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Abstract

Video surveillance systems are now widely deployed to

improve our lives by enhancing safety, security, health mon-

itoring and business intelligence. This has motivated ex-

tensive research into automated video analysis. Neverthe-

less, there is a gap between the focus of contemporary re-

search, and the needs of end users of video surveillance

systems. Many existing benchmarks and methodologies

focus on narrowly defined problems in detection, track-

ing, re-identification or recognition. In contrast, end users

face higher-level problems such as long-term monitoring of

identities in order to build a picture of a person’s activ-

ity across the course of a day, producing usage statistics

of a particular area of space, and that these capabilities

should be robust to challenges such as change of cloth-

ing. To achieve this effectively requires less widely stud-

ied capabilities such as spatio-temporal reasoning about

people identities and locations within a space partially ob-

served by multiple cameras over an extended time period.

To bridge this gap between research and required capa-

bilities, we propose a new dataset LIMA that encompasses

the challenges of monitoring a typical home / office envi-

ronment. LIMA contains 4.5 hours of RGB-D video from

three cameras monitoring a four room house. To reflect the

challenges of a realistic practical application, the dataset

includes clothes changes and visitors to ensure the global

reasoning is a realistic open-set problem. In addition to raw

data, we provide identity annotation for benchmarking, and

tracking results from a contemporary RGB-D tracker – thus

allowing focus on the higher level monitoring problems.

1. Introduction

Video surveillance systems are now widely deployed to

improve our lives by enhancing safety and security and to

provide business intelligence [29] and healthcare monitor-

ing/assist independent living [28]. Although the major-

ity of surveillance systems involve outdoor spaces, there

is an increasing demand for “smart” living and working

spaces that are able to leverage human behavioural or iden-

tity information for enhanced functionality. These consid-

erations have motivated extensive work in person detec-

tion [3], recognition [30] and search [31], re-identification

[13] and tracking [4] – all challenging problems, particu-

larly with arbitrary camera views, lighting, shadows, and

cluttered backgrounds. While these are critical capabilities,

they are somewhat lower level problems than those that con-

cern the typical end users. In practice, the value provided by

video surveillance systems comes from higher level prob-

lems such as longer-term monitoring of people and identi-

ties, in order to build a picture of a person’s activities, or the

usage pattern of a given physical space. The study of these

higher-level tasks is addressed in multi-target multi-camera

[26, 36] and identity-aware [33] tracking, but is relatively

less well developed. This is in part because of lack of pub-

lic datasets and benchmarks, which we aim to address here.

Research in person recognition, within-camera tracking

and cross-camera re-identification provides improved mod-

ules for use by multi-target multi-camera (MTMC) systems.

However, this research is often disconnected from the prac-

tical requirements of a realistic system. For example, re-

identification benchmarks are often formalised as closed-

world problems between two isolated cameras – while prac-

tical scenarios are always open-set [8, 21]. Similarly, track-

ing benchmarks are typically defined as relatively short-

term problems, where there is limited change in a person’s

appearance, or long periods without an observation from

any camera. In contrast to the practical case where, partic-

ularly in smart homes/offices, people may change clothes

[14] or spend time out of views of all cameras while in

rooms where privacy is expected. Existing work in multi-

target multi-camera tracking exploits within-camera track-

ing, and multi-camera optimisation to find globally coherent

estimate of person identities across space and time [26, 33].

This is a crucial strategy, but can struggle with these real-

istic challenges of appearance change and protracted disap-

pearance preventing straightforward camera ‘handoff’ [26].
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In this paper we introduce the LIMA (Long term Identity

aware Multi-target multi-cameraA tracking) dataset that in-

cludes these challenges. The dataset is designed to promote

research into better global optimisation strategies for joint

MTMC tracking and better features and soft/hard biomet-

rics for dealing with appearance change. By making this

dataset publicly available, we aim to move research focus

closer towards more practically relevant, multi-object ob-

ject or target for consistency? or just MTMC multi-camera

tracking problems. The LIMA dataset has the following im-

portant characteristics: (i) It is more reflective of real-world

smart home/office conditions, including clothes change and

an open-set of people to be monitored. (ii) It includes multi-

camera identity annotation and benchmarking. (iii) It in-

cludes contemporary RGB-D video data that is typically not

studied by previous work, but can be exploited to help ad-

dress the greater challenge posed by such realistic scenarios.

(iv) It includes person-tracking data. Since no tracker is per-

fect, identity reasoning must be robust to realistic tracking

inaccuracies and errors. LIMA is compared to the most re-

lated prior datasets in Table 1.

2. Related Work

2.1. Underpinning Capabilities

Multi-target multi-camera tracking is often underpinned

by key capabilities including (within-camera) tracking and

(cross-camera) re-identification.

Tracking Within-camera tracking is now very well stud-

ied [4, 12]. Typical approaches [32] for fully automated

tracking use the track-by-detection paradigm, stitching to-

gether detections in the form of moving regions highlighted

by background subtraction, or by person detector [3] hits.

Re-identification Re-ID [13] is another extensively stud-

ied area which focuses on matching people in different cam-

era views. It is related to the intra/within-camera track-

ing by detection in that it seeks to match images of per-

son detections. However, it is more difficult because the

view angle, lighting and pose typically change more dra-

matically. Re-ID may be used by MTMC systems to as-

sociate within-camera tracks in the process of performing

multi-camera tracking. Typical approaches focus on obtain-

ing view-invariant appearance features [11], and/or learning

matching models specific to a given pair of camera views

to be matched [20]. Relatively less studied directions in-

clude enhancing re-identification using soft-biometrics like

attributes [18], height [25, 1], shape [1, 15], or move-

ment style [14]. Such techniques are likely to be increas-

ingly important when addressing realistic longer-duration

home/office data where identity should be estimated cor-

rectly despite that people are likely to change clothes.

2.2. Multi­Target Multi­Camera Tracking

MTMC tracking is a key higher level capability of great

importance to end-users. Systems may address within-

camera tracking and cross-camera matching in an end-to-

end manner [33], or more commonly rely on combining the

output of separate modules for within-camera tracking and

re-identification [9, 17, 6]. In both cases, one of the key

challenges to address in order to achieve good performance,

is to jointly infer the identities of all persons in the network,

in order to maximise the overall coherence of the estimate

[9, 17, 6, 33, 26, 8]. For example, under the priors that:

people move in a spatio-temporally smooth way across the

camera network, one person cannot be in two distinct places

at the same time, people spend the expected amount of time

in blind-spots, and people’s transitions across camera re-

flect the learned [6] or given [36] camera connectivity ma-

trix. Many methods make some simplifying assumptions

limiting their generality [26]. In the most general case, with

no simplifying assumptions, a MTMC method should han-

dle situations where: identities can re-appear in the same

camera (there is no one-way transition across the camera

network), some cameras overlap and see an identity at the

same time, while other cameras are disjoint and separated

by a large blind-spot, and that there is an a-priori unknown

and varying number of people observed by the whole net-

work [26].

The global optimisation method used in many MTMC

methods is predicated on the distribution of subject’s ap-

pearance lying on a suitable manifold [34, 33]. Learning

cross-camera appearance models can alleviate the impact

of differing camera views on the manifold assumption, but

in practical home/office scenarios where people are likely

to change clothes, the discontinuity in appearance can se-

riously violate this assumption. How to deal with this sys-

tematically in a MTMC scenario is an open question.

2.3. Datasets

Some related datasets in the area of MTMC tracking

are summarised in Table 1. Many suffer from either being

small.

One particular challenge which is not addressed by ex-

isting methods and datasets is that of appearance (clothes)

change. Existing methods are typically targeted at rela-

tively short-term tracking, so subjects’ observed appearance

is only indirectly affected by the usual camera viewpoints

and lighting, etc. However, in home / office settings, and

over longer monitoring periods, people are likely to change

clothes, which will hamper existing methods which assume

subject’s actual appearance does not change. This prob-

lem could be alleviated by biometrics such as face recog-

nition [33], height/shape [1, 25] or movement [14] biomet-

rics, assuming such cues can be appropriately integrated

to constrain the global MTMC optimisation. To this end
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Dataset Depth App Change Video #Cam #People Open-World Rooms Raw Video Avail Tracking

LIMA X X 04:30 3 22 X 3+1 X X

SoftBio [5] X X 05:30 8 152 X 1 X X

Care Short [34] X X 00:06 15 13 X 3 X X

Care Long [33] X X 07:45 15 49 X 3 X X

Duke [26] X X 01:25 8 2834 X ? X X

RAID [9] X X ? 4 43 X ? X X

CamNet [36] X X 00:30 8 50 X 6 X X

USC [17] X X 00:25 3 146 X 3 X X

Table 1. Comparison of Datasets. Open-World: Whether the same set of people are tracked throughout, or people enter/leave during

the recording. Rooms: Number of distinct rooms, or open space. Tracking: Whether within-camera tracking is provided. ‘?’ indicates

unspecified.

2

1
#

Non-recorded

RGB-D Camera

Camera FOV

Room ID

3

Figure 1. LIMA Dataset: Illustrative Schematic of the Building

our dataset also includes depth data. RGB-D cameras are

now increasingly pervasive, however the use of this sensing

modality to disambiguate MTMC problems is currently un-

explored. Using such depth data provides numerous oppor-

tunities including: deriving shape/height cues [1, 25, 2] for

better robustness to appearance change; investigating depth

rather than RGB based appearance features; depth-based

3D positioning in order to better estimate people’s proxim-

ity to specific entry/exit zones within a camera [17, 6, 24].

3. LIMA Dataset Description

Scenarios Our dataset is aligned with a home/office mon-

itoring scenario, where a relatively small number (compared

to outdoor crowd scene datasets) of people should be moni-

tored over a longer period of time. The cameras were set up

to observe the kitchen, main hallway, and living area on the

ground floor of a typical residential home, as illustrated in

Figure 1. There are several other rooms (bedroom and bath-

room) in the home not recorded for privacy reasons. This

creates the realistic challenge that people in those rooms

may be invisible to the camera network for extended peri-

ods of time.

We captured data in 13 “sessions” across three days. In

each session we simulated as closely as possible the real

world activities of cohabiting families or friends. Within

each session a series of normal activities (eating, callisthen-

ics, napping, reading, etc.) were procedurally generated for

each individual who then performed these tasks in sequence

but otherwise in an unconstrained manner. Natural interac-

tion between participants was encouraged – we instructed

participants to perform actions in real-time as much as pos-

sible except for their duration, due to recording storage and

processing constraints. Each session lasted between 15-20

minutes and contains 2-4 people, with each person perform-

ing an average of 8 actions per session. To explore the open-

world session, ‘residents’ occasionally left, and ‘guests’ oc-

casionally visited. In addition, to explore the realistic chal-

lenge of varying appearance in such an environment, partic-

ipants also changed their clothing at a random point in their

schedule. This was typically done in the realistic way of go-

ing into the bedroom to change. This meant that the actual

cloth changing event is out of the view of the camera net-

work, providing a particular challenge for long-term track-

ing. The data1 is illustrated in Figure 2. Table 2 provides

a breakdown of the data statistics and annotation content

available.

Technical Description The data was captured with three

commercially available ASUS Xtion PRO cameras2, at

640x480 pixel resolution and ≈ 25 FPS in both RGB and

depth channels. The full dataset consists of 4.5 hours of

RGB-D video from three synchronised cameras. The data

is provided both in raw format suitable for applying end-to-

end systems with RGB/RGB-D tracking algorithms; as well

as in preprocessed format with within-camera tracks from a

commercial RGB-D tracker provided. In this case tracklets,

and extracted bounding boxes are provided.

Pre-processing and Annotation We use a commercially

available off-the-shelf software, OpenNI’s NITE3 to detect

people and generate tracklets. The tracklets are then ex-

haustively annotated manually at the person detection level,

with each bounding box labelled with a ground-truth iden-

tity label. Due to the limitations of the commercial tracker,

a portion of the tracklets cover multiple person identities.

This happens for the most part due to tracker confusion be-

1Download data from: http://www.irc-sphere.ac.uk/

work-package-2/ReID
2https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
3http://openni.ru/files/nite/
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Figure 2. LIMA Dataset: Example RGB frames (top) and depth sensor measurements (bottom, darker is nearer) from cameras 1, 2, and 3

(left-to-right)

tween people, or people and background shapes. To sim-

ulate future improvements to tracker reliability, we remove

detections from a tracklet that are not labelled with the ma-

jority identity label. For building a reliable tracklet appear-

ance model, we remove detections that indicate a prone po-

sition, such as lying down, (detection aspect ratio r < 0.75)

and lastly subsample tracklet’s detections when they are

more than 400 prior to feature extraction.

Evaluation We aim to support two types of MTMC ap-

plications: (i) MTMC tracking, in which all people are to

be tracked, without any prior knowledge of the occupants

[26], and (ii) Identity-aware tracking [33], in which there is

an enrolment database. Both need to correctly stitch tracks

across cameras. In the MTMC case guests/visitors are to be

tracked equally with residents. In the identity-aware case, it

needs to assign the long term tracks the correct identity from

the enrolled database, so visitors provide potential distrac-

tors to recognition.

To support the identity-aware scenario, each session also

contains a brief enrolment sequence, where the home resi-

dents for that sequence appear in isolation, so an appearance

and/or biometric model can be built to support their recog-

nition in future identity-aware tracking.

MTMC is harder in that there is no prior knowledge

about the number of people and their appearance. Identity-

aware tracking is easier due to prior knowledge about the

number and appearance of the enrolled residents, but harder

in that long-term tracks must not only correctly associate

the same person’s within-camera tracks over time, but those

long-term tracks should be assigned the right ID from the

enrolment database, and differentiated from guests. In other

words, there are two ways to generate identity-aware errors,

but only one way to generate MTMC errors.

Day 1 Sessions Frames BBs Ts IDs

Cam1

4

144258 37223 179

13 (10)Cam2 133096 118610 126

Cam3 128464 119571 87

Total 405818 (133086) 275404 392

Day 2 Sessions Frames BBs Ts IDs

Cam1

4

88189 20996 140

12 (9)Cam2 95475 53527 124

Cam3 84169 40516 66

Total 267833 (83760) 115039 330

Day 2 Sessions Frames BBs Ts IDs

Cam1

5

112877 33260 234

16 (15)Cam2 114018 65605 164

Cam3 107598 50399 98

Total 334493 (104544) 149264 496 41 (22)

Table 2. Specifications of LIMA dataset. We provide pre-

processed tracklets (Ts) and person detections (Bounding Boxes,

BBs) for 13 sessions. The number of total people across all ses-

sions can be found in column IDs, with the number of unique indi-

viduals present that day in parentheses. The number of annotated

frames provided is also listed in parentheses.

4. Methodology

4.1. Benchmark Protocols

Multi-Target Multi-Camera Tracking An MTMC sys-

tem is assumed to label all N tracklets from within-camera

tracking as one of K global identities (K is effectively a

person count within a given video sequence), where typ-

ically K ≪ N . For evaluation, the K estimated global

identities are assigned to K ′ ground truth identities by ex-

haustive search. Based upon this assignment, standard mea-

sures such as precision, recall and F1-score are calculated

between the K ′ true labels in the dataset and estimated la-

bels of all the N local tracks [26]. The evaluation considers
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both micro and macro averages over these quantities. Macro

average is more influenced by people who appear often and

micro average treats each person equally.

Identity-Aware Tracking For identity-aware tracking,

we report both averaged absolute accuracy as well as the

same retrieval oriented precision/recall/F1 measure metrics.

4.2. Baseline Model

Overall Framework To provide a flexible and uncon-

strained baseline for MTMC, we adapt the constrained clus-

tering algorithm E2CP [23]. For N input tracklets {xi}
N
1 ,

an N × N affinity matrix A is generated, where Aij is

the similarity of tracklets xi and xj based on appearance

or soft-biometric cues. Furthermore, a sparse constraint

matrix C ∈ {+1, 0,−1}N×N is defined. Must-link con-

straints Ci,j = +1 mean that xi and xj are known to be

the same identity, e.g., due to simultaneous visibility at an

overlapped viewpoint, or a hard-biometric match. Cannot-

link constraints Ci,j = −1 mean that xi and xj are known

to be different identity, e.g., due to simultaneous visibility

from disjoint cameras. Finally, Ci,j = 0 means there are no

known constraints on identity. We then apply the method in

[23] to perform spectral clustering on the affinity matrix A

subject to the constraints in C.

Affinity Matrix Generation To populate the inter-

tracklet affinity matrix, directly comparing tracklet appear-

ance is ineffective due to cross-camera appearance change.

We therefore apply the KISS metric learner [16]. The affin-

ity between tracklets xi and xj is given by the exponentiated

Mahalanobis distance between their d-dimensional appear-

ance features.

log(Ai,j) = −γ(xi − xj)M(xi − xj)
T (1)

KISS uses an identity-annotated training set, and trains Ma-

halanobis matrix M to maximise the ratio
Ai,j∈S(M)
Aj,k∈D(M) be-

tween the affinity of a set of matched people S and a set

of mismatched people D. In this way, M is trained to pro-

mote features, and pairwise feature interactions (it is a full

covariance matrix) that make matching people have high

affinity (and mismatching people have low affinity). Given

a training set that includes matching and mismatching pairs

of people in multiple views, the metric is trained to ensure

affinities hold as expected across views.

KISS is trained using 2,701 identity pairs from PETA

[10] and CUHK Campus [19] (CUHK02,P1) as auxiliary

sources of data. Given the need to compute the d × d full

covariance matrix M, and apply it online at runtime, we re-

duce all features using PCA to d = 500.

Constraint Matrix Generation For the main experi-

ment, we populate the constraint matrix through two simple

heuristics: H1: If two tracks are visible at the same time in

the same camera, they must be different people and require

a cannot-link constraint. H2: If two tracks are visible at

the same time in completely disjoint cameras, they must be

different people and require a cannot-link constraint.

From these two heuristics we were able to generate 1,166

negative constraints across the whole dataset. We do not

have an easy way to generate positive constraints since there

is minimal inter-camera overlap in LIMA dataset. However,

we also explore the impact of additional positive constraints

that may be obtainable for example from hard-biometric

matches such as face [33], and additional negative con-

straints, that could be obtained, for example through soft-

biometric mismatches such as different genders.

Within vs Across Camera Matching It is important to

note that while a key challenge for Identity-Aware/MTMC

is cross-camera track association, the within-camera tracker

does not always track users for their entire time spent in

one camera view, i.e., within-camera tracking may result

in fragmented tracklets. Thus, the MTMC system needs to

associate tracklets both within and across camera.

Estimating the Number of Residents In our constrained

clustering approach to MTMC, the number of clusters K

corresponds to the number of unique identities established

by the overall tracking framework. In most scenarios, the

total number of entities to track in a given video segment is

not prior knowledge, so we need to estimate K.

In order to estimate K, we employ two standard meth-

ods: (i) “silhouette” [27] si =
bi−ai

max {ai,bi}
and (ii) “Calinski

and Harabasz” [7] CH = (SSB
N−1 )(

SSW
N−k

)−1 indices. The

silhouette score si for the ith point in a cluster reflects

relative similarity between its member cluster ai and the

other clusters bi. The CH index measures relative dispersion

within a cluster (SSW ) and between other clusters (SSB)

as measured by sum-of-squares. We estimate K by search-

ing K ∈ {2 . . . 8} and taking the K that maximises the

average of the two metrics.

Features To encode each tracklet’s appearance, we ex-

tract bounding boxes and then extract LOMO [20] or KCCA

[22] features from box’s RGB channel, and HOG features

for depth channel. After some heuristics to remove partially

occluded detections near to transitions, we perform within-

tracklet subsampling, and then averaging across frames to

obtain a single RGB and D feature vector for each tracklet.

Identity-Aware For the identity-aware setting, we train

multi-class SVM person recognisers with linear kernels, us-

ing the features from the enrolment portion of each session

as input, and identities from enrolment as labels. We then

compare two identity-aware tracking methods:

M1: Classify each tracklet by multi-class SVM and assign

the most likely identity.

M2: Classify each tracklet by multi-class SVM. Use the re-

sulting high confidence (p > 0.7) (mis)matches to generate

additional constraints, and re-cluster the data with the pro-
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posed constrained clustering. Then assign identities to all

tracks in each cluster by majority vote among the identities

assigned by SVM to the tracklets within the cluster. The

idea here is that the application of the constrained cluster-

ing with a significantly increased number of constraints now

is very likely to generate clusters reflecting the enrolled res-

idents. Meanwhile, the predictions on those tracklets with

low-confidence SVM predictions is made in a globally co-

herent way via their assignment to a visually similar and

logically compatible cluster.

Discussion Our overall approach to MTMC is simpler

than some contemporary alternatives [33, 26] but it has a

number of advantages: (i) being flexible with no required

assumptions on what movements are allowed, while any

such available priors can be encoded as constraints, (ii) ad-

dressing both within-and across-camera track stitching, (iii)

being easy to implement and fast to run, based on publicly

available optimisation software [23, 16], and (iv) can be

applied with minimal change to both vanilla and identity-

aware variants of the MTMC problem.

Parameter Settings The E2CP clustering algorithm has

several parameters to tune, γ, the Gaussian scaling param-

eter for the exponentiated Mahalanobis distance in Equa-

tion 1, λ, the constraint propagation term for [23]’s model,

and finally the number of k-nearest neighbours from which

to build the initial graph, k̄. For identity-aware settings,

we use linear SVMs with a single, slack parameter c. Fi-

nally, we also learn scalar parameter α for weighting the

fusion between RGB and HOG depth features , i.e., A =
(1 − α)ARGB + αAHOG. For each of the 13 sessions, we

adopt a leave-one-out strategy to learn γ, α, k̄ and c, and

follow the authors of [23] in setting λ = 0.8 for our main

experiments; however, we set λ = 0.2 for identity-aware

experiments, since these generate denser constraints and it

is beneficial to limit propagation to prevent saturation.

5. Benchmark Evaluations

We evaluate multi-target multi-camera tracking and

identification in each of the 13 sessions within our dataset,

and present results as averages over the per-session results.

5.1. Multi­Target Multi­Camera

In the first experiment, we evaluate MTMC performance.

One key challenge in MTMC is that the total number of

people is unknown. To explore this, we compare the results

in the challenging case where the number of residents (K ′,

Section 4.1) is unknown and easier case where we assume

prior knowledge of the number of residents (K ′ known),

although not enrolment.

To explore aspects of our methodology and dataset, we

further compare the conditions: ±C: With/without the con-

straints applied to global optimisation. ±D: With/without

including depth information in the tracklet representation.

The results are shown in Table 3. We make the follow-

ing observations: (i) Comparing the top and bottom sec-

tions, we see that prior knowledge of the number of people

to track makes the problem significantly easier. (ii) In gen-

eral, ability to exploit constraints tends to improve perfor-

mance over the unconstrained setting (+C vs -C). (iii) The

impact of constrained clustering is greater in the more chal-

lenging case where the number of residents is not known.

(iv) Generally, the inclusion of depth data improves per-

formance compared to vanilla RGB tracking (+D vs -D),

but not dramatically so. This is attributed to the relative

simplicity of our depth feature (HOG) compared to highly

refined RGB-based features. It also depends on the RGB

features used: the KCCA feature seems to be more com-

plementary to the HOG depth features. Better results may

be obtained in future by developing better depth features,

and/or exploiting depth to generate biometric rather than ap-

pearance cues. Overall, the results confirms that our base-

line is credible, but they are not good enough to provide a

useful practical system. This thus indicates that the dataset

is a useful benchmark for future research.

5.2. Identity­Aware Tracking

In the second experiment, we evaluate identity-aware

MTMC performance. To explore the significance of the

clothes appearance change aspect of our dataset, we con-

sider two conditions. In the first more realistic condition,

people are enrolled once and and then during the testing

sequence they change appearance in an a-priori unknown

way. In the second condition, the enrolment sequence con-

tains residents wearing each set of clothes that they might

later change to in the testing sequence.

The results are shown in Table 4, where we compare the

two enrolment conditions and two proposed tracking ap-

proaches. From the results we can first see that the mul-

tiple enrolment condition results are significantly higher

than the more realistic single enrolment condition. This

highlights the under-studied challenge of the appearance of

appearance change in tracking. Given that existing meth-

ods are tuned on existing datasets and benchmarks, it sug-

gests their performance may drop dramatically in practice

when users inevitably change their appearance. Thus, our

dataset provides an important opportunity to facilitate the

development of methods that are more robust to these chal-

lenges. Secondly, we can see from the results that the enrol-

ment does typically boost performance compared to all the

MTMC conditions in Table 3. Finally, we see that our hy-

brid constrained+clustering recognition approach (M2) to

identity-aware tracking does improve performance signifi-

cantly compared to the naive approach (M1) of just recog-

nising people based on their enrolment images. This is par-

ticularly so in the more realistic single-enrolment case. To
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Known Resident Population K ′

KCCA Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

+C+D 0.771 0.787 0.771 0.790 0.739

-C+D 0.762 0.781 0.762 0.779 0.736

+C-D 0.756 0.776 0.756 0.776 0.730

-C-D 0.754 0.769 0.754 0.768 0.712

LOMO Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

+C+D 0.774 0.777 0.774 0.791 0.712

-C+D 0.754 0.758 0.754 0.771 0.691

+C-D 0.772 0.779 0.772 0.792 0.715

-C-D 0.752 0.768 0.752 0.778 0.714

Unknown Resident Population K ′

KCCA Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

+C+D 0.659 0.666 0.633 0.680 0.556

-C+D 0.651 0.653 0.626 0.647 0.517

+C-D 0.663 0.675 0.638 0.678 0.555

-C-D 0.630 0.620 0.608 0.620 0.477

LOMO Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

+C+D 0.658 0.672 0.632 0.697 0.545

-C+D 0.636 0.634 0.613 0.638 0.473

+C-D 0.684 0.685 0.653 0.701 0.537

-C-D 0.653 0.648 0.627 0.654 0.497

Table 3. Multi-target multi-camera tracking results, aggregating

over sessions in our dataset. Evaluation by micro/macro precision

and recall, and F1-score. ±C indicates with and without use of

constraints in the joint inference. ±D indicates with and without

depth-based appearance feature.

Multiple Enrolment

KCCA Acc Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

M1 0.785 0.837 0.844 0.837 0.852 0.730

M2 0.857 0.826 0.840 0.826 0.834 0.800

LOMO Acc Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

M1 0.864 0.899 0.896 0.899 0.910 0.787

M2 0.922 0.891 0.912 0.891 0.909 0.883

Single Enrolment

KCCA Acc Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

M1 0.556 0.678 0.681 0.678 0.7111 0.346

M2 0.791 0.753 0.765 0.753 0.768 0.720

LOMO Acc Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

M1 0.634 0.740 0.736 0.740 0.759 0.471

M2 0.830 0.793 0.803 0.793 0.813 0.767

Table 4. Identity-aware multi-target multi-camera tracking results,

aggregating over sessions in our dataset. Evaluation by accuracy,

micro/macro precision and recall, F1-score. M1: Track by recog-

nition, M2: Track by recognition-enhanced constrained clustering.

Session IDs Acc Micro Prec Macro Prec Micro Rec Macro Rec Micro F1

S01 3 0.922 0.838 0.852 0.838 0.848 0.829

S02 4 0.704 0.782 0.793 0.782 0.780 0.739

S03 3 0.762 0.767 0.736 0.767 0.746 0.628

S04 3 0.844 0.807 0.754 0.807 0.784 0.644

S05 3 0.984 0.988 0.985 0.988 0.987 0.986

S06 3 0.983 0.987 0.989 0.987 0.986 0.987

S07 3 1.000 1.000 1.000 1.000 1.000 1.000

S08 3 0.963 0.986 0.989 0.986 0.984 0.986

S09 3 0.742 0.768 0.793 0.768 0.795 0.759

S10 3 0.985 0.989 0.996 0.989 0.984 0.987

S11 4 0.882 0.765 0.758 0.765 0.763 0.713

S12 3 0.844 0.887 0.901 0.887 0.913 0.886

S13 3 0.982 0.986 0.988 0.986 0.983 0.985

Table 5. Identity-aware tracking results by session. Tracking

model M2, and multiple-enrolment condition as in Table 4

illustrate the variability in the results across sessions, Ta-

ble 5 presents the results for identity-aware tracking (M2,

Multiple enrolment) broken down by session.

5.3. Further Analysis

Qualitative Results We present two qualitative examples

illustrating how constraints help long-term tracking in Fig-

ure 3. Here, some residents have changed their clothes (first

and second columns). The shift in appearance means that

some of their tracklets (first and second columns) would

then have been associated to incorrect clusters (third col-

umn), that are closer matches in feature space. However, in

this case the presence of constraints in the clustering pre-

clude a naive and incorrect association, and as a result they

associate correctly (fourth column).

Effectiveness of Constraints In the current experiments

we were unable to obtain a significant number of constraints

to fully explore the potential benefit of our flexible approach

to MTMC. We therefore perform a synthetic analysis to ex-

plore the potential impacts of the positive and negative con-

straints. In practice, these additional constraints could be

obtained through further research on biometrics (e.g., face)

that can generate positive constraints [33], and soft bio-

metrics (e.g., gender) that can generate negative constraints

[35]. Figure 4 shows a graph of MTMC tracking perfor-

mance against the number of synthesised constraints of both

types. From this we can see that increasing the number of

either type of constraints leads to a much better solution.

Constraints are particularly helpful in our dataset, where

they help to disambiguate identities across clothes change.

It suggests that future work on biometrics, etc. will greatly

improve tracking performance in our problem.

Sources of Error The main sources of error are due to:

(i) Upstream errors in the underlying within-camera track-

ing module including the tracker loitering on person-shaped

background regions, and classic failure under occlusion. (ii)

Clothes change. This was expected to be a challenge, given

the appearance based matching. Although some instances

can be corrected with our constrained clustering, this re-

mains an open problem to address through better constraint

generation and biometric cue development. This could also

be ameliorated by exploiting the fact that people normally

change clothes in a particular room (bedroom, bathroom).

So although out of sight, logic could be developed to look

for clothes changes when people enter/exit typical chang-

ing rooms. (iii) People sitting and lying down – These

are natural activities in home or office environments but

challenge systems and particularly the latest generation of

feature representations (E.g., KCCA and LOMO) designed

specifically for monitoring upright walking pedestrians.

6. Discussion

We introduced a new dataset to promote and support re-

search into realistic multi-target multi-camera tracking sce-

narios. Evaluation of a global optimisation algorithm on

this dataset demonstrates that it is feasible, but better fea-
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Clothing set 1 Clothing set 2 Without -Constraints With -Constraints

Figure 3. Qualitative illustration of success cases for constraints. People change from their starting clothing set to their second clothing set.

Without negative constraints, the model incorrectly classifies another person due to having a similar appearance (red border). By including

constraints, this can be mitigated (green border).
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Figure 4. MTMC performance under varying density of synthesised constraints: from exhaustively synthesised to sparsely populated. Left:

both positive and negative constraints. Middle: positive only. Right: negative constraints only.

tures, within-camera trackers and MTMC optimisers need

to be developed to produce a system useful in realistic

MTMC scenarios. Our dataset and annotation support a va-

riety of future directions of investigation:

Depth Appearance Features In our experiments, HOG-

based encoding of depth contributed only weakly to perfor-

mance. However, research in depth appearance descriptors

is in its infancy compared to decades of RGB descriptor re-

search. Future depth descriptor research will benefit long-

term tracking via better exploiting this modality.

Appearance and Pose Robustness The main challenges

to overcome are the inclusion of clothes changes and peo-

ple being in lying/sitting poses. These are under-studied

but realistic challenges, and ours is the only MTMC dataset

we know of to include clothes change in particular. Fu-

ture research to develop methods robust to these covariates

may use: soft-biometrics such as gait/movement style [14],

which in our case can be fused with the appearance-driven

affinity; biometric filters such as gender that can be used

to add negative constraints [35], or hard-biometrics such as

face. Cues such as face may not be visible in every track,

so a strategy is needed to exploit them in a missing-data

way [33]. In our baseline model this is straightforward by

including them as constraints only where available. How to

integrate all these cues given variable reliability and observ-

ability provides a challenge to support study of data fusion.

Depth-Biometrics Our depth-video also provides the op-

portunity for various novel soft-biometrics such as height

and body-shape [2, 25, 1, 15] that can be further developed

to increase robustness to clothes change. However, further

work is needed as existing studies typically assume that

people are walking pedestrians, and may not be robust to

our home/office setting where people are often sitting/lying.

Online vs Batch Processing Our current evaluation is

based on identity inference produced by batch processing an

entire session. In practical scenarios users may be interested

in incrementally produced tracking results. Our dataset and

annotations support such benchmarks for future evaluation.
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