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Abstract

In this study, we present a set of new evaluation mea-

sures for the track-based multi-camera tracking (T-MCT)

task leveraging the clustering measurements. We demon-

strate that the proposed evaluation measures provide no-

table advantages over previous ones. Moreover, a dis-

tributed and online T-MCT framework is proposed, where

re-identification (Re-id) is embedded in T-MCT, to confirm

the validity of the proposed evaluation measures. Experi-

mental results reveal that with the proposed evaluation mea-

sures, the performance of T-MCT can be accurately mea-

sured, which is highly correlated to the performance of Re-

id. Furthermore, it is also noted that our T-MCT frame-

work achieves competitive score on the DukeMTMC dataset

when compared to the previous work that used global opti-

mization algorithms. Both the evaluation measures and the

inter-camera tracking framework are proven to be the step-

ping stone for multi-camera tracking.

1. Introduction

Multi-camera tracking (MCT), also known as multi-

target multi-camera tracking (MTMC), is a task of track-

ing multiple objects through multiple cameras, and is the

ultimate goal for intelligent camera networks. It is of great

importance for surveillance systems to learn to track objects

automatically, since video data collected by end-point cam-

eras is overwhelming for both human understanding and

data transferring, especially in the era of Internet of things

(IoT). A complete MCT system usually consists of two ma-

jor components: single camera tracking (SCT) and track-

based multi-camera tracking (T-MCT) [2], as shown in Fig-

ure 1. The SCT is first applied to associate detections into

tracks, followed by T-MCT to re-identify each track and to

Detections Tracks
Identities

Single Camera
Tracking (SCT)

Track-based 
Multi-Camera

Tracking (T-MCT)

Figure 1: A typical multi-camera tracking (MCT) pipeline.

form trajectories for identities. Please note that we use the

term T-MCT instead of ”inter-camera tracking” in this pa-

per, because T-MCT does not only associate tracks of ”dif-

ferent cameras”. The most challenging and unexplored part

of MCT lies within T-MCT. Illumination changes, view an-

gle variation and object appearance inconsistency all con-

tribute to making T-MCT much more difficult than SCT, a

problem considerably improved over the past few years in

the MOT challenge [12].

According to Zheng et al. [21], around ten years ago, a

pioneering work [3] first framed T-MCT as a visual match-

ing problem and introduced an independent research field—

human re-identification (Re-id). Re-id, which focuses on

identifying individuals from gallery of images shot by dif-

ferent cameras, is often viewed as an image retrieval prob-

lem rather than a tracking problem. Early datasets of Re-

id, for example, ViPER[4], PRID[5], and iLVDS-VID[15],

provide images of the same identity between only two cam-

eras. More recently, some algorithms and benchmarks have

been proposed to address Re-id on larger galleries, which

comprised images from more than two cameras [9, 20].

Moreover, there are some researches about the implemen-

tation of Re-id on multi-shot dataset [21, 19]. By solving

Re-id on a larger scale, multi-shot dataset, we are one step

closer to leveraging Re-id algorithms on T-MCT. An urge

to design an evaluation measure and a system framework

suited for bridging Re-id and T-MCT is on the horizon.

T-MCT is a long-standing problem, while well-

constructed evaluation measures have not been introduced
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until recently. There are three main challenges that hinder

us from fairly evaluating T-MCT. First, different types of

error are valued differently depending on how we frame the

T-MCT task. For example, the track-order based Frag/IDS

measurement is adopted in USC[8, 1] and CamNeT[18].

Meanwhile, the detection-based evaluation measure, which

considers the tracking length of each identity, is developed

by DukeMTMC[13]. Later in subsection 3.1, we will detail

these two types of measures. Second, the T-MCT evalua-

tion measures need to isolate the errors in the SCT stage.

When considering the typical MCT pipeline (in Figure 1),

the SCT associates detections into tracks, and then T-MCT

associates tracks into identities. Intuitively, the number of

associations needs to make SCT much larger than that at T-

MCT. Thus, the previous MCT evaluation measures, which

evaluate MCT as a whole, may not be indicative for T-MCT.

Finally, the evaluation measures should be able to deal with

tricky issues in T-MCT, such as jump links, as illustrated

in Figure 4(b), and lost forever issue, as illustrated in Fig-

ure 4(c). We will discuss these issues in Section 3.

In this paper, motivated by the need to bridge the gap

between Re-id and MCT, we aim to propose a set of new

evaluation measures that is suitable for measuring T-MCT.

We incorporate the following properties when designing the

evaluation measures:

• Isolate the T-MCT errors from the SCT errors. We in-

tend to only consider the T-MCT errors to indicate the

performance of T-MCT. The SCT errors should be cal-

culated separately from the T-MCT errors using other

relevent measures, such as MOTA and MOTP [6].

• Robust against various tracking scenarios. The mea-

sures can handle different situations in T-MCT with

objective index and should be consistent with human

intuition.

• Robust against different camera settings. The mea-

sures can be employed with different camera settings,

such as non-overlapping cameras, overlapping cam-

eras, and heterogeneous cameras.

To demonstrate our idea, in Section 2, we first introduce

our track-clustering based evaluation measures specifically

designed for interpreting Re-id based T-MCT systems. We

then compare the proposed evaluation measures with re-

lated works on a T-MCT task in Section 3 through differ-

ent scenarios. Next, in Section 4, we proposed an online

distributed T-MCT framework to demonstrate the scheme

for embedding various Re-id algorithms in T-MCT. Finally,

in Section 5, the T-MCT evaluation results as well as Re-

id evaluation results are presented to confirm the validity

of the proposed measures and test the ability of our Re-id

based T-MCT framework.

2. Proposed Track-clustering Based Evalua-

tion Measures

2.1. The Proposed Evaluation Measures

In this paper, we propose a set of track-clustering based

evaluation measures to test T-MCT performance. The basic

concept of the track-clustering based evaluation measures is

to treat the T-MCT task as a clustering problem and measure

the correctness of correspondences predicted by the T-MCT

system. Correspondence is defined as the relation between

a pair of tracks in algorithm results (AR), where tracks are

a series of consecutive detections generated in SCT. Let us

denote two AR tracks as Ti and Tj , both of which belong to

SCT-generated AR track set τ , then the overall correspon-

dence Φ is defined as:

Φ = {(Ti, Tj) | i 6= j ∧ Ti, Tj ∈ τ} (1)

As illustrated in Figure 2, we frame AR tracks as data sam-

ples in the clustering problem, whereas the correspondence

is the relation between data sample pairs. Here, we make

an assumption that each AR track only tracks one ground

truth (GT) identity. Detailed process of how to achieve this

assumption will be discussed in subsection 2.2. Each track

has two attributes: an identity obtained by AR, and a GT

identity that it actually tracks. For each track Tk, we de-

fine the identity given by AR as the class of data sample,

denoted as Ak. Class is the predicted cluster for a data sam-

ple, represented by dotted circle in Figure 2. As for the GT

identity Tk actually tracks, we define it as the label of data

sample, denoted as Gk. Label is the actual object type of a

data sample, represented by different sample shapes in Fig-

ure 2. In this manner, we can then apply typical external

clustering measurement on T-MCT, namely the F-measure.

The new evaluation measures are defined based on

counting correspondences between AR tracks. Figure 2

demonstrates the definition of true positive (TP), false pos-

itive (FP), and false negative (FN) correspondences, which

follows the definition in clustering. Each data sample Tk

has a class and a label, corresponding to Ak and Gk for a

FP FN

TP

FP correspondence

FN correspondence

TP correspondence

GT id2 track

GT id1 track

AR id2

AR id1

Figure 2: Our proposed track-clustering based evaluation

measures. Only part of TP/FP/FN correspondences are dis-

played for a cleaner presentation. Each data sample repre-

sents a track generated by an SCT tracker.
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track. TP, FP, and FN correspondences are defined as

TP = |{(Ti, Tj)|Ai = Aj ∧Gi = Gj ∧ (Ti, Tj) ∈ Φ}| ,
(2)

FP = |{(Ti, Tj)|Ai = Aj ∧Gi 6= Gj ∧ (Ti, Tj) ∈ Φ}| ,
(3)

FN = |{(Ti, Tj)|Ai 6= Aj ∧Gi = Gj ∧ (Ti, Tj) ∈ Φ}| .
(4)

Finally, the evaluation measures are defined as:

ClustP =
TP

TP + FP
, (5)

ClustR =
TP

TP + FN
, (6)

ClustF1 =
2× ClustP × ClustR

ClustP + ClustR
, (7)

where TP , FN , and FP are defined in Eq. 2,3,4. ClustP

and ClustR represent precision and recall of correspon-

dences, respectively, and ClustF1, the harmonic mean of

ClustP and ClustR, serves as an overall score.

For easier understanding of how to calculate the new in-

dexes, let us consider the example shown in Figure 2. In

this example, TP indicates correspondences between track

pairs of same label and class, which is TP =
(

4

2

)

+
(

2

2

)

+
(

4

2

)

= 13. To simplify the calculation, TP + FP can

be obtained by TP + FP = P , where P indicates cor-

respondences between track pairs with same class. That

is, P =
(

5

2

)

+
(

6

2

)

= 25. Similarly, TP + FN can be

obtained by TP + FN = T , where T indicates corre-

spondences between track pairs with same label, namely

T =
(

6

2

)

+
(

5

2

)

= 25. The final score would be ClustP =
ClustR = 13/25 = 52% and ClustF1 = (2 × 0.52 ×
0.52)/(0.52 + 0.52) = 52%.

Calculating the track-based F-measure empowers our

evaluation measures with desired properties for evaluating

T-MCT. Since we model SCT tracks as data samples, we

eliminate SCT errors and consider those errors only made in

T-MCT. Meanwhile, measuring correspondences between

pairs is intuitive for evaluating image retrieval algorithms,

such as Re-id algorithms, the algorithms we embed in our T-

MCT framework. We can even evaluate T-MCT for general

camera settings. The procedure for general camera setting

is the same as the one we introduced here.

2.2. Overall Evaluation Process

The overall evaluation process consists of three steps.

First, we break down cross-camera trajectory of each AR

identity into AR tracks. This operation can be done by sim-

ply cutting out tracks when a trajectory’s detection is dis-

connected in time. In the second step, we determine which

GT identity each track is tracking through track identifica-

tion. After that, track-clustering based evaluation measures

can be computed as described in previous subsection.

Track identification, which is the second step of over-

all evaluation process, is composed of two stages: per-

frame matching and max occurrence ID pooling. Per-frame

matching assigns the most matched GT identity to each AR

detection box in every video frame. To do so, we per-

form a bipartite matching between GT boxes and AR detec-

tion boxes within the same frame, followed by thresholding

intersection-over-union ratio (IoU) of every match. Let us

denote the i-th GT box in a frame as dGT
t (i) and the j-th AR

detection box in the same frame as dAR
t (j). A cost matrix C

is then constructed, where its element ci,j is assigned with

IoU of dGT
t (i) and dAR

t (j). By performing Hungarian algo-

rithm on cost matrix C, each dAR
t (j) is matched to a dGT

t (i)
in the bipartite matching process. We then threshold IoU of

matched pairs to assure the correctness of assignment. In

this study, the threshold is set to 0.5. By denoting GT iden-

tity of dGT
t (i) as gGT

t (i), and the best matched GT identity

of dAR
t (j) as gAR

t (j), we have:

gAR
t (j) =

{

gGT
t (i), if ci,j > 0.5

false alarm flag, otherwise
(8)

where (i, j) are assignments made by Hungarian algorithm

on the cost matrix C.

After obtaining the best matched GT identity of all AR

detection boxes, max occurrence ID pooling is performed

to vote for the most matched GT identity of an AR track.

Please note that we denote an AR track as T in the previ-

ous subsection. An AR track is composed of a set of AR

detection boxes, denoted as T = {dAR}. Each dAR has a

corresponding best matched GT identity dAR → gAR. We

determine the best matched GT identity G for AR track T ,

based on:

γ = max occurrence gAR, (9)

G =

{

γ, if
|γ|
|T | > 0.5 ∧ γ 6= false alarm flag

false alarm id, otherwise
(10)

If the number of votes, which is the occurrence number of γ,

exceeds half the length of T , we determine that T is tracking

GT identity G. Otherwise, a false alarm id is assigned to G
to represent a false alarm track. It is also worth noting that

each false alarm track has different false alarm id ,since it

is not reasonable to form correspondence between two false

alarm tracks.

3. Related Works

In this section, we first review two major evaluation mea-

sures for MCT, the detection-based and track-order based

measures, and then compared them with the proposed mea-

sures through three toy examples.
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(a) Detection-based evaluation measure
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(b) Track-order based evaluation mea-

sure

Figure 3: Two previous MCT evaluation measures. Data

samples in (a) respresent AR detection boxes, whereas data

samples in (b) represent AR tracks generated from SCT.

3.1. Detection­ and Track­order Based Evaluation
Measure

Detection-based. A detection-based evaluation measure

has been proposed by DukeMTMC [13] recently, known as

IDmeasure. Basically, it measures tracking length of each

matched GT identity and matched AR identity, as illustrated

in Figure 3(a). When a GT identity and an AR identity

are matched to each other, TP are the matched detections

whereas FP and FN are mismatch detections in trajectory

of AR identity and the GT identity, respectively. IDP ,

IDR, and IDF1 are the evaluation indexes, directly com-

puted from TP, FP, and FN. Its overall procedure mainly

measures MCT system as a whole, not T-MCT only. Con-

sequently, we also consider the IDmeasure difference be-

tween SCT and MCT, suggested by the original paper that

it can capture ICT performance. For further detail, please

refer to the corresponding paper [13]. To be specific, we

will visualize IDP (MCT ), IDR(MCT ), IDF1(MCT )
and IDF1(ICT ) in this work.

Track-order based. In early MCT contests and

works[18, 8, 1], a track-order based evaluation measure is

usually adopted. It derives from the evaluation measure of

multi-object tracking (MOT), ID switch (IDS) and Frag-

mentation (Frag). However, none of the previous works

clarifies the detail of employing IDS and Frag to MCT.

Hence we demonstrate our definition of IDS and Frag for

T-MCT in Figure 3(b). IDS and Frag correspond to FP and

FN links in the figure respectively. IDS is defined as a link

between AR tracks having the same AR identity A but dif-

ferent GT identity G, and Frag is a link between AR tracks

having different A but same G. Notice that the difference

between track-order based and our track-clustering based

evaluation measures is that the former only counts links be-

tween successive AR tracks strictly in time order, while the

later computes correspondences between track pairs regard-

less of time. That is, if an AR identity consists of three

tracks with time order of T1, T2, T3, links only exists be-

tween (T1, T2) and (T2, T3), but not (T1, T3). From another

point of view, the track-order based evaluation measure con-

siders T-MCT as a graph problem. IDS equally measures

how many edges should be cut, and Frag measures how

many edges should be made to restore the correct graph.

From the definition stated above, we defined the Link Pre-

cision (LinkP) and Link Recall (LinkR) as:

LinkP = 1− IDS Rate =
TP

TP + FP
, (11)

LinkR = 1− Frag Rate =
TP

TP + FN
, (12)

where TP , FN , and FP are defined as Figure 3(b).

3.2. Toy Examples

Three toy examples are presented to demonstrate the

properties of different evaluation measures. All of them are

common scenarios in MCT.

Isolate SCT error. In Figure 4(a), this example demon-

strates the difference between detection-based and track-

clustering based evaluation measures. In the example, there

are two GT identities (gray dotted line) and only one AR

identity (blue line). The two blocks represent two different

camera views. We can notice that T-MCT is totally wrong

since the only correspondence between track in camera 1

and track in camera 2 should not be associated. SCT within

each camera is also imperfect since the tracks alternates be-

tween two GT identities. The results for detection-based

evaluation measure are TP = 10, FP = 10, FN = 30,

and thus IDP (MCT ) = 50%, IDR(MCT ) = 25%,

IDF1(MCT ) = 16.67%. As for SCT, TP = 12, FP =
8, FN = 28 resulting in IDF1(SCT ) = 20%, hence

we have IDF1(ICT ) = 20% − 16.67% = 3.3%. On

the other hand, for track-clustering based evaluation mea-

sure, TP = 0, FP =
(

2

2

)

= 1, FN = 0 resulting in

ClustF1 = 0%. Since this is a T-MCT fail scenario, we

expect the result to be 0%, which ClustF1 reports correctly

and neither IDF1, IDP, IDR for MCT or IDF1 for ICT

does. It shows that our evaluation measure has the ability

to isolate T-MCT error from SCT error whereas detection-

based evaluation measure does not.

Handle jump links. Figure 4(b) shows an example com-

prising two scenarios for comparing track-order based and

track-clustering based evaluation measures. Both scenario

consists of two GT identities (gray dotted line) and two AR
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Figure 4: Three toy examples for comparing the track-

clustering based, detection-based, and track-order based

evaluation measures.

identities (red/blue line). The difference between the two is

that situations in camera 2 and 3 are switched. In this ex-

ample, T-MCT performance should be similar in both sce-

narios. The track-order based evaluation measure assigns

both LinkP and LinkR with 1/(1 + 1) = 50% in upper

scenario and 0/(0 + 2) = 0% in lower scenario. Radical

changes from 50% to 0% are observed in both index due to

the fact that track-order based evaluation measure considers

time order. On the other hand, track-clustering based eval-

uation measure, which calculates correspondences between

all pairs, yields ClustP = ClustR = 1/3 = 33% for both

scenarios (TP =
(

2

2

)

= 1, FP =
(

3

2

)

+ 0 = 3, FN =
(

3

2

)

+ 0 = 3). We can conclude that track-clustering based

evaluation measure is more robust in this example.

Handle lost forever issue. The last example empha-

sizes the ability of penalizing lost forever issue with track-

clustering based evaluation measure over track-order based

evaluation measure. As illustrated in Figure 4(c), the exam-

ple has two GT identities but only one AR identity. The sys-

tem mistakens tracks of two different identities as the same

one. This type of error is undesirable for practical applica-

tions since identity 2 is lost forever after the system makes a

wrong association. We expect a low evaluation score in this

example, even as camera amount grows. In this situation,

the upper scenario reports 4/(4 + 1) = 80% for LinkP ,

while the track-clustering based evaluation measure reports

(
(

3

2

)

+
(

3

2

)

)/
(

6

2

)

= 6/15 = 40% for ClustP . In the

bottom scenario, track-order based evaluation index reports

2/(2 + 1) = 66% for LinkP , while track-clustering based

evaluation index reports (
(

2

2

)

+
(

2

2

)

)/
(

4

2

)

= 2/6 = 33% for

ClustP . We can note that LinkP is increased from 66%

to 80%, and ClustP is increased from 33% to 40% when

the track amount increases; the former grows faster toward

100% while the later grows slower towards 50%; we also

confirm that the tendencies toward 100% and 50%, respec-

tively in our supplementary material. In summary, we can

conclude that one of the advantages of the track-clustering

based evaluation measure over the track-order based coun-

terpart is that it penalizes the lost forever issue more ade-

quately.

From the above three toy examples, we confirm that our

proposed evaluation measures have the desired properties

over previous ones: they can isolate T-MCT errors from the

SCT errors and are robust against various tracking scenarios

such as jump links and lost forever issue.

4. Framework for Re-id Based T-MCT

To prove the effectiveness of the proposed evaluation

measures, we construct a T-MCT framework employing hu-

man Re-id algorithms. Motivated by applications in IoT,

we incorporate the framework with distributed and online

properties. To realize such properties, track association is

done by Re-id algorithms within each camera, eliminating

the need for powerful central server and high capacity com-

munication. The property of online comes along with this

kind of system setup, meaning that tracking results can be

obtained within a short time window even if the identity has

not completed its path in the camera network. Our frame-

work is quite different from the previous work in T-MCT

or MCT tasks, such as CamNeT [18], DukeMTMC [13],

NLPR MCT [2], USC [8], and GMMCP [2], where they

primarily focus on improving global optimization algorithm

after all tracks are collected. The difficulty of achieving

distributed and online T-MCT is much higher. The success

in Re-id in recent years enables us to create such unique

framework.

Figure 5 shows the Re-id based T-MCT scheme. Once

an identity leaves the field of view of camera A, its feature

vector extracted by Re-id algorithms is broadcast to adja-

cent cameras B and C, and stored within their own identity

buffers (Figures 5(a)(b)). When a new identity is detected in

one of camera B or C after a while, a traveling time model

is applied to filter unlikely candidates in the identify buffer.

The traveling time model is constructed by modeling trav-

eling time between each camera pair or returning time of

the same camera with a Gaussian distribution. When iden-

tifying different tracks, the candidates with traveling time

outside the range of [µ− 2σ, µ+2σ] are filtered out, where
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µ and σ are the mean and standard deviation of the Gaus-

sian. The Re-id distance metrics is then computed between

the feature extracted from the new identity and those valid

identities (Figure 5(c)). Non-maximum suppression along

with thresholding are used to determine whether the two

feature vectors belong to the same identity. If they belong

to the same identity, we recognize the leaving identity in

camera A and the arriving identity in camera B/C (in this

case camera C) as the same identity.

A variety of Re-id algorithms has been employed in our

framework for comparison. For feature extraction, we used

LOMO[11], BoW[20], HistLBP[17], and DGD-CNN[16]

to encapsulate the information of a identity into a vector

instead of large raw image data. In order to represent a

track with a feature vector reliably, we perform average

pooling or max pooling across N vectors belonging to N
images sampled from the track evenly. Distance metrics

including XQDA[11], KISSME[7], Mahalanobis distance,

and Euclidean distance are adopted to estimate the affinity

of two tracks. Note that all learning based algorithms are

first trained on training set and then tested on validation or

testing set. The training and testing setups will be described

with more detail in next section. At last, we filter out iden-

tities with short tracking length, which might indicate false

alarm tracks.

5. Experiments and Results

In this section, we present the experimental setup and

provide discussions on the experimental results.

5.1. Experiment Setup

To evaluate our framework using the proposed evaluation

measures, we use the multi-camera human tracking dataset

(DukeMTMC [13]), which comprises videos from eight

non-overlapping cameras recorded simultaneously, span-

ning 50 minutes for labeled sequence, “trainval.” A total of

1,812 identities appear throughout the entire sequence. We

conducted experiments on two single camera tracking out-

comes, one was the GT tracks provided by the dataset, and

the other was generated by DukeMTMC’s baseline system

[13, 14]. Furthermore, we divided the “trainval” set into two

subsets: “train” and “validation & test,” spanning 25 min-

utes for each. Among them, we used “train” as our training

set. “Validation & test” was a bit more complicated: we

used GT tracks in “validation & test” as our validation set

and baseline system tracks of [13, 14] as the testing set.

The experiments are organized as follows. First, we

compared the performance of each Re-id algorithm with the

classic Re-id evaluation methods, namely cumulated match-

ing characteristics (CMC) curve and mean average preci-

sion (mAP), on validation set. Next, the top ranked Re-id

algorithms for each feature extractor were embedded into

our T-MCT framework and tested on validation set. The

A

B

C

Buffer

Buffer

(a)

A

B

C

Buffer

Buffer

(b)

A

B

C

Buffer

Buffer

Time model    Unfit  Fit   Fit

Traveling time

(c)

Figure 5: (a) A pedestrian object is leaving the field of the

view of camera A. (b) The feature information of the object

is transmitted to the neighboring cameras (B and C). (c) The

re-identification can be done when the pedestrian object is

entering the field of view of camera C.

result of this step aims to (1) validate our proposed eval-

uation measure (2) depict the effectiveness of Re-id algo-

rithms when there are no distractors from SCT. Finally,

the selected Re-id algorithms were applied to SCT tracker

generated tracks, i.e. testing set. We compared the re-

sults with the proposed track-clustering based measure and

the existing detection-based IDmeasure recommended by

DukeMTMC. We set N = 15 to pull out N images from a

track for feature extraction, as mentioned in Section 4. As

a result, {47430, 28740, 29865} images are gathered for

{training, validation, testing} sets, respectively, which are

more than enough to construct a large Re-id dataset, such as

CUHK [9], Market-1501 [20], and MARS [19].

5.2. Comparison Using Re­id Evaluation

We conducted comparisons of different human Re-id al-

gorithms based on the toolkit provided by MARS [19]. Re-

sults are represented by CMC and mAP in Figure 6. We ob-

serve that LOMO and BoW feature extractors outperform

others by achieving top score of 42.74% and 44.97% re-

spectively in terms of mAP, and 45.77% and 46.92% in
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Figure 6: Results of different Re-id algorithms using typical Re-id evaluation measures: CMC and mAP. The results in the

same column were obtained using the same Re-id feature extractor. The results in the same row were obtained using the same

pooling techniques. The mAP score was also presented in the legend of each figure.

Table 1: The T-MCT results of different Re-id algorithms based on ground truth single camera tracking, along with the Re-id

evaluation results in Section 5.2. All results were obtained using the average pooling to generate feature for tracks. The

results are shown in percentage. The best result of each column is highlighted with boldface.

Re-id Evaluation Tracking Evaluation

Tracking System r=1 r=10 r=20 mAP ClustP ClustR ClustF1 IDP IDR IDF1 IDF1

(Re-id Algorithm) (T-MCT) (T-MCT) (T-MCT) (MCT) (MCT) (MCT) (ICT)

LOMO-XQDA 45.77 73.96 79.85 42.74 58.76 46.40 51.85 70.76 70.53 70.65 17.09

BoW-XQDA 46.92 74.06 79.33 44.97 62.65 35.71 46.26 66.07 65.86 65.97 24.76

HistLBP-KISSME 19.26 45.67 54.49 17.32 36.97 10.94 16.88 54.14 53.97 54.05 33.33

DGDCNN-Mahal. 13.00 31.37 38.52 9.65 15.88 5.55 8.23 51.24 51.08 51.16 34.92

terms of rank-1 precision, while other features could not

provide comparable results. However, there is no clear ev-

idence of which distance learning metrics is the best. Only

the naı̈ve euclidean distance approach falls behind the oth-

ers by a large margin. Another interesting fact is that av-

erage pooling for combining track features performs quite

well with all Re-id algorithms, but max pooling varies quite

a lot. To name a few, LOMO feature extractor seems to fa-

vor average pooling rather than max pooling. LOMO with

XQDA obtains mAP of 42.74% when using average pool-

ing, while LOMO with Mahalanobis distance obtains only

25.13% when using max pooling. Another fact should be

noted is that deep learning feature extration method, i.e.

DGDCNN, falls behind all the others by a large margin,

may due to lack of fine-tuning model on this dataset. Al-

though the author of DGDCNN claimed that deep learn-

ing model trained with various dataset is capable of extract-

ing generalized feature for human, our results showed the

best mAP for DGDCNN is still 35.32% behind the best per-

former. Fine-tuning DGDCNN for the dataset is left for fu-

ture work. The best combination of each feature extraction

method would proceed to the next stage of our experiment,

i.e. track-based multi-camera tracking.

5.3. Comparison Using T­MCT Evaluation

Recall that in Section 1, we introduced that Re-id is es-

sentially a soft identity assignment problem derived from

T-MCT. As a consequence, we expect performance mea-

sure of T-MCT to correlate to Re-id evaluation measure, es-

pecially rank 1 accuracy and mAP. To verify how well our

new evaluation measures corresponds with Re-id results, we

tested our Re-id based T-MCT framework on ground truth

tracks, namely the validation set. Table 1 shows the re-

sults of both Re-id and T-MCT evaluations. For T-MCT

evalution, we choose to visualize track-clustering based

(ClustP , ClustR, ClustF1) and detection-based evalu-
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Table 2: The T-MCT results of different Re-id algorithms based on single camera tracking result of the baseline provided by

DukeMTMC. All results were obtained using the average pooling to generate feature for tracks. The results are shown in

percentage. The best result of each column is highlighted with boldface.

Tracking System ClustP ClustR ClustF1 IDP IDR IDF1 IDF1

(Re-id Algorithm) (T-MCT) (T-MCT) (T-MCT) (MCT) (MCT) (MCT) (ICT)

DukeMTMC* 39.40 32.77 35.78 62.04 49.00 54.76 19.43

LOMO-XQDA 40.76 37.97 39.32 64.17 49.29 55.76 13.34

BoW-XQDA 40.66 31.03 35.20 59.87 45.99 52.02 17.82

HistLBP-KISSME 23.40 7.94 11.86 49.31 37.88 42.85 26.97

DGDCNN-Mahal. 14.70 5.24 7.73 48.09 36.94 41.78 27.88

∗ The baseline MCT system provided by DukeMTMC does not utilize Re-id algorithm for T-MCT.

ation index (IDP (MCT ), IDR(MCT ), IDF1(MCT ),
IDF1(ICT )), as mentioned in subsection 3.1. From the

table, we first notice that both the proposed evaluation

measures and the detection-based counterpart correlates to

Re-id performance mostly. That is, T-MCT systems with

more accurate Re-id algorithms perform better under T-

MCT evaluation measure. However, we can easily figured

out that only ClustP has the same ranking order of rank

1 accuracy and mAP. In particular, all T-MCT evaluation

measures grade BOW-XQDA lower than LOMO-XQDA

except ClustP , where for the Re-id evaluation measure the

order is vice versa. We conclude that our proposed evalua-

tion measures indeed correlate to Re-id performance better

than existing measurements. It is also noted that detection-

based evaluation measure reports the gap between differ-

ent Re-id algorithms smaller than the proposed evaluation

measure. For instance, rank 1 accuracy difference between

BoW-XQDA and DGDCNN-Mahal. is 33.92%, roughly

same as ClustF1 difference 38.03%, but much larger than

IDF1(MCT ) difference 11.92% and IDF1(ICT ) differ-

ence 8.57%. This can be owing to that detection-based eval-

uation measure also accounts SCT error for total error. In

short, we have proven that the track-clustering based eval-

uation measures are more representative than the detection-

based counterpart for the Re-id based T-MCT system.

While the previous experiments have verified the effec-

tiveness of the proposed evaluation measures on ground

truth SCT tracks, the real challenges lie within using re-

alistic SCT tracks from other trackers. At this stage, we

aim to study how our T-MCT framework performs on wild

data. Results of systems using baseline tracks released by

DukeMTMC [13, 14], namely the testing set, are shown in

Table 2. The whole MCT system of DukeMTMC [13, 14],

which is not a Re-id based tracking system, is also com-

pared in the table. Results highlight that our T-MCT frame-

work using LOMO-XQDA Re-id method achieved compa-

rable results in all of the evaluation measures, even slightly

better than DukeMTMC [13, 14], where a global opti-

mization algorithm is employed. However, it is noted that

DukeMTMC utilizes simple color feature and histogram,

whereas LOMO extracts complex appearance information.

BoW-XQDA performs slightly worse than LOMO-XQDA

employed to T-MCT, although it reaches a higher score in

Re-id. From the result, we gained some insight on how Re-

id algorithms empower T-MCT in a realistic scenario.

6. Conclusion

In this paper, we proposed a set of novel track-clustering

based evaluation measures for the T-MCT task. The pro-

posed evaluation measures were presented to test the T-

MCT performances by validating correspondences between

tracks. Performance comparisons with detection-based

evaluation measures on three carefully-planned experiments

proved that the proposed evaluation measures can present

the performance of T-MCT much more faithfully. We also

showed that the proposed evaluation measures are robust to

be used in different scenarios where track-order based eval-

uation measures failed. Furthermore, we designed an on-

line and distributed T-MCT framework. Experimental re-

sults not only proved the correctness of our evaluation mea-

sures, but also showed that our Re-id based T-MCT frame-

work can achieve similar performance to the global opti-

mized MCT system. The best performer of our T-MCT

framework employs LOMO as the feature extractor and

XQDA as the metrics learning algorithm, achieving 55.76%

in IDF1(MCT ), 13.34% in IDF1(ICT ) and 39.32% in

ClustF1. Some Re-id algorithms are also compared under

Re-id and T-MCT evaluation measures, which can be useful

references for future works. Our proposed T-MCT frame-

work is also a good platform for designing Re-id T-MCT

scheme, with the properties suitable for IoT applications.
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