, 30, 23]. For example,

Figure 1. The effects of blurring for de-identification: while the

faces are not recognizable, people can still be recognized from soft

biometric and non-biometric identifiers such as hair color, cloth-

ing, hairstyle, personal items, etc. Images from the Clothing Co-

Parsing (CCP) dataset [36].

computer vision can be used to connect real life identities

to anonymous dating site profiles using Facebook profile

photos [1]. Social media photos can be used to build so-

phisticated 3D models that can fool state of the art liveness

and motion-enabled face recognition systems [35].

Common attempts at thwarting unwanted identification

of people in images and videos such as simple blurring, pix-

elization, etc., do very little to de-identify soft biometric and

non-biometric identifiers [29] such as specifically colored

and textured clothing, characteristic hairstyles and personal

items, skin marks and tattoos, etc. (see Fig. 1). Despite a

growing body of evidence suggesting that a wealth of infor-

mation can be mined from publicly available photos even

if the faces of humans are blurred, pixelated or even com-

pletely covered with a black box [21, 33, 23], commercial

providers and general public still tend to view these naive

transformations as an adequate form of privacy protection.

Unfortunately, this late adoption of research results on de-

identification seems to be a general trend [20]. Furthermore,

visual quality and naturalness of the de-identified outputs

are seldom taken into account.

In this work, our goal is to produce realistic de-identified
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images of humans that thwart human and machine-based

recognition. We introduce a model that de-identifies both

primary biometric and often neglected soft biometric and

non-biometric personal identifiers. Assuming that the sil-

houette of the person is known, we synthesize an alterna-

tive appearance that fits the silhouette and can therefore be

seamlessly integrated into the original image. Our model is

capable of producing results at varying level of detail, de-

pending on the input resolution, output resolution require-

ments and the available segmentation of the human figure.

If only a low resolution segmented human blob is available,

e.g. obtained in a surveillance scenario using background

subtraction, the model produces a low detail de-identified

version of the blob. On the other hand, if a detailed segmen-

tation at the garment level is available, the model produces

a highly detailed de-identified version of the blob, consid-

ering each garment separately.

2. Related work

The majority of research on de-identification of humans

in images still focuses on de-identifying primary biomet-

ric features, predominately the face. Earliest approaches

to face de-identification involved applying naive transfor-

mations such as blurring or pixelization [30]. While naive

transformations do thwart human recognition, it has been

shown [8] that they can be effectively circumvented using

computer vision, by employing a classifier trained on im-

ages on which the same transformation has been applied

(so-called parrot recognition).

A higher level of privacy protection can be obtained

through replacing the face with another, unrelated face, as

e.g. in the work of Bitouk et al. [4]. They introduce a sys-

tem that replaces faces by selecting a similar face from a

database of real face images and adjusting the pose, light-

ing, and skin tone to match the original face. However,

the construction of such a database for real applications is

ethically and legally problematic, as rendering the faces of

real people in de-identified sequences can potentially por-

tray those people in a negative light. Although a number of

large-scale face databases are available to the research com-

munity (e.g. MS-Celeb-1M [10], FaceScrub [22], CelebA

[18] etc.), the data is licensed only for research purposes,

with the disclaimers that the data providers do not own the

data.

A viable alternative is to use synthetic face images for

face replacement, as e.g. in the work of Newton et al. [21],

who propose the k-same face de-identification algorithm.

In the algorithm, each face image is replaced with an av-

erage of k most similar faces from a database where each

person known to the system is represented with a single im-

age. The algorithm is irreversible and offers a reasonable

level of privacy protection, with the best possible success

rate for re-identification being 1/k. Several improvements

to the k-same algorithm aim to improve data utility of the

output, e.g. k-same select [7] and model-based k-same [9].

An important question to ask when considering identity

protection through face de-identification is how much in-

formation can be mined on the individual even if the face

is completely obfuscated. Oh et al. [23] propose a system

for “faceless” person recognition and show that individu-

als in a social media setting can be identified even if their

faces are blacked out and their clothing varies across im-

ages. Although a higher level of de-identification than face-

only de-identification is needed, works on full-body de-

identification are scarce. In an early work, Park and Trivedi

[24] introduce a method for tracking and privacy protec-

tion in videos, with a de-identification scheme that covers

individual human bounding boxes with colored rectangles.

Agrawal and Narayanan [2] propose a method for tracking,

segmenting and de-identifying individuals in videos. Two

de-identification strategies are considered, one based on ex-

ponential pixel blurring and another based on line integral

convolution. Although privacy-preserving, these schemes

do not emphasize data utility and naturalness of images.

Our model for face and full body de-identification builds

on recently introduced generative adversarial neural net-

works (GANs) [6]. GANs represent a promising new di-

rection in artificial image synthesis, having enabled synthe-

sizing images of various classes (e.g. faces, interiors, hand-

written digits [6, 27]) that look highly realistic. In the GAN

framework, two networks are trained, a generator and a dis-

criminator. While the generator attempts to create an arti-

ficial image of the target class, the discriminator attempts

to discern whether the image is artificial or real. Essen-

tially, the two networks are engaged in a min-max game

against each other. A number of extensions and improve-

ments to GAN have been proposed, most notable the archi-

tecture known as deep convolutional generative adversar-

ial network (DCGAN) [27] that introduces several architec-

tural constraints and improves the stability of the training

process. There have been works on applying GANs in a

conditional setting, i.e. making the generated output con-

ditioned over some input. For example, Zhu et al. [37]

propose a method for user-guided visual manipulation of

the generated images. Pathak et al. [26] introduce an in-

painting technique that conditions the generated output that

represents a missing image region to its surroundings. Isola

et al. [14] propose a general image-to-image translation

framework suitable for a variety of tasks including map-

to-image translation, edge-to-image translation and image

colorization.

Given the fact that deep networks have become a go-to

solution for detection and recognition tasks in computer vi-

sion, the GAN framework is especially interesting in the

context of de-identification, as it is tailored toward maxi-

mizing the potential of fooling a deep network (the discrim-
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inator). By generating synthetic human images that fool

the discriminator, we ensure not only that the generated hu-

mans look natural, but that a deep network cannot discern

them from real images, making the re-identification harder.

3. Methodology

In this work, we assume that some kind of segmentation

of the person to be de-identified is known (e.g. through

using a person detector combined with a segmentation al-

gorithm, or roughly estimated using background subtrac-

tion) and do not study how to obtain it. Rather, we pro-

pose a de-identification method that can work with seg-

mentations of varying levels of detail: from simple fore-

ground/background blob segmentations to precise garment-

level annotations.

Our model builds on generative adversarial networks

(GANs), attempting to generate synthetic samples from the

distribution of all possible images that generated query seg-

mentations. In general, the GAN framework consists of two

parametric functions, a generator and a discriminator, mod-

eled by deep neural networks. Given data x, the generator

maps its input variables z (noise with a prior pz(z)) to the

data space using the mapping G(z, θg), where θg are gener-

ator parameters. The discriminator D(x, θd) with parame-

ters θd takes data x as input and outputs a scalar that repre-

sents the probability that x was sampled from real data gen-

erating distribution pdata, and not from the generator dis-

tribution pg. The two networks are trained simultaneously

so that D maximizes the probability of correctly identify-

ing generated samples, while G is attempting to minimize

it. The discriminator and the generator are engaged in a

min-max game with the objective function:

LGAN(G,D) = Ex∼pdata(x)(logD(x))

+ Ez∼pz(z)(log(1−D(G(z)))). (1)

The GAN objective is:

G∗

GAN = argmin
G

max
D

LGAN(G,D). (2)

The GAN framework can be extended to model depen-

dence between pairs of images, i.e. to make the generator

output image conditioned on an input image, which is es-

pecially useful for various image to image translation tasks.

Let x denote the input image, and let y be the image con-

ditioned on x that we wish the generator to output. Both

generator and discriminator take a pair of vectors as input:

the discriminator takes the two mutually dependent images

x and y, while the generator takes the conditional image x

and a noise vector z. The objective function of a conditional

GAN can be expressed as:

LcGAN(G,D) = Ex,y∼pdata(x,y)(logD(x,y)) (3)

+ Ex∼pdata(x),z∼pz(z)(log(1−D(x, G(x, z)))).

As shown in [14, 26], the quality of the images output

from the generator can be improved by requiring them to be

close to groundtruth images in accordance with some dis-

tance metric d:

Ld(G) = Ex,y∼pdata(x,y),z∼pz

[d(G(x, z),y)]. (4)

The conditional GAN objective can then be expressed as:

G∗

cGAN = argmin
G

max
D

LcGAN(G,D) + λLd(G). (5)

3.1. Full body de­identification

In our model, we perform full body de-identification us-

ing a conditional GAN that generates synthetic human im-

ages. In order to ensure that the synthetic images look nat-

ural and fit in the original scene, the generative process

is guided by the segmentations of the persons that are to

be de-identified. The conditional GAN is trained on pairs

of human segmentations and human images, with the goal

of outputting realistically-looking synthetic human images

conditioned on the extracted segmentation. Depending on

the availability of data in particular applications, the net-

work can be trained to operate on segmentations with vary-

ing levels of detail, from simple silhouette-defining blobs

obtained e.g. using background subtraction to full body seg-

mentations with detailed tags for individual garments.

3.1.1 Network architecture

The structure of our full body de-identification network is

based on architectures described in [31, 27, 14].

Generator: The generator is an encoder-decoder net-

work with skip connections as in the U-Net architecture

[31]. There are eight encoder and eight decoder layers.

The skip connections connect each encoder layer i with the

decoder layer n − i, where n is the total number of lay-

ers (implemented as a concatenation of layer activations).

Each layer consists of the following operations: convolu-

tion/deconvolution, batch normalization that normalizes the

inputs to zero mean and unit variance [12], and leaky ReLU

non-linearity [19]. We use filters of size 5×5 with a stride of

2 and zero padding of 2. In effect, each convolution down-

samples the image by a factor of 2, while each deconvolu-

tion upsamples the image by a factor of 2.

Let conv-n denote a convolutional layer with n
channels, batch normalization and leaky ReLU activa-

tions, deconv-n a deconvolution layer with n chan-

nels, batch normalization and leaky ReLU activations, and

deconv-dropout-n a deconvolution layer with n chan-

nels, 50% dropout rate, batch normalization and leaky

ReLU activations. The architectures of the encoder and the

decoder are shown in Table 1.

Discriminator: The discriminator consists of four con-

volutional layers with batch normalization and leaky ReLU
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Layer index Encoder Decoder

1 conv-64 deconv-dropout-512

2 conv-128 deconv-dropout-1024

3 conv-256 deconv-dropout-1024

4 conv-512 deconv-1024

5 conv-512 deconv-1024

6 conv-512 deconv-512

7 conv-512 deconv-256

8 conv-512 deconv-128

Table 1. The architecture of the conditional GAN generator (layer

8 of the encoder connects to layer 1 of the decoder).

activations organized as follows: conv64-conv128-

conv256-conv512. The output of the last convolutional

layer is transformed to a one-dimensional vector and a sig-

moid function is applied to obtain the classification score.

The filter size, stride and zero padding are the same as in

generator layers, so in each convolutional layer the image is

downsampled by a factor of 2.

Network training: To train the conditional GAN, we use

the standard approach of Goodfellow et al. [6], i.e. mini-

batch stochastic gradient descent training. In each iteration

we perform one update of the discriminator, followed by

one update to the generator. We use adaptive moment esti-

mation (Adam) for gradient descent optimization [16].

3.2. Face de­identification

While in our model full body de-identification is per-

formed using a conditional GAN, current state of the art

conditional networks tend to produce outputs of a relatively

low resolution and level of detail [37]. To improve the nat-

uralness of the de-identified output, our model uses a dedi-

cated GAN to synthesize artificial faces that are used as re-

placement faces on top of the de-identified full-body output.

The face-generating GAN is not conditional, i.e. its output

depends only on the random noise input z (see Eq. 1). The

architecture of the face-generating GAN we use is the DC-

GAN of Radford et al. [27]. The architectural constraints

are the same as for the conditional GAN we use for full

body de-identification: only convolutional/deconvolution

layers are used, along with batch normalization and ReLU

activations; there are no pooling layers and no fully con-

nected layers. Further details can be found in [27].

To determine the placement of the synthesized face on

the full body de-identified image, we use a face detector on

the original image. The synthesized face is then scaled to

the size of the original face and blended with the full body

de-identified image using an oval transparency mask.

4. Experimental evaluation

The experimental evaluation of our model is performed

on two datasets, and it involves qualitative exploration, as

well as perceptual and quantitative experiments.

Figure 2. Example images (top) and pixel-level segmentations

(bottom) from the CCP dataset.

Figure 3. Example frames (top) and provided background subtrac-

tion segmentations (bottom) from the Human3.6M dataset.

4.1. Datasets

To study the effects of varying levels of the avail-

able input segmentation on the output de-identified images,

we employ two datasets: the Clothing Co-Parsing (CCP)

dataset [36] and the Human3.6M dataset [13]. The CCP

dataset consists of 2098 street fashion images of a relatively

high resolution (individual image size varies, the average

being 828 × 550). Pixel-level segmentations of individual

garments and skin and hair are available for 1004 images.

There are a total of 59 segmentation tags defining various

garment types, e.g. blazer, cardigan, sweatshirt, leggings,

jeans, etc. A few example images from the CCP dataset and

their corresponding segmentations are shown in Fig. 2

The Human3.6M dataset is a collection of 3.6 million

video frames of professional actors performing various ac-

tions recorded in a controlled setting, with the correspond-

ing 3D joint positions, laser scans of the actors and 3D hu-

man poses available. We use a subset of the dataset consist-

ing of ten videos of different actors walking. The camera is

static and the resolution of the videos is 1000 × 1002 pix-

els. Instead of pixel-level segmentations of actor parts, we

use background subtraction masks available in the dataset as

rough segmentation masks. A few example images and their

corresponding background subtraction masks are shown in

Fig. 3.
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Iorig Iseg Network name

unchanged garments clothing

unchanged blob only clothing-mono

background

masked
garments clothing-nobg

background

masked
blob only clothing-mono-nobg

Table 2. Four training configurations of the conditional GAN for

full-body de-identification.

4.2. Experimental setup

4.2.1 Full body de-identification

We train the conditional GAN for full body de-identification

on the images from the CCP dataset for which pixel-

level garment, skin and hair segmentations are available.

There are a total of 1004 such images, and we use a

train/test/validation split of 790/105/109 images. The

groundtruth consists of pairs of images (Iorig, Iseg), where

Iorig is the original image and Iseg is the corresponding seg-

mentation on which the generator is to be conditioned. We

consider two possibilities for supplying the original image:

(i) supply the original image as is, and (ii) mask the back-

ground in the original image to prevent learning the back-

ground and increase network capacity for learning garment

and body appearance. Additionally, we consider two pos-

sibilities for specifying the image Iseg: (i) supply the seg-

mentation from the CCP dataset as is, with annotations for

individual garments, and (ii) transform the CCP segmented

image to a black and white blob that denotes only the sil-

houette of the person. This leads to a total of four network

configurations summarized in Table 2.

Regarding the parameters of the training process, we fol-

low the approach of [14] to introduce random jitter by resiz-

ing the training images to 286×286 and randomly cropping

them to 256× 256. Batch size is set to 1, leaky ReLU slope

to 0.2, and we use L1 as distance function (see Eq. 5). The

parameter λ (Eq. 5) is set to 100.

4.2.2 Face synthesis

For face synthesis, we use the pretrained DCGAN model of

[27], trained on their Faces dataset consisting of 10 million

images of 10 thousand people. As the face detector needed

for integrating the synthesized faces with the de-identified

full body image we use the OpenCV implementation of the

standard Viola-Jones detector [32, 5]. Given the original

image and the full-body de-identified output, we detect the

face in the original image, synthesize a random face using

DCGAN and render the synthesized face on the location of

the original face in the full-body de-identified output using

an oval blending mask with a degree of transparency on the

Figure 4. Example faces synthesized by DCGAN.

Figure 5. Two examples of naive segmentation. From left to right:

original image, segmentation blob, naive segmentation algorithm

output, groundtruth garment annotations.

edges of the mask. Some examples of randomly synthesized

faces are shown in Fig. 4.

4.3. Test sets and experiments

To test the performance of full body de-identification,

we apply the four trained conditional GANs listed in

Table 2 on their test splits. We term the test split

of networks conditioned on full garment segmenta-

tions from CCP (clothing, clothing-nobg)

as clothing-garments, and the test split of

networks conditioned on person blobs from CCP

(clothing-mono, clothing-mono-nobg) as

clothing-blobs.

Additionally, we use a test set termed bsblobs con-

sisting of background subtraction blobs from ten walking

videos of the Human3.6M dataset. Ten background sub-

traction blobs of a person walking have been extracted per

video, so the total size of the bsblobs set is 100 im-

ages. The bsblobs set is used to explore whether the

trained networks generalize to other datasets, as well as

to explore how the trained networks perform in the pres-

ence of noise in the segmentation input. Additionally, the

setup of the Human3.6M dataset involving static cameras

and background subtraction mimics a surveillance scenario,

so it is especially interesting to investigate whether good

de-identification can be achieved using simple background

subtraction and applying our model.

4.3.1 Naive segmentation

In typical de-identification applications, garment-level seg-

mentation of people is rarely available. Realistically, of-

ten the best we can hope for is that a blob outlining the
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Experiment name Network name Test set
clothing clothing clothing-garments

clothing-nobg clothing-nobg clothing-garments

clothing-mono clothing-mono clothing-blobs

clothing-mono-nobg clothing-mono-nobg clothing-blobs

naiveseg clothing-nobg clothing-naiveseg

bsblobs clothing-nobg bsblobs

bsblobs-naiveseg clothing-nobg bsblobs-naiveseg

Table 3. Experimental setups for full body de-identification net-

works.

shape of the person’s body is available, obtained e.g. us-

ing background subtraction. Aside from studying the per-

formance of our conditional full body de-identification net-

works when initialized with such blobs only (the bsblobs

set), we consider whether re-coloring such blobs using a

naive segmentation strategy and applying networks trained

on garment-level segmentations leads to better de-identified

images.

Our naive segmentation algorithm is as follows: to sepa-

rate the blob into four regions, depicting the head, top gar-

ment, bottom garment and shoes, the algorithm traverses

the image pixel by pixel. The uppermost 10% of the blob

area is denoted as the head region. The next 40% of the area

is denoted as the top garment region, followed by the next

45% of the area denoting the bottom garment region and the

lowermost 5% denoting the shoes/feet region. Once the re-

gions have been assigned, region tags are randomly selected

from the following pool of CCP tags: top = {blazer, blouse,

cardigan, hoodie, jacket, jumper, shirt, sweater, sweatshirt,

t-shirt, top, vest}, bottom = {jeans, leggings, pants, shorts,

tights}. An example is shown in Fig. 5.

We apply our naive segmentation algorithm

on the bsblobs set, and term the output set

bsblobs-naiveseg. Additionally, we apply it

on the clothing-blobs set, and term the output

clothing-naiveseg.

4.4. Qualitative evaluation

To obtain a series of de-identified images and investi-

gate the performance of individual defined full body de-

identification networks (Table 2), the networks are applied

on the described test sets in a total of seven experiments

summarized in Table 3. Face synthesis is performed on all

outputs to obtain final de-identified images.

Fig. 6 represents a qualitative exploration of different

experiment outputs. In general, the level of detail of the

input segmentation seems to determine the level of detail

of the de-identified image. Note that the networks trained

on datasets including backgrounds have also learned to

produce synthetic backgrounds that look somewhat plau-

sible, so the approach could have merit in location de-

identification. Fig. 7 illustrates the performance on the

bsblobs and bsblobs-naiveseg test sets. The out-

Figure 6. Visualization of the outputs of our de-identification

model, depending on the used full body de-identification network

and the level of detail in the input segmentation.

Figure 7. The outputs of our de-identification model on an exam-

ple from the bsblobs set. From left to right: the original image,

background subtraction blob, naive segmentation, output of the

clothing-mono-nobg network using the background subtrac-

tion blob as input, and output of the clothing-nobg network

using the naive segmentation as input.

Figure 8. The importance of independently synthesizing the face.

From left to right: original image, de-identified full body image

generated by the network clothing, a synthetic face added, out-

put integrated into the original surroundings.

puts are of a notably lower quality than for segmentation

inputs from the CCP dataset, showing that the networks ap-
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Experiment

name

Garment colors and

textures are similar [% yes]

Garment shapes

are similar [% yes]

Mean naturalness

score ±σ
Mean recognizability

score ±σ
clothing 40.0 93.3 5.6± 2.6 3.9± 2.5

clothing-nobg 15.2 93.3 5.4± 2.6 4.2± 2.6
clothing-mono 13.3 32.4 3.6± 2.3 2.4± 1.7

clothing-mono-nobg 21.1 50.0 4.3± 2.1 2.8± 1.9
naiveseg 4.7 23.1 3.2± 2.1 2.0± 1.5
bsblobs 7.6 37.1 1.9± 1.3 1.5± 0.9

bsblobs-naiveseg 2.9 9.6 2.5± 2.1 1.5± 1.1

Table 4. Results of the perceptual study.

pear to be sensitive to noise, and that there is a cross-dataset

loss in performance. Furthermore, the face detector failed

on the majority of images in these datasets, contributing to

the loss of naturalness.

A visualization of the merits of doing face synthesis as a

separate step in our model is shown in Fig. 8. Note how the

de-identified full body image lacks facial details, and how

the naturalness is improved when a synthetic face is added.

As our training set includes images of real people, poten-

tially generating images that closely resemble these people

would present an ethical problem. However, we have found

that the generated images do not resemble training set orig-

inals. Facial details in the generated images are lost (see

Fig. 8), and garment information in the network is learned

from many images, resulting in a diverse pool of potential

renderings for each garment.

4.5. A perceptual study

Given a series of de-identified outputs obtained by ex-

perimental setups outlined in Table 3, we performed a per-

ceptual study to quantitatively evaluate how humans per-

ceive and respond to the de-identified images produced by

our model. We randomly sampled five de-identified im-

ages from each of the seven experimental setups, resulting

in a total of 35 images. The users were asked four ques-

tions about pairs of original and de-identified images: (i)

whether the coloring and the textures of the garments on the

two images are similar [yes/no], (ii) whether most garments

are similarly shaped/tailored [yes/no], (iii) whether the de-

identified image looks realistic, on a scale of 1-10 (1 - not

realistic at all, 10 - completely realistic), (iv) to what degree

the de-identified person is recognizable based on garments

or face, on a scale of 1-10 (1 - not recognizable at all, 10 -

completely recognizable). A total of 21 users participated

in the study. Results are summarized in Table 4.

Ideally, our model should produce outputs that are per-

ceptually distant from the originals (low garment color and

texture similarity and low recognizability), while offering

a high degree of naturalness. Although it is desirable for

garment shape similarity to be low, we do not believe gar-

ment shape to be particularly identity-revealing, as a lot of

people wear similarly tailored clothes. Overall, the high-

est mean naturalness score (5.6 on a scale of 1 to 10) is

obtained for the clothing experimental setup (see Ta-

ble 3) The second highest mean naturalness score (5.4) is

obtained using a similar setup, clothing-nobg. Both

clothing and clothing-nobg setups generate full

body de-identifications with garment shapes similar as in

the original image, which is to be expected given that the

input segmentation exactly outlines individual garments.

Interestingly, removing the background seems to have in-

creased the capacity of the clothing-nobg network for

varying garment colors and textures. Still, mean recogniz-

ability scores are approximately the same and do not reflect

the perceived difference in garment colors and textures. We

believe that these recognizability scores reflect the users’

perceptual grouping according to the Gestalt principle of

similarity: even though asked to score how well they could

recognize the person based on the face and garment colors

and textures, the users tended to consider the images sim-

ilar, and therefore the person recognizable, if they viewed

garment shapes as similar. This is supported by measuring

the Pearson correlation coefficient between garment shape

similarity (column 3 of Table 4) and mean recognizability

score (column 5 of Table 4), which is a high 0.94.

Networks trained just on black and white blob segmenta-

tions (clothing-mono and clothing-mono-nobg)

achieved lower mean naturalness score than their garment-

trained counterparts. Mean recognizability scores were also

lower. Removing the background of the original images

yielded a higher naturalness score.

Applying the naive segmentation algorithm on the blobs

from the CCP dataset (naiveseg) offered lower similar-

ity of color, texture and shape and lower mean recogniz-

ability score compared to de-identification based on blobs

only (clothing-mono), but at a cost of a slightly smaller

mean naturalness score. Using naive segmentation on

background subtraction blobs from the Human3.6M dataset

(bsblobs-naiveseg) somewhat improved the natural-

ness of the de-identification compared to bsblobs. Over-

all, the naturalness score obtained on background subtrac-

tion blobs is quite low, which we attribute mainly to noisy
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background subtraction input that generated noisy output

(see Fig. 7) and to the fact that the face detector failed on

over 90% of images from the Human3.6M dataset, so the

de-identified outputs did not have faces rendered.

4.6. Re­identification performance

To quantitatively support our perceptual study findings,

we perform a series of experiments aimed to mimic a sim-

ple re-identification attack scenario. We assume that the at-

tacker has a gallery of images (in our case, we use all 2098

images from the CCP dataset), among which is the original

image of the de-identified person, and study how likely it is

that the person can be re-identified using the de-identified

image as query (probe). We compare the performance for

de-identified outputs of the first five of our seven experi-

ments (i.e. we consider only the CCP dataset outputs, see

Table 3) to performance for common naive de-identification

techniques including (i) blurring the person (σ = 10), (ii)

pixelization of the person, and (iii) covering the face with

a black box and leaving the rest of the body as is. Each

person is represented by a concatenation of a 3D histogram

of RGB color components (20 bins per component) and a

weighted gradient orientation histogram (20 bins). We mea-

sure k-nearest neighbor retrieval performance using the sum

of histogram intersections for normalized color and gradient

components as the distance measure.

Experimental results are summarized in Table 5. By ap-

plying our model, the likelihood of re-identification using

color and gradient similarity is minimal even if the attacker

has the exact same original image used to generate the de-

identified image. In contrast, results for blurring, pixeliza-

tion and black box-based re-identification support the intu-

ition that individuals are still recognizable from cues other

than face similarity.

Note that our representation does not consider silhouette

shape, which could be used to trivially re-identify the de-

identified images in this example, as our gallery images are

the exact originals from which the de-identified images are

generated. However, we assume that in real applications it

is unlikely that the attacker has the original images.

4.7. Discussion

Applying our model on full body segmentations of any

level of detail, from simple blobs and naively segmented

blobs to full garment-based segmentations, produces de-

identified outputs that are distant from the original images

in terms of color and gradient similarity, as illustrated by

our re-identification experiments. Simultaneously, our per-

ceptual study shows that the the more detailed the segmen-

tation input, the higher the naturalness of the de-identified

output. However, naturalness and recognizability are also

highly correlated (Pearson correlation coefficient of 0.97).

As noted earlier, we believe that recognizability scores were

Experiment name
Accuracy [%]

k = 1 k = 3 k = 5 k = 10
clothing 0.0 1.1 3.2 3.2

clothing-nobg 1.1 1.1 1.1 2.1

clothing-mono 0.0 0.0 2.1 2.1

clothing-mono-nobg 0.0 0.0 0.0 1.1

naiveseg 0.0 0.0 0.0 0.0

blur 37.9 48.4 56.8 62.1

pixelized 87.4 97.9 97.9 100.0

black-rect 100.0 100.0 100.0 100.0

Table 5. Re-identification k-nn retrieval performance.

influenced by garment shape similarity between pairs of

original and de-identified images (correlation coefficient of

0.94). In real scenarios, it is our intuition that garment shape

is not in itself as identifying as garment colors or textures,

but this intuition remains to be corroborated in further ex-

periments. As the users have recognized the de-identified

garment shapes as similar to the real-world shapes in the

original images, we believe that the lack of complete nat-

uralness perceived by users is due to the de-identified col-

ors and textures. As noted by Zhu et al. [37], GANs still

have limitations (low resolution of generated results, blur

and lack of texture), and they perform better on structured

datasets than on more general imagery. We expect further

improvements to the GAN state of the art will drive up the

naturalness of the images generated by our model.

As several experimental setups and network training

strategies were tried out (see Tables 2 and 3), our sum-

mary recommendation is to use as detailed input segmen-

tation as possible when generating the de-identified images.

When only noisy blobs are available, it might be beneficial

in terms of output naturalness to smooth them as much as

possible and to employ a naive segmentation strategy.

5. Conclusion

We have introduced a model for full body and face de-

identification of humans in images that enables synthesiz-

ing artificial human images that fit an input segmentation.

We have shown that the model is useful for various kinds

of segmentations, from simple noisy bounding subtraction

blobs to highly detailed garment-level segmentations. In a

perceptual study, we have found that our model generates

images that look reasonably natural (best-performing setup

scored a 5.6 naturalness score on a scale of 1 to 10), while

offering a solid level of identity protection. Quantitative

exploration of de-identification performance found that the

de-identified images produced by our model share very lit-

tle color and gradient similarity with the original images, in

contrast to naive methods including blurring, pixelization

and covering the face with a black rectangle.
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