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Abstract

The advent of widely available photo collections covering

broad geographic areas has spurred significant advances

in large-scale urban scene modeling. While much emphasis

has been placed on reconstruction and visualization, the

utility of such models extends well beyond. Specifically,

these models should support a wide variety of reasoning

tasks (or queries), and thus enable advanced scene study.

Driven by this interest, we analyze 3D representations for

their utility to perform queries. Since representations as

well as queries are highly heterogeneous, we build on a

categorization that serves as a coupling interface between

both domains. Equipped with our taxonomy and the notion

of uncertainty in the representation, we quantify the utility

of representations for solving three archetypal reasoning

tasks in terms of accuracy, uncertainty and computational

complexity. We provide an empirical analysis of these

intertwined realms on challenging real and synthetic

urban scenes and show how uncertainty propagates from

representations to query answers.

1. Introduction

Many applications, such as 3D scene processing, aug-

mented reality and autonomous agents can benefit from

having sufficiently detailed models of large-scale urban ar-

eas, but only if they can reason within those models. Cur-

rently, reasoning tasks are mostly treated as separate and

independent of one another. Moreover, different represen-

tations are often constructed for the purpose of solving sep-

arate reasoning tasks [22, 36, 37, 70, 74, 76]. While the

use of separate representations for each task may be opti-

mal (in some sense), it is often prohibitive for autonomous

agents due to constraints on sensing, computation, and stor-

age. Such resource constraints motivate the use of a reduced

set of representations for solving multiple reasoning tasks.

3D scenes can be represented in various ways includ-

ing depth-maps, voxels and more. Widely utilized in com-
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Figure 1: Exemplar for three archetypal reasoning tasks on

three different representations: point cloud (top), mesh (left)

and voxels (right). Queries: (1) path planning; (2) ratio of

the semantic categories; (3) clear-line-of-sight.

puter vision and related fields, intermediate representations

bridge the gap between sensing and reasoning. However,

different representations make fundamentally different as-

sumptions about what is important in the world. These as-

sumptions determine which information is maintained or

discarded from the representation. In this regard, a rep-

resentation serves as an approximate sufficient statistic of

the data for a given reasoning task. To quantify this no-

tion we expand a taxonomy over the space of representa-

tions, demonstrating its utility for coupling reasoning and

representation. We argue that how a representation quanti-

fies uncertainty is crucial to understanding how uncertainty

propagates from imperfect sensing to reasoning tasks.

Reasoning is the process by which we infer what is of

interest about a scene from what is represented. We are
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interested in abductive reasoning, i.e., obtaining quantifi-

able statements about the world from a set of observations.

To that end, we focus on the class of reasoning tasks that

can be reduced to functions operating on a given represen-

tation, referring to such task as queries. If a representation

is not suitable for this purpose, one may need to simplify

the meaning of the original query and/or augment the rep-

resentation itself. We generally do the latter. This high-

lights one aspect of the interaction between a query and the

representation. We show that the proposed taxonomy fa-

cilitates this process. Additionally, we consider the means

by which a representation propagates sensing uncertainty

to query uncertainty. For concreteness, we focus on three

archetypal reasoning tasks (Fig. 1). These serve as repre-

sentative examples from a wide range of choices and help

illustrate tradeoffs between different representations.

Our contributions are: (1) expand a taxonomy of 3D

scene representations for the goal of performing abductive

reasoning combined with empirical demonstrations; (2) use

archetypal queries to compare different representations in

terms of accuracy, uncertainty and computational complex-

ity; (3) highlight the importance of propagating sensing un-

certainty to query uncertainty via the 3D representation.

2. Related Work

Reasoning about a scene encompasses tasks across vi-

sion, AI and numerous other fields. The tasks are too many

to list; thus, we focus on a relevant subset. We also review

relevant methods for 3D reconstruction and representation.

Reasoning. Many systems have been proposed to do scene

reasoning over the years, with varied definitions of scene

(e.g., images, reconstructions) and reasoning (e.g., segmen-

tation, classification, higher-level tasks). A classical exam-

ple of an early reasoning system was presented in [20]; it

proposes a knowledge-based approach relying on features

to perform various image processing tasks. The MESSIE

system is closer in spirit to our approach [29]. It relies

on processing via “specialists” (task-specific algorithms) to

perform detection and segmentation. In various extensions,

the system was augmented with spatial constraints [28], un-

certainty handling [13], and 3D support [56, 57, 58]. Recent

works explore higher complexity in 2D reasoning tasks,

e.g., finer segmentation or categorization [39]; expanded set

of actions and events of interest [61]; or answering free-

form questions [1]. In the 3D processing realm, reasoning

has expanded even more rapidly, with one of the main goals

being interaction between humans (or agents) and the envi-

ronment [31, 42, 76]. Scene reasoning has also been studied

in the AI field to create cognitive models [3] and for situa-

tional awareness [21]. These works differ from ours as these

communities focus on human reasoning, i.e., cognitive pro-

cessing. In addition, the GIS community often performs

reasoning based on geospatial data [53].

3D Reconstructions. A reconstruction is the process by

which a 3D representation of the world is computed. Con-

temporary advances in multi-view reconstruction - includ-

ing increases in model size [66], accuracy at millimeter

scale [69], robust [25, 63] and efficient processing algo-

rithms [54, 73] - have pushed the limits of urban mod-

els. Furthermore, research has recently focused on incorpo-

rating attributes into traditionally pure geometric models.

In this context, pioneering semantic reconstruction meth-

ods [6, 12, 32, 40, 44, 45, 68] emerged with the goal of aug-

menting the representation with the type of scene elements.

These works show how to learn categories and demonstrate

that such knowledge improves geometric fidelity.

3D Representations. The impact of a representation on

reasoning tasks has been studied in the AI field. In [16]

Davis et al. axiomatically outlined the key properties of a

knowledge representation as follows: (1) it is a surrogate

for the world, i.e., a substitute that cannot contain all infor-

mation; (2) it biases our view of the world; (3) it encom-

passes a set of supported inferences about the world; (4)

it organizes information for efficient computation of infer-

ences. In [46], Lafarge independently proposed a list of cri-

teria for characterizing 3D reconstructions congruent with

the above properties. It includes geometric accuracy – cor-

responding to (1) from above; representation complexity –

(4); regularity of output – (2); visual appearance – (2); and

level of automation – (4). The only gap in this list is point

(3), which we will cover in this work by qualifying the fea-

sibility of tasks for specific representations. Additionally,

we clarify point (2) by providing a criteria for describing

how 3D representations bias our world view.

3. Representations

The set of commonly used 3D representations (e.g., vox-

els, depthmaps, etc.) make fundamentally different assump-

tions about the world. These assumptions determine which

characteristics of the world are maintained or discarded

from the representation. These choices impact the degree to

which a representation approximates a sufficient statistic,

i.e., how closely the distribution of the query conditioned

on the representation approximates the distribution of the

query conditioned on the world. Formally, let Q, X and

W be random variables denoting the query, the representa-

tion and the world respectively; then X is an approximate

sufficient statistic if p(Q|X,W) ≈ p(Q|X). The approx-

imation arises from missing subtleties of the world in the

representation due to, e.g., sensing limitations or computa-

tion limits when constructing or using the representation.

Often, a user of a representation may not know the qual-

ity of the estimated representation parameters which de-

pends on data and reconstruction methods. Thus, a repre-

30



Taxonomy Domain

0D 1D 2D 3D

S
e

m
a

n
ti

c
N

o
n

-S
e

m
a

n
ti

c
A

tt
ri

b
u

te
 D

im
e

n
si

o
n

Metric Dimension

Points Lines Triangles Voxels

Figure 2: Representation taxonomy combining metric and

attribute (i.e., semantic categorization) components.

sentations should also quantify parameter uncertainty. That

is, a representation should report not only what it “knows”,

but how well it knows it. To that end, we treat representa-

tions as a collection of n random variables, jointly denoted

by X = {Xi}
n
i=1

, which have a distribution, pX(X), over

possible parameter values.

3.1. Representation Taxonomy

We rely on a taxonomy of various 3D representations to

better understand and quantify their effect on a reasoning

task. The taxonomy contains two complementary charac-

teristics: metric and attribute. The metric characteristic can

be broken down into the inherent dimension of the represen-

tation element. Expanding on prior work, [59, §2.5], a valid

breakdown can be 0D, 1D, 2D, or 3D. Points, lines, poly-

gons, and polyhedra are the canonical examples for each di-

mension. The highest metric property that can be measured

(i.e., mensuration [64]): visual, length, area, or volume,

is determined by the inherent dimension of the element.

We label points as visual employing their geometric defi-

nition as a demarcation of a location since they are devoid

of any metric information. Note that while different choices

of connectivity between elements yield separate representa-

tions (e.g., polygonal soup vs. polygonal mesh), these still

fall within the same category of the taxonomy. Furthermore,

we observe that connectivity must occur using elements of

one dimension less (e.g., lines connect polygons).

Representations can have a variety of attribute character-

istics such as appearance, material properties or semantic

categorization. Each characteristic provides an additional

axis for differentiation. When combined, the metric and

attribute components yield a taxonomy of the representa-

tions; see Fig. 2 for the case of semantic labels in the at-

tribute direction. We will use the notation “nD-X” (e.g.,

0D-semantic) to refer to a specific taxonomy group.

A few observations can be made from the taxonomy out-

lined above. Higher-dimension representations retain as-

pects of the data that are discarded by lower-dimension rep-

resentations. This implies that we can discard the additional

information to convert a higher-dimension representation to

a lower-dimension one (e.g., marching cubes [48] for trans-

forming voxels into a mesh). On the other hand, converting

a lower-dimensional representation to higher-dimension of-

ten entails incorporating scene aspects in a manner that is

independent of the measurement process, as in the method-

ology of [24] (i.e., by employing external assumptions).

The nature of the assumptions depends on the specific con-

version while the accuracy of the resultant representation

depends on how well the assumptions match the world (e.g.,

the accuracy of a 2D mesh obtained from a set of 0D points

is highly dependent on the density of the original points rel-

ative to the complexity of the underlying surface).

3.2. Exemplar Representations

Motivated by the taxonomy of §3.1, we consider three

representations: point cloud (PC), triangular mesh (mesh),

and voxel. These are canonical examples of 0D, 2D and 3D

metric representations. We omit 1D representations as they

are rarely used for large-scale reconstructions. For each

metric class we consider attribute class semantic and non-

semantic resulting in six different representation (Fig. 3a).

We now turn to the question of how to build the represen-

tations. As stated earlier, representations are models of the

world and reconstruction algorithms are the inference pro-

cedures by which the models are estimated. Here we focus

on a single prototypical reconstruction algorithm for each

representation with the assumption that these are illustrative

of all others. In practice, this assumption is limiting as there

are many algorithms that can be used to infer a representa-

tion. Each method relying on potentially different assump-

tions, e.g., input or pre-processing, use of regularizers, opti-

mization, etc. This wide array of choices inevitably impacts

the quality of the representation, however, if algorithms are

consistent in their representation of uncertainty the above

assumption approximately holds. We emphasize that any

reconstruction method, e.g., [4, 10, 17, 27, 63, 66, 67, 69],

can be used in place of the ones described here.

To build the models in this work, we rely solely on

aerial imagery. We have chosen a coarse compilation of se-

mantic labels comprising mutually exclusive classes: build-

ing, ground, and vegetation (voxel representations explicitly

model the additional class free-space). An important con-

sideration is how each model quantifies uncertainty, Fig. 3b.

We build the PC using VisualSFM [72] and densify it

with plane sweep. To obtain the semantics for this rep-

resentation, we utilize a supervised multi-class version of

Adaboost [8] with image and geometry features. Location

uncertainty in the PC is modeled by an isotropic Gaussian

distribution (a simplified version of the uncertainty regions

of reconstructed points in MVS from well-distributed cam-

eras [18, 33]). Semantic uncertainty arises from the clas-

sifier’s per-class probability distribution. The non-semantic

mesh representation is based on [11], while the semantic
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(a) Semantic and non-semantic models. L-R: PC, mesh, and voxels.

(b) Semantic uncertainty. Color shows the most likely class proba-

bility; higher values imply more certainty. L-R: PC, mesh, voxels.

Figure 3: Enschede scene models and semantic uncertainty.

mesh is based on [12]. Both models capture geometric un-

certainty as ambiguity in the latent positions of the mesh

vertices. The semantic mesh learns a mixture of semantic

labels for each triangle. The non-semantic voxel model is

obtained using [75]; this leads to a partitioning of the space

into two classes (free-space or solid) with equally-sized

voxels. Geometry uncertainty is implicit in each voxel’s

Bernoulli distribution (we sample this distribution instead

of thresholding at 0.5 as in the original work). The semantic

voxel representation is generated using [32]; conceptually,

it extends the non-semantic voxel model by subdividing the

solid space into specific semantic categories. For simplic-

ity, we assume that all elements in the representations are

independent though this is not the case for shared vertices

in the mesh nor for attributes in the voxel representation.

4. Reasoning

Reasoning is the process by which we infer what is of

interest about a scene from what is represented. As stated

earlier, a query encapsulates reasoning as a computable op-

eration over a representation. As such, the plain statement

of a query must be interpreted in the context of what is

computable over the representation. Here we focus on de-

terministic functions, f(·) with parameters θ that operate

on the representation X; the query result Q is given by

Q = f(X; θ). Consistent with [16], queries and representa-

tions are intertwined; the latter is necessary to formulate the

computation of the former. For example the query “What

is the percentage of vegetation in the scene?” intends to

quantify the vegetation in the scene. We can establish that

a representation needs semantics to identify vegetation and,

at minimum, 0D-metric information to quantify the amount

although any other metric (e.g., area or volume) could also
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Figure 4: Query details in representation’s taxonomy.

be used provided it is computable over the elements of the

representation. We term queries that have exactly one map-

ping for performing the task on a representation as exactly-

specified (e.g., the earlier example in a 0D-semantic rep-

resentation). Queries with multiple mappings are termed

over-specified, e.g., 2D-semantic representations can use

counts or area. Lastly, queries that require information not

included in the representation are termed under-specified,

e.g. “What is the volume percentage of vegetation in the

scene?” in a 0D-semantic representation. This last example

necessitates computing volume which requires 3D-metric

knowledge or lifting lower metric dimensions via some as-

sumptions for the calculation.

This classification quickly informs us of the relation be-

tween reasoning and representations and the potential am-

biguities or need for additional information. Given that

higher-dimension representations contain aspects beyond

and including those of lower-dimension representations in-

evitably leads one to conclude that they can address a richer

set of queries. We will refer to the representations as under-

/exactly-/over-determined for a specific query.

4.1. Exemplar Queries

For concreteness, we focus on three archetypal reason-

ing tasks: clear-line-of-sight (CLOS), scene element cate-

gory analysis, and path planning. CLOS is a computation

between two points, an element of more complex reasoning

tasks such as surveillance and electromagnetic wave prop-

agation, relying on only the geometry of a local region.

Scene category analysis is a crucial element of urban plan-

ning analysis and path planning is an element of navigation

and mobility analysis. Both queries rely on global scene in-

formation. These queries are representative of a large subset

of reasoning tasks in urban reconstructions [51]. Through

them we will explore tradeoffs between different represen-

tations and queries. We now describe each query and dis-

cuss representation specific details (c.f . Fig. 4). Importantly

we focus on simple query formulations to stress the differ-

ence in properties across representations.

Clear Line of Sight. We state the clear-line-of-sight

(CLOS) query as “Is there a clear line of sight between

points A and B?” In its simplest form, it is a geomet-

ric computation over a surface (more complicated meth-

ods can be extended to perform this task while relaxing

the surface requirement, e.g., [38, 49]). The query formula-

tion requires surface-level non-semantic information, mak-
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ing 2D-non-semantic exactly-determined. Representations

with additional information (e.g., semantic or higher metric-

dimension) are over-determined, while those with fewer are

under-determined. Consequently, we augment the PC rep-

resentation by attributing a notional volume (consistent with

the footprint of a pixel) to each point, resulting in a solid

spherical element. Although other assumptions could be

used (e.g., oriented patches as in [25]), we use spheres for

computational simplicity.

In the absence of uncertainty, the computation is straight-

forward: check if any representation element intersects the

line segment connecting A and B, if there are none then

there is a clear line of sight. The problem of segment in-

tersection with triangles, voxels and spheres is well known

and mature algorithms exist. We use a variant of [50] for

triangle intersections, a 3D implementation of Bresenham’s

algorithm [9] for voxels and follow [34] for spheres. If we

assume segment endpoints are chosen uniformly at random,

the computational costs associated with these algorithms

grow as O(n), O(n
1

3 ), and O(n) respectively, where n is

the number of elements. Importantly, n is not the same

across representations and may grow at different rates for

increasing scene complexity.

Category Analysis. The category analysis query computes

the relative quantity of different categories in the scene,

e.g., “What is the percentage of category A in the scene?”

This particular query illustrates how representations influ-

ence the interpretation of a reasoning task since the plain

statement is open to wide interpretation. Each yielding

multiple formulations for each representation (e.g., count-

ing, computing area or volume). For simplicity, we use the

counting metric for all representations; this metric has com-

putation complexity O(n) and has the benefit of being a lin-

ear function, e.g. Q = 1

n

∑
i 1I[xi = c], where c is the class

of interest. In this case, the 0D-semantic representation is

exactly-determined for this query. All other semantic repre-

sentations are over-determined while the non-semantic ones

are under-determined and require a proxy for the semantic

categories. We use simple heuristics to approximate some

classes; e.g., ground and buildings are labeled by threshold-

ing vertical position and surface normal directions.

We note that in our evaluation we explore variations in

metric-choice (i.e., computing area or volume) to highlight

the distinctions between query formulation over different

representations. These choices bias results in a manner spe-

cific to the representation and to the underlying assumptions

used to lift the representation to compute the query.

Path Planning. This query is stated as “Can an agent get

from point A to B?”, where agents are ground-bound (e.g.,

pedestrian) or aerial (e.g., UAVs). This query is interesting

in that the formulation depends on properties of the both

the representation and the agent. The query identifies if a

viable path exists, as such any path planning algorithm may

be used in the query formulation. Both ground and aerial

agents require at least 2D-metric information. In addition,

ground-bound agents require semantic information to deter-

mine the feasibility of an element (e.g., sidewalk or road),

as such non-semantic representations require augmentation.

For the case where the path traverses elements of the

representation, i.e., all voxel paths and ground-based paths

in mesh and point cloud, the computation additionally re-

quires connectivity to determine feasibility. The notion of

neighbors is well-defined in mesh and voxel representa-

tions. Connectivity is assumed in the point cloud by defin-

ing a set of closest N points as neighbors. Given connec-

tivity, the computation can be made via shortest path al-

gorithms [19, 41, 60]. In our implementation we use [19],

which has computational complexity of O(n log(n)), where

n is the number of elements in the representation.

The case of aerial paths in the mesh and point cloud

representations is more involved as the traversable ele-

ment is not directly represented. This merits some form

of configuration-space planning [65]; we choose Rapidly-

exploring Random Trees (RRTs) [47]) as an example of

such approaches. For this method the mesh must be aug-

mented with bounds encoding the extent of the representa-

tion while the point cloud must be augmented with the con-

cept of obstacles, i.e., we again attribute the points with vol-

ume to form non-traversable space. The convergence rate of

the RRT algorithm to a valid path is difficult to character-

ize as it depends on the structure of the obstacles [14]. As

such, we limit the number of iterations to Tmax and arrive

at a computational cost of O(nT 2

max).

4.2. Query Computation and Uncertainty

We now outline the query computation over uncertain

representations. Recall that we treat representations as a

collection of random variables, jointly denoted by X, with

probability density function pX(X). Queries are deter-

ministic functions, f(·), that operate on the representations

with parameters θ; a query answer Q is then expressed as

Q = f(X; θ). We are interested in both query result and its

associated uncertainty (which is a direct consequence of the

uncertainty in the representation). We can obtain this distri-

bution by performing a change of variables and integrating

out nuisance variables [52, Eq. 8-8]:

pQ(Q) =

∫

px(f
−1(Y),X\1)

∣

∣

∣

∣

∂f−1

∂Q
(Y)

∣

∣

∣

∣

dX\1 , (1)

where f−1(·) is the inverse of f(·), Y = {Q,X\1} and

X\i is used to remove element i from the set X. However,

Eq. (1) is often intractable or, as f(·) may not have a unique

inverse. Entropy is one measure by which we may quan-

tify the uncertainty of the query result. We can bound the

entropy of Q in relation to the entropy of X:
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H(Q) ≤ H(X)−H(X\1|Q) + E

[
∣

∣

∣

∣

∂f

∂X1

(X)

∣

∣

∣

∣

]

, (2)

where equality holds iff f(·) is one-to-one [52, Eq. 15-113].

However, Eq. (2) has the same challenges as Eq. (1), with

the added drawback of being a very loose bound.
While Eq. (1) and (2) are useful in that they directly re-

late representation uncertainty to query uncertainty, we can-
not compute them for all queries. Alternatively, we may
estimate the quantities using Monte-Carlo sampling tech-
niques [55]. The approach relies on sampling M repre-
sentation instances x̃ = {xm}Mm=1

from pX(X) where
the method of sampling is specific to the representation,
e.g. sampling locations for the point cloud representation.
Evaluation of the query function on these samples yields
samples of the query result; i.e., q̃ = {qm}Mm=1

, where
qm = f(xm; θ). We can then use the query answer sam-
ples to estimate the distribution (e.g., using kernel density
estimators [5]), entropy (e.g., using [7] or [2]) or compute
statistics of interest such as mean and variance:

µQ ≈
1

M

m
∑

m=1

q
m

and σ
2

Q ≈
1

M2

M
∑

m=1

[qm − µQ]
2
. (3)

Reducing Query Uncertainty. An important property of

the query computation presented here is that it directly

relates uncertainty in representation to uncertainty in the

query. In principle, this link can be exploited to reduce

query uncertainty, i.e., for discrete queries, the following re-

lationship holds H(Q) = H(Xi|X\i) − H(Xi|X\i, Q) +
H(X\i)−H(X\i|Q) where Xi is any single representation

variable which the query depends upon. The first two terms

in the RHS capture the influence of Xi on the query uncer-

tainty and is commonly known as the mutual information

I(Xi;Q|X\i) , H(Xi|X\i) − H(Xi|X\i, Q). The mu-

tual information expression provides a mechanism for iden-

tifying the representation element driving the uncertainty

in the query answer. Once key representation elements

have been identified, we can use information planning tech-

niques [30, 71] to select additional measurements to further

refine that representation element and consequently reduce

uncertainty in the query answer.

Special Cases. A few special cases appear in our analy-

sis. First, if the query only depends on a subset of rep-

resentation elements, Eq. (2) simplifies to depend only on

that subset. This result has the ability to simplify local

queries and reduce the computational complexity associ-

ated with them. Second, linear queries, which take the

form Q =
∑n

i αiXi, allow us to compute desired quan-

tities in closed-form, e.g., using [35, p. 134] we can com-

pute the mean and covariance for the query answer distri-

bution. If random variables Xi are also independent (as

in the case of this work) Eq. (1) simplifies to a convolu-

tion. This convolution has well known forms for most com-

mon distributions [35, ch. 3]. Of interest to us is the case

Figure 5: SynthCity CLOS. L-R: ground-truth, non-

semantic PC, mesh and voxel (10 samples each). All clear.
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to occluded. Top: views from start location and above. Cen-

ter: representations with rays colored by mean answer and

intersections in yellow. Bottom: mean and entropy curves.

when Xi ∼ Bernoulli(pi), (as in scene category analy-

sis) then Q follows a Poisson binomial distribution, Q ∼
PoissonBinomial(p1, . . . , pn) with mean µQ =

∑n

i=1
αipi

and variance σ2

Q =
∑n

i=1
α2

i (1− pi)pi [23].

5. Experiments

We present a set of experiments designed to assess

the performance of the representations with regards to the

queries outlined above. As testbed, we use representations

of two scenes, a synthetic example, SynthCity [12] and a

real data example of Enschede, Netherlands [62].

5.1. Clear Line of Sight

We begin CLOS with a simple example in SynthCity: a

clear line along a road. The non-semantic models, Fig. 5,

are able to obtain the correct answer with high certainty un-

der a low number of samples. We expand on this by con-

sidering the scenario where a target moves from visible to

occluded while the starting location remains fixed, Fig. 6.

The figure shows that representations agree and are highly

certain of their answers (i.e., low entropy) when the tar-

get is clearly occluded or clearly visible. However, when

the target approaches the estimated building boundary the

representations disagree in their query answer and certainty

levels. In this example, the PC has a large uncertainty re-

gion, leading to a low mean answer; mesh and voxel models

have a much more compact uncertainty region and agree on

where the target becomes occluded. The results of compar-
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Figure 7: SynthCity CLOS corner mean and entropy curves

as target moves from visible to occluded. Vertical dashed

line denotes ground-truth building boundary.

Figure 8: Which building points can see the target (red tri-

angle)? Color shows mean answer, blue - not visible, red -

fully visible. L-R: Enschede semantic PC, mesh and voxel.

Figure 9: Matching formulation for each representation of

the category analysis. Mean and standard deviations on En-

schede (100 samples per representation).

Figure 10: SynthCity category analysis query (counts),

comparison of samples and exact linear computation.

ing semantic and non-semantic models are consistent. This

is expected as semantics only indirectly influence CLOS –

through their effect on the reconstruction process.

To identify biases in the representations’ query answers,

we repeat the experiment using synthetic data, Fig. 7. Over-

all, we see similar characteristics for areas far from the

boundary. As the target nears the true boundary, the mean

answer transitions prematurely for all representations. This

collapsing of the representation has been shown to be a re-

sult of the use of regularizers [15, 26, 43]. As a final ex-

ample, we show we can compose several CLOS queries to

obtain a more complex task, e.g., “Which scene elements

can see point A?” Fig. 8 shows the visibility of a courtyard

in Enschede for semantic models.

5.2. Scene Category Analysis

We begin the scene category analysis by exploring the

interaction between query formulation and the capabilities

of the representation, e.g., we vary the query’s metric quan-

tification method from counts to area to volume.

For this task, under-determined representations require

augmentation (and assumptions). The PCs are raised to a

2D-metric representation by triangulating the points in the

ground then pushing the triangle vertices to their height; for

3D-metric, each point is augmented with volume. The mesh

representation is lifted to 3D-metric by estimating a ground

plane. In the absence of semantics, we estimate only two

classes, “ground” and “object” by relying on simple heuris-

tics (i.e., height and surface orientation thresholds). The re-

sults for SynthCity can be seen in Fig. 11. For semantic rep-

resentations, the best performance is achieved by the repre-

sentation whose metric properties match the query formula-

tion and progressively degrades as assumptions are incorpo-

rated. As expected, non-semantic representations perform

worse than their semantic counterparts due to the query’s

high reliance on semantic information.

In order to remove any variability introduced by differ-

ences in reconstruction algorithms, we also discard addi-

tional information in over-determined representations and

compare their performance in a lower formulation dimen-

sion. For example, the voxel bar in the area plot of Fig. 11 is

obtained by doing marching cubes on the voxel representa-

tion and computing the area of the resulting mesh. By com-

paring the derived-mesh and the original voxel to ground-

truth we see that better performance is obtained with match-

ing original dimension (similar results hold for the mesh).

This further indicates that it is the interplay between as-

sumptions and formulation and not the difference in recon-

struction methods that drives the changes in the figure.

Given the above results, Fig. 9 shows the matching for-

mulation for each representation, i.e., counting for point

cloud, area for mesh and volume for voxels for Enschede.

All representations agree that buildings compose roughly

40% of the scene, independent of the query formulation.

Furthermore, we see that that voxels have a larger percent-

age for ground since they explicitly model the region below

buildings. Lastly, recall that the counting query is linear;

thus, means and variances can be obtained in closed-form.

We compare the sample-based approximation against exact

computation in Fig. 10 and observe that the sampled quan-

tities closely track the exact computation.

5.3. Path Planning

Fig. 12 shows statistics and spatial distribution of the ex-

istence of four paths (three ground and one aerial) in the

semantic models of the Enschede scene. The figure shows

that all representations are fairly confident in the existence

of a path; visual inspection of the scene confirms the path
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Figure 11: SynthCity estimate of categories for varied metric quantification of the scene category query (100 samples each).

(a) Path existence statistics (mean and standard deviation).

(b) Path distributions. Columns: 3 pedestrian and 1 UAV path (20k

and 5k samples respectively). Rows: semantic PC, mesh and voxel.

Figure 12: Path details for four long-distance paths.

Figure 13: Mean path existence from a given starting point

(cyan “+”) to all ground elements. L-R: Enschede semantic

PC, mesh and voxel (all 100 samples).

existence. Several observations can be made: first, the point

cloud paths are very consistent in overall motion but have

some spread. Paths in the mesh tend to have more variabil-

ity, especially for the second pedestrian path where uncer-

tainty in the mesh induces large variations in the path. Voxel

paths seem to have the least variability, suggesting that the

estimated semantic class likelihoods are fairly certain.

Similar to the general visibility experiment of the CLOS

query, we can compose several path queries to reason about

the general “reachability” of scene elements. This task can

be stated as “Which locations can be reached from a specific

starting point?” Fig. 13 illustrates the results for semantic

models of Enschede. It is important to note that both mesh

and voxel models have areas that cannot be reached as ex-

pected from the scene topology (dark blue in the figure).

6. Discussion

We explore the role of 3D representations in the context

of abductive reasoning over large-scale urban scenes. To

quantify the interaction between reasoning and representa-

tion, we focus on two concepts: a taxonomy of the space

of 3D representations and the interpretation of representa-

tions as an approximate sufficient statistic for a task. These

concepts serve as coupling between the domains; namely

they help identify representations suitable for performing a

task. We show how exact computation of task is generally

infeasible and instead propose a sampling-based approach

to determine the influence of uncertainty in the representa-

tion on the query answer. On the empirical front we quan-

tify the utility of three different representations for solving

three archetypal reasoning tasks. Our analyses highlight key

characteristics of the representation-reasoning interaction.

Namely, the scene analysis query demonstrates the link be-

tween query formulation and representation metric dimen-

sion, i.e. more accurate answers were obtained when these

properties were aligned. This result agrees with the intuition

that more assumptions lead to more inaccurate answers.

Many facets of this problem require additional analysis.

A strong assumption made in this work is that the recon-

struction algorithms used here are indicative of all others.

This should be validated by comparing other methods. Ad-

ditional representations should be considered, for simplicity

our analysis skipped dynamic representations or mixtures

of multiple metric dimension elements. A host of other

facets can also be thoroughly investigated including: (1)

robustness of representation and reconstruction algorithms,

(2) scalability for varied representations and queries, (3)

more queries on targeted applications, (4) effect of structure

in representations. Additional material can be downloaded

from http://people.csail.mit.edu/rcabezas.
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