

Abstract

In this paper, a novel steganography algorithm based on

an improved “Matrix Pattern” (MP) method is presented.

In this process, firstly, an RGB image is divided into the

non-overlapping square-sized blocks. Next, 95 dynamic-

sized unique matrix patterns are automatically generated

using the 4th and 5th bit layers of the green layer of each

block, which are assigned to 95 English keyboard

characters. Then, the blue layer of each block is used for

embedding secret messages by adding matrix patterns

which are assigned to the characters of the secret message.

The results show that this algorithm has a high resistance

against steganalysis attacks, including Regular Singular

(RS), Sample Pair (SP), and PVD based attacks.

Furthermore, the proposed algorithm not only improves

capacity by over 27% when compared to the existing

method, but also results in a slightly better transparency of

the stego-image.

1. Introduction

Transferring a secret message in an unsecure network

channel is an important topic in information security. Two

main techniques for improving security in unsecure

communication are cryptography and information hiding.

In cryptography, a secret message is changed in a way that

a third party cannot read the message, and in information

hiding, the secret message is hidden in a way that the third

party cannot detect the existence of the secret message [1].

Steganography and watermarking are two subsets of

information hiding. The first one is used for providing a

secure channel in a network communication [2], while

watermarking is used for preventing copyright

infringement by hiding an invisible identification or a

visible logo [3, 4].

The main components of a digital media information

hiding system are the “cover,” “secret message,” “key” and

“stego-media.” In information hiding, a “cover” is an

innocent digital media file that is used for carrying the

secret message. The classic digital media files “covers” are

video, image, voice and text [5]. However, in some new

methods, smart phones [6], cloud storage services [7, 8, 9]

and the Skype video traffic [10] are used for carrying the

message. A message that the sender wants to send to the

receiver side in a secure way through an unsecure channel

is a “secret message.” Also, “key” is an optional component

which is used in some for increasing the security of the

system. Lastly, “stego-media” is a media which contains

the secret message [11]. In an information hiding system,

the “secret message” will be hidden in the “cover” by using

an embedding algorithm. Then, at the receiver side, the

“secret message” will be extracted by using an extracting

algorithm [11].

Images are one of the most popular covers in information

hiding, because they have enough capacity for hiding a

secret message (the “capacity” is the maximum size of

message which can be embedded into the cover). Also,

transmitting images through the Internet and local networks

is common. Steganography algorithms in images are

classified into three types: spatial domain, frequency

domain, and adaptive steganography methods [11]. In

spatial domain methods, the secret message is embedded by

modifying pixel values. The most well-known

steganography algorithm in this area is LSB (Least

Significant Bit) [12, 13], which hides the secret image in

the least signification bit layer of the image. In frequency

domain methods, the secret message is hidden by

modifying frequency coefficients of the cover image, like

Outguess [14], and F5 [15]. In adaptive steganography, a

pre-processing statistical analysis, like medical image

processing [16], detects the most suitable areas of the cover

image for hiding the secret message in both spatial and

Information Hiding in RGB Images Using an Improved Matrix Pattern Approach

Amirfarhad Nilizadeh

Department of Computer Science,

University of Central Florida

Orlando, FL 32816 USA
af.nilizadeh@knights.ucf.edu

Cliff Zou

Department of Computer Science,

University of Central Florida

Orlando, FL 32816 USA
czou@cs.ucf.edu

Wojciech Mazurczyk

Institute of Telecommunications,

Warsaw University of Technology

Warsaw, Poland
wmazurczyk@tele.pw.edu.pl

Gary T. Leavens

Department of Computer Science,

University of Central Florida

Orlando, FL 32816 USA
leavens@cs.ucf.edu

103

frequency domains [11, 17, 18] like the Edge Adaptive

method [19].

In this paper, an improved version of Matrix Pattern

(MP) method [20] is presented, which operates on RGB

images and embeds the secrets in the form of a text

message. The main difference between the original and

improved methods is based on matrix pattern generation. In

previous MP work [20], 49 English keyboard characters are

supported, while in this work, 95 characters can be used.

Also, the capacity is improved by utilizing the image’s

green layer for generating a matrix pattern and the whole of

the blue layer for hiding the secret message. While in

previous work [20], some parts of the blue layer were used

in the matrix pattern generation step, and the secret message

cannot be embedded in those blue layer parts. In addition,

in matrix pattern generation, instead of using four bit layers,

two bit layers (the 4th and 5th) are used, which has a direct

relationship with improving both the capacity and

transparency of the stego-image. Transparency is a measure

for comparing cover image and stego-image. Also, there are

other differences, which will be discussed in the

comparison section (section 5).

The rest of this paper is structured as follows. In section

2, related works are discussed. Then, the specifics of the

proposed method are described in section 3. In section 4,

evaluation results for selecting the best bit layers for hiding

data, and capacity and resistance of the presented work

against steganalysis attacks are shown. Next, the new MP

algorithm is compared with the previous work. Finally,

section 6 concludes our work.

2. Related work

In this paper, a novel image steganography algorithm is

presented, based on MP work for hiding text message in an

RGB image. In this part two related works including simple

MP [20] and LSB-MP [21] are discussed briefly.

2.1. Simple Matrix Pattern

There are several steganography methods for hiding a

message in an image. One of the methods is letter mapping

[22], which considers a constant mapping table for 32

characters including 26 lower case alphabets and six non-

alphanumeric symbols, which replace pixel values of the

cover image by constant values of the table. Simple MP

[20], is a steganography method which hides text message

in a blue layer of an RGB image, as modification to blue

layer is less perceptible for the human visual system. In this

work, first the image is divided into B×B non-overlapping

blocks. Then, instead of hiding the bit stream of the secret

message in the least significant bits, 49 unique matrix

patterns are generated from the texture of each block for 49

characters. After that, the 4th to 7th bit layers of the cover

image are used for hiding the secret message. These 49

matrix patterns are then assigned to 49 characters including

26 English characters, 10 digit numbers, 12 keyboard non-

alphanumeric symbols, and an end of message character.

In this paper 95 matrix patterns are generated which can

support all the text messages which can be typed on a

standard keyboard. Thus, in this work the secret message

also can be a program, e.g., a compiler. The main algorithm

of embedding and extracting steps of prior work [20] is

similar. However, there are some differences that will be

discussed in the following sections. Also, many changes

occurred in the matrix pattern generation for improving the

method, which is used at both sender and receiver sides.

These changes make the new method more efficient and

improve both the capacity and transparency of the proposed

method; see the comparisons made in section 5 for more

details.

2.2. LSB-MP

LSB-MP method [21], is an image steganography

technique for hiding a secret message in an RGB image.

This algorithm uses both 3-LSB and a simple MP at the

same time for hiding a message in the same cover image. It

should be noted that a simple MP and 3-LSB methods hide

the secret message in the 4th to 7th, and 1st to 3rd bit layers of

the selected cover image, respectively. In the other words,

this method is using seven out of eight bit layers of the blue

layer of the cover image for hiding two kinds of media

messages, or just a text message. The red and green layers

of the cover image are used based on the 3-LSB method for

hiding more information.

This work shows that any kind of steganography method

which uses the LSB part of images for hiding message can

be combined with MP algorithm for increasing its capacity.

3. Proposed method

As mentioned before, the proposed steganography

method does not use a bit stream, and automatically

generates unique matrix patterns for each English keyboard

character. In section 3.1, the matrix pattern generation

phase is described. Then, in section 3.2 the embedding step

is introduced and, finally, in section 3.3 the extraction step

is defined.

3.1. Matrix Pattern generation

In the MP method, first, the user selects two fixed sizes

for blocks, B×B, and matrix patterns, t1×t2. Then, based on

the selected block size, the image is divided into non-

overlapping blocks. Next, based on the random generation

method, locations of blocks are being placed in a queue.

Afterward, through the same steganography embedding

phase which is explained later, the two selected size values

are embedded into the first 64×64 block in the top left of

the image, which has a 3×2 matrix pattern size. In the MP

method, by analysis, they illustrated that the best block and

104

matrix pattern sizes are 64×64 and 3×2 [20]. Also, the

locations of the blocks, in order from the queue, are hidden

in this first block. These sizes and locations are all numbers;

therefore, for generating matrix patterns, 10 numbers, one

non-alphanumeric symbol for separating different sizes and

locations, one null character and one “end of message”

character are generated. In large images, the first 64×64

block is not enough for hiding sizes and locations. This is

because each block has a limited capacity and, typically, in

large images where many block locations must be hidden,

one block is not enough. In this case, the pointer of the

64×64 block will be shifted 64 columns to the right, to hide

these locations in the next block. If all the locations could

not be hidden in the second block, the pointer will shift

again, and this process will continue until all the essential

keys, and locations become embedded.

It is important to notice that if any B×B blocks overlaps

with this 64×64 block(s), they are ignored and their location

is not hidden in the top left 64×64 block(s). After that, the

first block in the queue will be selected and the red, green

and blue layers of the block are separated. In the proposed

method, green is utilized for generating unique matrix

patterns, and blue is utilized for embedding secret messages

based on the matrix patterns, each of which is assigned to

an English keyboard character. The English keyboard

characters that are supported by this method are 52 English

alphabet letters, both uppercase and lowercase, 10 numbers,

32 non-alphanumeric symbols, one null character and one

“end of message” character. Then, based on the t1×t2 matrix

pattern size selected by the user, the first top left matrix in

the green layer, is selected for generating the first matrix

pattern. In this paper notation [,] × is used to

denote this matrix.

For generating these matrix patterns, the first three bits

of the matrix are ignored, because they are used in blind

attacks based on bit flipping. Afterward, the first row of the

matrix pattern is set to zero and, for producing the second

row of the matrix pattern, the subtraction of the second and

first row of the green matrix-cover is calculated. This

procedure will continue until the subtraction of row t1-1

from row t1 of the green matrix-cover is computed.

Equation (1) shows a subprogram for generating a matrix

pattern.

 , = =, − − , ℎ (1)

The matrix pattern which is created by equation (1) is

denoted by [,] × .

For producing the second matrix pattern, assigned to the

second character, the starting point of the matrix-cover will

shift one column to right, and the same process will resume

for generating the next matrix pattern. This process will

continue until all matrix patterns are generated for the 95

characters, or the pointer reaches the end of the row. If the

203 200 200 205

200 200 201 208

200 199 199 206

200 200 200 200

200 200 200 208

200 192 192 200

Figure 1: The left section is a cover matrix of green layer; the

right one is the same matrix after ignoring first three LSB bits

0 0

0 0

0 -8

0 0

0 0

-8 -8

0 0

0 8

-8 -8

Figure 2: Three 3×2 generated matrix patterns

pointer reaches the end of the row, it shifts one row down,

and starts again from the leftmost column, until all the 95

characters get a unique matrix pattern. After each matrix

pattern is produced, a checking process will identify if any

other matrix patterns with similar values are produced

sooner in the block or not. If there are any, they would be

ignored and the pointer would shift one column to the right

again.

The evaluation that will be discussed in section 4.2

shows that using the 4th and 5th bit layers for producing

matrix patterns produces better results. Therefore, if there

is at least one value higher than “24” or lower than “-24” in

the generated matrix pattern, it will be ignored. In other

words, if the 4th bit, which has value 8, and the 5th bit, which

has value 16, change then the maximum value change is

“24”, or “-24”. Notice that, in the first step, the first three

bits of each pixel in the green layer of the block are ignored.

Thus, in this algorithm for generating matrix patterns, only

the 4th and 5th bits of these pixels are used. Also, if the

matrix pattern generation algorithm could not assign matrix

patterns to all 95 keyboard characters by using the green

layer of the block, it means that this block is useless and no

characters will be hidden in this block during the

embedding phase. Therefore, the next block in the queue

will be selected for embedding information.

In the left part of Fig. 1, a sample 3×4 matrix from the

green layer of a cover image is shown. The right part of Fig.

1 indicates the matrix after ignoring the first three LSB bits.

Three different 3×2 matrix patterns which are generated

based on the proposed method from the right part of Fig. 1

are shown in Fig. 2.

3.2. Embedding phase

In the embedding step, the blue layer of the chosen block

is selected. Then, the matrix pattern which is assigned to the

first character of the secret message is found in the matrix

pattern database of the block. For embedding this pattern,

the first top left t1×t2 matrix of the blue layer of the block

will be chosen; [,] ∗ indicates this matrix. For

producing the “stego-matrix,” the first row of the blue

matrix has no change. To attain the values of the second

row, the values of the first row of the “stego-matrix” are

105

159 160

159 159

161 159

0 0

0 8

-8 -8

159 160

159 168

151 160

Figure 3: Left section is a 3x2 cover-matrix, middle section is the

matrix pattern, and right section is the “stego-matrix”

added to the values of the second row of the matrix pattern.

This process will continue until the t1 row of the “stego-

matrix” is produced; this is done by adding the t1-1 row of

the “stego-matrix” to the t1 row of matrix pattern. The

subprogram of the embedding step is shown in equation (2).

In this equation, the [,] × is embedded in the [,] ∗ .

 , = , =− , + , ℎ (2)

Values of the “stego-matrix” in the blue layer are

illustrated by [,] ∗ , which is produced by equation

(2). For hiding the second matrix pattern, the pointer will

shift t2 columns to right. This process will continue until it

reaches the end of the row. Then, it will shift t1 row down,

and it will move to the leftmost t1×t2 matrix in a new row.

This process will continue for embedding all the secret

message characters, and if the space of the block is not

enough, the process will go on with the next block(s) in the

queue with their own unique matrix patterns. Finally, when

all the characters are embedded in the blocks, the matrix

pattern assigned to the “end of message” will be hidden.

The left part of the Fig. 3 shows a sample of 3×2 cover-

matrix. The middle section in Fig. 3 is the matrix pattern

which should be hidden. The right section of Fig. 3 is the

“stego-matrix” which will be replaced by the sample cover-

matrix.

In this embedded system if the difference between the

first row in the cover-matrix and other rows would be large

(i.e., an edge), then such an addition would modify adjacent

rows too greatly. However, this case happens infrequently

in natural images and it should be noticed that changing

value of pixels in edge part of the cover image is not

detectable. There are some steganography algorithms, like

PVD (Pixel Value Differencing) [23], which hides the

secret message in the edge part of the image by changing

pixel’s values by a large amount. In this method, if pixel

overflow happens during the hiding of a matrix pattern, a

special matrix pattern with all zero values is hidden, instead

of the real matrix pattern. This is because, it is impossible

for a matrix pattern with all zero values to change pixels to

values higher than 255 or less than 0. In addition, because

it is a pre-defined matrix pattern, if during the matrix

pattern generation phase a matrix pattern with all zero

values is generated, it will be ignored. This pre-defined

matrix pattern is not included in the 95 matrix patterns that

are generated during the matrix pattern generation phase.

Figure 4: Diagram of proposed information hiding method

Finally, if the entire secret message cannot be embedded

completely in all the blocks of the image, the program will

show how many characters are hidden and how many are

left. The secret message embedding process is shown in

Fig. 4.

3.3. Extracting phase

To extract the secret message from the stego-image on

the receiver side, first, the program detects the size of both

the blocks and the matrix patterns, as well as the order of

the block locations. These values are embedded in the first

64×64 block(s) on the top left of the image by 3×2 matrix

patterns. Extracting these values is same as the extraction

phase which is explained ahead. Next, the extracted block

locations are placed in order in a queue, the first block in

the queue is chosen, and the three layers of the RGB block

are separated. Then, using the green layer of the block and

the size of the matrix patterns that were detected from the

first 64×64 block(s), the 95 unique matrix patterns of this

block are generated by using equation (1), which was

discussed in the “matrix pattern generation” part, section

3.1.

Hiding message in the blue layer of the
cover based on new MP method

Size of blocks and Matrix Patterns are set
by the user

Selected size and order of blocks are
hidden by the same method in the top left
64×64 block(s) with 3×2 matrix patterns

The green layer of the selected block is
separated and 95 unique matrix patterns

are generated

Random generator influences an order of
the block.

Text message, or
blocks are
finished?

Stego-Image

Next block
is selected

No

Yes

RGB Image Text Message

106

To detect the hidden message, after generating the matrix

patterns, first the blue layer of the “stego-block” is

separated. Next, to detect the first hidden matrix pattern, the

first t1×t2 matrix on the top left of the blue layer of the

“stego-block” is selected. Here, the first row of the matrix

pattern is assumed to be zero and, to detect the 2nd row of

the hidden matrix pattern, the subtraction of the 2nd row

from the 1st row of the “stego-block” is calculated. Then, to

attain the 3rd row of the matrix pattern, the subtraction of

the 3rd row from the 2nd row of the “stego-matrix” is

calculated. This process will continue until the subtraction

of t1-1 from t1 row is calculated, to extract the values of the

t1 row of the hidden matrix pattern. Equation (3) indicates

a subprogram that is used for extracting matrix patterns

assigned to an English, number or non-alphanumeric

symbol keyboard character.

 , = =, − − , ℎ (3)

In Equation (3), “Ex” refers to the extracted matrix

pattern, and “Em” is the “stego-matrix” shown as [,] ∗ . Also, the notation [,] ∗ indicates the

extracted matrix pattern, which is same as one of the

generated matrix patterns in a block.

Then, the pointer of the matrix will shift t2 columns to

right, to extract the second matrix pattern and the hidden

character. This process will continue until the pointer

reaches the end of the column. Afterward, it will shift t1

rows down and start again from the leftmost t1×t2 matrix in

the new row of the block. In this work, each extracted

matrix pattern from the blue layer is assigned to the

keyboard character that is hidden in each t1×t2 matrix. If a

matrix pattern with all zero values is extracted, it will show

that no character is hidden in this matrix, and the pointer

will move t2 columns to right to extract the next character.

This trend will continue until all the hidden characters in

the block are extracted. Then, the next block in the queue

will be selected, and the same process will go on until it

detects the “end of message” character in one of the blocks.

If all the blocks of the image that were in the queue be used

in the embedding phase, the “end of message” character

would not be hidden in any matrix of the blocks.

4. Implementation and evaluation

In the first part of this section there is a discussion about

the implementation, inputs and outputs of the proposed

steganography method. In the next section, the most

suitable bit layers for producing matrix patterns are

evaluated through different analyses. Then, the maximum

number of characters is embedded in some sample images,

to show the maximum capacity and resistance of this work

against steganalysis attacks.

4.1. Proof of concept implementation

MATLAB R2016b package is used for implementation

and evaluation of our proposed method. The inputs of this

steganography algorithm are two values, which are selected

by the user on the sender side. The first value is the size of

the square block, which is B×B, and the other value is the

size of the matrix pattern, which is t1×t2. Then, order of

blocks based on the random generator are placed in a queue.

Also, the user selects an RGB image as a cover, and a secret

message for embedding in the selected cover image. In this

work, the secret message can be a text message composed

of both the English and non-alphanumeric symbols of the

keyboard, which can be even a program or compiler. The

output of this system is an image, stego-image. At the

receiver side, the produced stego-image is the input to the

steganography system, and the output of the program would

be a visible secret message, if existing, extracted from the

stego-image.

In this program, the input image can be in any available

image format which has three layers. However, the stego-

image can only be in the PNG, Bitmap or TIFF format. The

program cannot produce a stego-image with JPEG or

JPEG2000 formats, because this steganography method

hides data in the spatial domain of the image and, during

lossy compression, the embedded message would be

destroyed.

4.2. Matrix Pattern evaluation

In the paper where MP was originally introduced [20] the

4th through the 7th bits of pixels were used for producing

matrix patterns. It should be noticed, that using less

significant bits in MP work can improve transparency,

because the stego-image is changed less frequently when

compared to the “cover-matrix.” Furthermore, in this

method, using less significant bits can also develop the

capacity of the proposed algorithm; because, as discussed

in section 3.2, the values of the matrix patterns are added to

the pixels of the blue layer of the cover image and, during

this process, it is possible that the value of one of the pixels

may become higher than 255 or less than 0. This would

cause that matrix to become useless for embedding secret

characters. In general, if the values of the matrix patterns

change in higher significant bits, the probability of pixel

overflowing will increase. However, if the number of bit

layers decreases, it is probable that generating 95 unique

matrix patterns will not be possible and the whole block will

become ineffective.

In this evaluation, 13 different images, including

“Airplane,” “Arctichare,” “Baboon,” “Cat,” “Fruits,”

“Girl,” “Lena,” “Monarch,” “Peppers,” “Pool,” “Sails,”

“Tulips” and “Watch,” are evaluated. These images, in

PNG format, are selected out of the image database

“Public-Domain Test Images for Homeworks and Projects”

at the University of Wisconsin Madison [24], as these

107

images were used as sample images in earlier LSB-MP

work [21]. In this evaluation, the values of the block and

matrix pattern size, are established as 64×64 and 3×2,

respectively. As mentioned earlier, the best block and

matrix pattern sizes are 64×64 and 3×2 based on previous

results [20]. The secret message in this evaluation is large

enough that all the blocks are used for hiding it.

 Then, our algorithm is tested with different bit layers, by

embedding the maximum number of characters that can be

hidden in these 13 images. Firstly, this method is evaluated

by using the 4th to 7th bits of pixels, like the simple MP work

[20]. Then, it is analyzed by using the 4th through 6th bit

layers. In the next analysis, the method is evaluated by

using the 4th to 6th bit layers again, but this time if one

change happens in the 6th bit layer of the pixels, the other

two bit layers cannot change. In the next analysis, only the

4th and 5th layers are used for generating matrix patterns.

Finally, only one of the 4th or 5th bit layers can change. The

results of these experiments are shown in Table (1). As can

be seen, the maximum possible changes (maximum value

of matrix patterns’ elements) for these steps are 120, 56, 32,

24, 16 and their negative equivalents, respectively. For

comparing this steganography method with different bit

layers, the average maximum capacity and average PSNR

(peak signal to noise ratio) play key roles.

To compute PSNR, initially, the brightness is derived by

equation (4) [25, 26], which is famous as a luminance

formula [27], and was used in previous MP and LSB-MP

works [20, 21]. In this equation “r,” “g” and “b” are

respectively the red, green and blue layers of an image, and

“B” is the brightness.

)*0722.0()*152.0()*2126.0()),,((bgrbgrPB ++= (4)

Then, the mean square error (MSE) of the brightness of

the cover image and stego-image is calculated by using

equation (5). In this equation, “n” and “m” are the column

size and row size of the images, while “I” and “S” represent

the “cover image” and stego-image, respectively.

 = ∑ ∑ [, − ,] (5)

Finally, PSNR is calculated by equation (6).

 , = . 55 ,⁄ (6)

PSNR measures transparency in an image; for example,

if PSNR value is more than 30, any changes in the image

cannot be identified by the human eye [26, 28, 29].

In addition, resistance to “Regular Singular” (RS) [30]

and “Sample Pair” (SP) [31, 32] attacks by using

“Steganography_Studio1.0.1” [33] is computed. The

measures of the RS and SP attacks are based on the

Table 1: Results of the proposed method based on using different

bit layers for matrix pattern generation

 Avg.

Capacity

[chrs]

Avg.

PSNR

[dB]

Avg.

RS

[%]

Avg.

SP

[%]

Fail

Block

4 to 7 39330.31 45.28 5.88 4.84 126/1062

4 to 6 40468.38 45.92 3.48 6.14 123/1062

(4 to 5) or 6 42083.92 46.87 3.62 6.35 135/1062

4 to 5 43437.92 47.14 3.47 6.23 135/1062

4 or 5 42777.38 47.64 3.66 6.27 171/1062

probability that these attacks predict an image as a stego-

image. Also, the number of blocks that were useless and

could not hide any messages is divided by the total number

of blocks in the image which is shown in Table (1) under

the “Fail Block” column. The results shown in Table (1) are

rounded to two decimal points.

According to this table, using the “4th to 5th” bit layers

not only has the best capacity result, but it also has a better

PSNR in comparison with three of the other layers, when

the message is hidden in the entire image. The “4th or 5th”

group only has a better PSNR than the “4th to 5th” group

because it contains less embedded messages. In addition, all

the groups have a good and acceptable resistance against

these two steganalysis methods. Thus, in this work for

matrix pattern generation, the “4th to 5th” bit layers are used;

this means that the values in the generated matrix pattern

can be 0, 8, -8, 16, -16, 24 and -24.

4.3. Proposed method evaluation

The maximum number of characters that can be

embedded in the B×B block, through the t1×t2 matrix

pattern size, is calculated by equation (7).

 = ⁄ (7)

If the sizes of block and matrix pattern are 64×64 and

3×2 correspondingly, then 682 characters can be hidden in

each block. However, it is possible that fewer characters

can be hidden in the block if, during the embedding phase,

pixel overflowing happens. Thus, the number of characters

which can be hidden in each block is dynamic and it can be

between zero to in equation (7).

Table (2) indicates the results of the proposed

steganography technique for the selected 13 images, with

maximum capacity, PSNR (when the whole image is used

for hiding), and probability of detection, based on the RS

and SP steganalysis methods for each image; values in this

table are rounded to two decimal points. Based on Table

(2), RS and SP steganalysis attacks are not successful in

detecting these stego-images. Also, it shows that the

proposed method has a fine PSNR and does not changes

pixels in a noticeable way when the entire image is used for

embedding secret messages. Moreover, the average and

108

Table 2: Results of maximum embedding in 13 different images

 Capacity

[chrs]

PSNR

[dB]

 RS

[%]

SP

[%]

Fail

block

Airplane 34618 48 1.19 5.15 11/64

Arctichare 18431 50.78 3.063 2.4 10/54

Baboon 40676 41.2324 2.63 29.72 0/64

Cat 45736 44.89 3.2 2.93 5/77

Fruits 39778 47.36 2.48 2.52 2/64

Girl 42215 49.06 1.36 1.81 26/96

Lena 42336 48.33 5.1 7.19 0/64

Monarch 38808 46.59 0.85 1.97 37/96

Peppers 38147 47.44 5.84 5.69 0/64

Pool 10509 51.39 9.18 9.2 10/35

Sails 63721 44.42 7.55 8.73 0/96

Tulips 59829 45.72 2.41 3.57 0/96

Watch 89889 47.62 0.22 0.14 34/192

Average 43437.92 47.14 3.47 6.23 135/1062

total capacity of these images are “43437.92” and “564693”

characters, respectively. This means that, on average, each

useful block can hide “609.18” characters.

Another steganalysis attack used for evaluation in this

method is an attack which can detect a stego-image based

on the PVD steganography method [34]. The PVD method

hides data by subtraction of neighboring pixels [23];

therefore, testing the proposed data hiding method, which

has the same trait for embedding characters, is necessary.

Based on this attack, the difference of neighboring pixels is

calculated and illustrated through a histogram. Natural

images have a Gaussian-shaped histogram, but if data is

hidden in them by the PVD method, the Gaussian shape will

be changed. Fig. 5.a, and 5.b show the cover and stego-

image of “Fruits” by maximum capacity, respectively.

Also, Fig. 6.a, and 6.b indicate the histogram attack based

on the PVD, which is applied on the cover and stego-image

of “Fruits,” correspondingly. Fig. 6.b shows the stego-

image based on this attack has the Gaussian shape. Thus, it

seems unlikely that this attack can detect the stego-image

when all the blocks are used for hiding.

5. Comparison

In this section, the proposed method is compared to

earlier MP work [20]. First, the differences between these

two algorithms are listed below:

1) In previous work, 49 matrix patterns were generated,

but in this algorithm 95 unique matrix patterns are assigned

to 95 English, number and non-alphanumeric symbol

keyboard characters. As all the keyboard characters are

supported by this method, the secret message can be a

program in a computer programming language.

2) In earlier methods, selecting blocks was based on a

seed and pseudo-random generator, but in this work, a truly

random generator is used. As the order of blocks sent is

Figure 5.a: “Fruits” as a cover image

Figure 5.b: “Fruits” as a stego-image by hiding “39778”

characters.

Figure 6.a: Histogram of PVD attack apply on the cover image

Figure 6.b: Histogram of PVD attack apply on the stego-image

109

fixed by method, it provides a condition that in the future

works, the best blocks can be selected instead of using

pseudo random generator in both side.

3) The previous algorithm used four bit layers, the 4th to

7th, for information hiding, while this recent version uses

the 4th and 5th bit layers, which has a direct relationship with

improving both capacity and transparency simultaneously.

4) In the MP method, the intensity of each block was

used for producing different matrix patterns, and then the

remainder of the blue layer of selected block was used for

embedding. However, in our algorithm, the green and blue

layers are applied for matrix pattern generation and hiding

secret information, correspondingly. Thus, the whole blue

layer is used for hiding purposes.

5) In the earlier method, in the MP work for generating

matrix patterns, when one row was finished, it would shift

t1 rows down, but in this algorithm, it just shifts one row

down. This process has a vital effect for generating 95

unique matrix patterns.

6) Lastly, block and matrix pattern sizes by the seed of

pseudo random generator was hidden in the first 48×48

block and 3×3 matrix pattern size. However, in this work

size of selected block and matrix pattern by user and the

orders of selected blocks are hidden in the first 64×64

block(s), by 3×2 matrix pattern size.

For comparing these two methods, the maximum

possible number of characters which is hidden in these 13

images with the earlier MP method is computed. The

average results of maximum capacity, PSNR, detectability

by RS, and SP attacks are “34139.15,” “46.25,” “3.47” and

“5.75,” respectively. According to the Table (2) and these

results, and [21], the new algorithm embedded 27.24%

more characters than the earlier method. Furthermore,

although it hides more characters, it also has a slightly

better transparency and it improves PSNR by

approximately 3 percent. Using the entire blue layer for

embedding has a direct relationship with capacity

improvement, and utilizing two bit layers instead of four bit

layers plays a key role in having a better PSNR. Also, both

algorithms have high resistance against RS and SP

steganalysis attacks, as well as the same resistance against

RS.

6. Conclusion and future work

In this paper, a steganography method is presented, based

on matrix patterns for embedding secret messages in the

form of text. In this method, initially, the image is divided

in non-overlapping B×B blocks. Then, blocks are placed in

a queue by using a random generator. Next, instead of

hiding bit streams of secret messages, it generates 95

unique matrix patterns from the green layer of each block

for 95 English, number and non-alphanumeric symbol

keyboard characters. In the embedding phase, based on the

secret message, these matrix patterns are added to the blue

layer of the blocks through a special process. For extracting,

on the receiver side, the same process must be reversed.

Evaluation results show that the proposed method has a

high capacity and PSNR; also, they show its resistance

against some well-known steganalysis attacks, such as RS,

SP and the PVD histogram attacks. Finally, as compared to

the similar MP method, results illustrate not only that the

new method improves capacity by more than 27 percent,

but that it also improves PSNR by nearly 3 percent.

In future work, the proposed solution can be extended to

select blocks from the most to the least suitable. Also,

generating 256 matrix patterns makes the method able to

hide all kindes of digital media as a secret message.

Acknowledgments

The work of Amirfarhad Nilizadeh and Gary Leavens

was supported in part by the US National Science

Foundation under grant SHF1518789. The work of Gary

Leavens was also supported in part by NSF grant

CNS1228695.

References

[1] W. Mazurczyk, and L. Caviglione. Information Hiding as a

Challenge for Malware Detection. In IEEE Security and

Privacy Magazine, 13(2):89-93, 2015.

[2] D. Lerch-Hostalot, and D. Megías. LSB matching

steganalysis based on patterns of pixel differences and

random embedding. In Computers & Security, 32:192-206,

2013.

[3] G. Bhatnagar, Q. M. J. Wu, and B. Raman. A new robust

adjustable logo watermarking scheme. In Computers &

Security, 31(1):40-58, 2012.

[4] H. B. Golestani, M. Joneidi, and M. Ghanbari. Logo

watermarking with unequall strength for improved

robustness against attacks. In 7th International Symposium

on Telecommunications (IST), pages 827-832, 2014.

[5] P. Marwaha, and P. Marwaha. Visual cryptographic

steganography in images. In Computing Communication and

Networking Technologies (ICCCNT), 1(6):29-31, 2010.

[6] W. Mazurczyk, and L. Caviglione. Steganography in Modern

Smartphones and Mitigation Techniques. In IEEE

Communications Surveys & Tutorials, 17(1):334-357, 2015.

[7] W. Mazurczyk, and K. Szczypiorski. Is Cloud Computing

Steganography-proof?. In Third International Conference on

Multimedia Information Networking and Security, pages

441-442, 2011.

[8] M. Ahmadian, A. Paya, and D. C. Marinescu. Security of

Applications Involving Multiple Organizations and Order

Preserving Encryption in Hybrid Cloud Environments. In

Parallel & Distributed Processing Symposium Workshops

(IPDPSW), pages 894-903, 2014.

[9] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu.

SecureNoSQL: An approach for secure search of encrypted

NoSQL databases in the public cloud. In International

Journal of Information Management, 37(2):63-74, 2017.

[10] W. Mazurczyk, M. Karas, K. Szczypiorski, and A. Janicki.

YouSkyde: information hiding for skype video traffic. In

110

Multimedia Tools and Applications, 75(21):13521-13540,

2016.

[11] A. Cheddad, J. Condell, K. Curran, and P. M. C. Kevitt.

Digital image steganography: Survey and analysis of current

methods. In Signal Processing, 90(3):727-752, 2010.

[12] R. Chandramouli, and N. Memon. Analysis of LSB based

image steganography techniques. In Image Processing, 3,

2001.

[13] D. C. Lou, and J. L. Liu. Steganographic method for secure

communications. In Computers & Security, 21(5):449-460,

2002.

[14] N. Provos. Defending against statistical steganalysis.

In Usenix security symposium, 10:323-336, 2001.

[15] A. Westfeld. F5—a steganographic algorithm. In

International workshop on information hiding, pages 289-

302, 2001.

[16] F. Farahani Vasheghani, A. Ahmadi, and M. H. F. Zarandi.

Lung nodule diagnosis from CT images based on ensemble

learning. In Computational Intelligence in Bioinformatics

and Computational Biology (CIBCB), pages 1-7, 2015.

[17] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T.

Filler, J. Fridrich, and T. Pevný. Moving steganography and

steganalysis from the laboratory into the real world. In

Proceedings of the first ACM workshop on Information

hiding and multimedia security, pages 45-58, 2013.

[18] T. D. Denemark, M. Boroumand, and J. Fridrich.

Steganalysis features for content-adaptive JPEG

steganography. In IEEE Transactions on Information

Forensics and Security, 11(8):1736-1746, 2016.

[19] W. Luo, F. Huang, and J. Huang. Edge adaptive image

steganography based on LSB matching revisited. In IEEE

Transactions on Information Forensics and Security,

5(2):201-214, 2010.

[20] A. F. Nilizadeh, and A. R. Naghsh Nilchi. Steganography on

RGB Images Based on a "Matrix Pattern" using Random

Blocks. In International Journal of Modern Education and

Computer Science (IJMECS), 5(4):8-18, 2013.

[21] A. Nilizadeh, and A. R. Naghsh Nilchi. A novel

steganography method based on matrix pattern and LSB

algorithms in RGB images. In 1st Conference on Swarm

Intelligence and Evolutionary Computation (CSIEC), pages

154-159, 2016.

[22] M. A. F. Al-Husainy. Image steganography by mapping

pixels to letters. In Journal of Computer science, 5(1), 2009.

[23] D. C. Wu, and W. H. Tsai. A steganographic method for

images by pixel-value differencing. In Pattern Recognition

Letters, 24(9):1613-1626, 2003.

[24] Public-Domain Test Images for Homeworks and Projects,

2017. [Online]. URL:

http://homepages.cae.wisc.edu//~ece533/images. [Accessed:

03- Apr-2017].

[25] O. Holub, and S. T. Ferreira. Quantitative histogram analysis

of images. In Computer physics

communications, 175(9):620-623, 2006.

[26] H. Tozuka, M. Yoshida, and T. Fujiwara. Salt-and-pepper

image watermarking system for IHC evaluation criteria.

In Proceedings of the 1st international workshop on

Information hiding and its criteria for evaluation, pages 31-

36, 2014.

[27] A. O. Akyüz, and E. Reinhard. Color appearance in high-

dynamic-range imaging. In Journal of Electronic Imaging,

15(3), 2006.

[28] A. F. Nilizadeh, and A. R. Naghsh Nilchi. Block Texture

Pattern Detection Based on Smoothness and Complexity of

Neighborhood Pixels. In International Journal of Image,

Graphics and Signal Processing (IJIGSP), 6(5):1-9, 2014.

[29] C. M. Wang, N. I. Wu, C. S. Tsai, and M. S. Hwang. A high

quality steganographic method with pixel value differencing

and modulus function. In Journal of Systems and Software,

81(1):50-158, 2008.

[30] J. Fridrich, M. Goljan, D. Hogea, and D. Soukal.

Quantitative steganalysis of digital images: estimating the

secret message length. In Multimedia systems 9(3):288-302,

2003.

[31] S. Dumitrescu, X. Wu, and Z. Wang. Detection of LSB

steganography via sample pair analysis. In IEEE

Transactions on Signal Processing, 51(7):1995-2007, 2003.

[32] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker.

Digital watermarking and steganography. In Morgan

Kaufmann, 2007.

[33] StegStudio project URL:

http://sourceforge.net/projects/stegstudio/files/, Last visited

03/24/2017.

[34] X. Zhang, and S. Wang. Vulnerability of pixel-value

differencing steganography to histogram analysis and

modification for enhanced security. In Pattern Recognition

Letters, 25(3):331-339, 2004.

111

