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Abstract

We describe our automatic generative algorithm to cre-

ate street addresses (Robocodes) from satellite images by

learning and labeling regions, roads, and blocks. 75% of

the world lacks street addresses [12]. According to the

United Nations, this means 4 billion people are ‘invisible’.

Recent initiatives tend to name unknown areas by geocod-

ing, which uses latitude and longitude information. Never-

theless settlements abut roads and such addressing schemes

are not coherent with the road topology. Instead, our algo-

rithm starts with extracting roads and junctions from satel-

lite imagery utilizing deep learning. Then, it uniquely la-

bels the regions, roads, and houses using some graph- and

proximity-based algorithms. We present our results on both

cities in mapped areas and in developing countries. We

also compare productivity based on current ad-hoc and new

complete addresses. We conclude with contrasting our gen-

erative addresses to current industrial and open solutions.

1. Introduction

Currently 75% of the roads in the world are not

mapped [12], that number increasing in developing coun-

tries. This problem is more critical in disaster zones, since

even world aid agencies struggle to agree on names for

streets. For example, after the Haiti earthquake, Open-

StreetMap Community started processing satellite imagery

to track the roads within 48 hours. After six months, the

same map became the default resource for rescue teams,

NGOs, and UN [18]. On the other hand, while the technol-

ogy to conduct remote sensing has been significantly im-

proving over the past decade, the organic growth of urban
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and suburban areas outruns the deployment of addressing

schemes. Street addresses enhance precise physical pres-

ence and effectively increase the connectivity all around the

world. Now imagine an algorithm that creates such mean-

ingful addresses for unmapped places in the world that have

no street name or address. We are introducing an automatic

algorithm to accomplish this task, using machine learning

and computer vision approaches fed with satellite imagery.

Generative labeling is key for many areas like natural

language processing, semantic point cloud labeling, and in-

verse procedural modeling. Applying a generative scheme

to unlabeled streets can dramatically simplify map gener-

ation for digital tasks while at the same time providing a

testbed to grow meaningful and intuitive street assignments.

The automation of address creation enables spatial informa-

tion to be encoded and represented much efficiently, provid-

ing a topologically coherent graph around the world, that

can be used by many geo-applications.

Recent initiatives (e.g., what3words [12]) try to accom-

plish this task by automatic geocoding. Although these so-

lutions can encode and compress spatial data, geocodes do

not contain the inherent properties held by street addresses.

For example, they are not intuitive for directional and prox-

imity queries, they tend to be decoupled from the actual

road topology and often may not be coherent with human

perception. A unified representation of all street addresses

around the world can serve as an alternative for the regular

grid of geocodes to a more natural grid of roads and can

help organize the world in more natural ways.

In order to realize this, we constructed a generative ad-

dressing system to bridge the gap between grid-based dig-

ital addressing schemes and traditional street addresses.

Merging the two extents, we designed an addressing scheme

that follows a set of properties. In order to automatically

generate such street addresses, we developed a system to

learn regions, roads, and blocks from satellite images, fol-

lowing the thoughts introduced in [13] about using artificial
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intelligence in mapping. Our main contributions include:

• A physical addressing scheme, that is linear, hierarchi-

cal, flexible, intuitive, perceptible, and robust.

• A segmentation method to obtain road segments and

regions from satellite imagery, using deep learning and

graph-partitioning algorithms.

• A labeling method to name urban elements based on

current addressing schemes and distance fields.

• A ready-to-deploy prototype application of the genera-

tive system supporting forward and inverse geoqueries.

We compared our generated maps to existing commer-

cial and open maps by analyzing our addressing scheme

on (i) already fully mapped areas for validation hierarchi-

cal labeling and (ii) unmapped areas for evaluation of road

segment and region extraction. We also evaluated the intu-

itiveness and utility of our new addressing system on mul-

tiple areas of unmapped territories, comparing travel times

using old and new addresses. We also verified our map ex-

traction algorithm using population density [38] of some

example areas. Based on the comparisons, analysis, and

the user feedback, we observed that our system was able

to provide accurate maps for 85% percent of the test cases,

improve 20% over the currently existing maps, and decrease

the travel times by 60% on average.

2. Related Work

In this section, we will look into available addressing

schemes and generative approaches followed by related

work of some stages of our pipeline.

The geocoding process involves converting latitude and

longitude information, approximated up to a percentile,

into a unique code. A quick investigation among popular

geocoding solutions can reveal that such codes are either

not in human-readable form (e.g. GooglePlaceID, OkHi) or

they tend to de-correlate from the actual topological infor-

mation (e.g., [12], Zippr, MapTags). While these solutions

can encode and compress spatial data efficiently, geocodes

do not contain the essential properties of a street address-

ing system, such as linearity and hierarchy. Geocodes also

lack intuitive directionality and proximity information, they

are decoupled from the actual road topology, and they are

incoherent with human perception. While we also seek for

an automated approach, at the same time we want the ad-

dresses to follow what is actually present on the earth.

On the other hand, automating the generation of maps

is extensively studied in the urban procedural modeling

world. Procedural generation of streets [7], parcels [30],

and cities [19] create detailed and structurally realistic mod-

els. However, procedural modeling lacks control and gram-

mars are mostly written based on domain expertise or flow

data and not based on the real-world. Taking a step fur-

ther, other approaches tried controlling the procedural gen-

eration by creating and reconfiguring example-based urban

layouts [2], or template-based generation [27]. These ap-

proaches are powerful generative methods, however still

representing the actual road topology is not feasible with

such approaches. On the other hand, some inverse procedu-

ral modeling (IPM) approaches [1] process real world data

(images, LiDAR, etc.) to extract realistic representations.

We follow this last path and rely on satellite imagery for

segmentation and labeling steps of our IPM-like system.

Following the example-based generation idea, another

approach to automate the extraction of geospatial infor-

mation is to use already existing data resources, such as

GPS trails [32], user check-ins [26], aerial images [17],

or geostationary satellite images [37]. Inspired from those

approaches, we extract the urban elements of a particular

area from satellite images using deep learning to capture

their representative features. Similar approaches extracts

road networks using neural networks for dynamic environ-

ments [31], from LiDAR data [39], using line integrals [14],

and using image processing approaches [35, 20, 21]. In

our approach to provide scalability across countries and ter-

rains, we explored and modified state-of-the-art image seg-

mentation networks. Finally, processing road topology has

been studied as an example case for novel or modified clus-

tering and graph partitioning approaches [33, 3, 4]. Being

a generative approach, our case differs from the previous

cases by the ill-posed definition of ”regions”. In addition to

the original problem being NP-hard, the under-constrained

definition of regions adds another layer of complexity. We

suggested our own partitioner in Section 4.1.

Being a human-centric process, labeling such urban

structures has also been a challenge [22]. Some approaches

attempt to name places by address matching [29] or by ad-

dress segmentation from textual information [34], however

those methods are based on human input, thus not coher-

ent with the physical information. In contrast, after the ur-

ban structure is extracted, we label its elements according

to our address format, which performs as a bridge between

automation and human-friendly addresses.

3. Generative Maps

For our address template, we have defined related de-

sign properties for the new address format. We will first

investigate our properties under three categories; semantic,

structural, and natural. Then we will explain the format of

our new addresses.

3.1. Design Properties

Naturally occurring addresses and names around the

world are usually the result of cultural dynamics, politics,

economies, and other long term processes adopted by ur-
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ban authorities. We want to mimic this organic process,

while still maintaining a unified representation that is in-

dependent of the human factors. In order to come up with

an appropriate scheme, we conducted some research on the

current addressing methods in many countries. For example

London postal code system [28] provides an orientation and

distance based radial naming for regions, as well as other

schemes like South Korea street naming uses meter mark-

ers along the roads, and Berlin house numbering uses zigzag

patterns, and more [9]. We have combined those real-world

methodologies to come up with a design to ease the under-

standing of both humans and machines. The hierarchical

naming within a city boundary is depicted in Figure 1.

Semantic properties emphasize user friendly features of

our addressing scheme. First, they need to be intuitive for

the user on her whereabouts. Thus, the addresses should be

linear following the road topology. This linearity concern

applies in multiple aspects, i.e. consecutive regions, roads,

and houses should have incremental numbers, regions and

roads should have a sense of directionality, parallel roads

should have the same odd parity, etc. Second, the addresses

should be hierarchical in the sense that each hierarchy level

reflects scale in terms of location. This hierarchy is both

spatial and human-oriented, so that the distance metric is

preserved while conserving the boundaries of existing coun-

tries and cities. Third, addresses should be universal and

memorable; independent of local language and alphabet,

short and alphanumeric.

Figure 1. Addressing System. (a) Region naming scheme based

on orientation and closeness to the city center, (b) road naming

scheme based on direction and proximity, (c) meter marker and

block naming scheme based on distance fields. The yellow house

has an example address of 38K WB14.

Structural properties enable the format of Robocodes to

be database and storage friendly. The linear and hierarchi-

cal naming should be preserved in the structural side too, in

order to keep the querying and updating of records manage-

able. The addresses should be compressible and easily rep-

resented by primitive data types, maximum five characters

of four words, equaling to less than 25 bytes. The address-

ing scheme should also be robust and extendible, allowing

the addressable physical spaces to grow and adapt in time.

Thus, the leftover bytes are allocated as a pointer space to

future addresses, if needed.

Unlike other geocoding efforts, the natural properties

within our system allow it to be physically realizable. La-

bels should be in accordance with natural boundaries, water

bodies, etc. The addresses should also obey the road topol-

ogy, mimicking real-world addresses. Lastly, addresses

should enable easy querying in a variety of aspects such as

geometric, proximity-based and type-ahead queries.

3.2. The Address Format

Figure 2 summarizes the aforementioned desired prop-

erties. The last field indicates the country and state infor-

mation when applicable, preceded by the city information

in the third field. Up to this point, the addresses reflect

the hierarchical aspect of the maps, based on consensus

information around the world. The second field contains

the road name, which starts with the region label, followed

by the road number. The region label is decided based on

the orientation towards the city center in the first character

and distance from the city center in the second character.

The roads are numbered according to their directionality

and proximity, having parallel roads having the same odd

parity, and having neighboring roads being named consecu-

tively. Lastly, the first field is composed of the meter marker

along the road, and the block letter from the road, animat-

ing the house number and apartment number consecutively,

again following the same odd-parity concept for houses on

either sides.

Figure 2. Street Address Format. The hierarchical DNS address-

like structure is composed of the country, the state (if applicable),

the city, the road name, and the house number of the place.

4. Our Generative Addressing System

As mentioned in the survey for inverse approaches for ur-

ban structures [1], our system follows the general segmen-

tation and labeling steps of inverse procedural modeling.

The system pipeline is shown in Figure 3. The segmen-

tation step extracts roads, breaks them into road segments

and clusters them into regions. The labeling step names the

regions, road segments, places markers, and assigns block

letters to individual addressable units. We will explain our

algorithmic steps in the following sections.

4.1. Predictive Segmentation

The first step of our approach creates binary road pre-

diction images from three channel satellite images. In our

system, we modify current state of the art methods in deep

learning for our road extraction purpose. We use a modified
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Figure 3. System Pipeline. Our approach is trained on satellite im-

ages for predicting roads. Then the road predictions are processed

to extract road segments (Section 3.1). The segments are clustered

to obtain regions (Section 3.2). The roads are named according

to regions and ordering, and the houses are named according to

road-oriented axes (Section 3.3).

version of SegNet [5], which consists of the first 13 convo-

lutional layers of VGG16 network for the encoder, followed

by the decoder architecture having a corresponding decoder

layer for each encoder. We modify the last soft-max layer

to change the multi-class structure to have binary classes for

road detection, by substituting it with a convolutional layer.

Our approach is flexible enough to accommodate other

models. We have also experimented with architectures like

VGG [24], U-Net [23], and ResNet [11] variations, however

we achieved the best overall accuracy with SegNet model

trained on dense and diverse tiles, resulting in 72.6% preci-

sion and 57.2% recall. We experimented with higher epoch

but concluded that 50 was enough, converging in 800K it-

erations with a loss of 4.2%. Also, in our experiments Seg-

Net took overall 65% less time during the training phase. A

comparison of predictions from different models is shown

in Figure 4. The runner-up was ResNet50 model shown in

4d with 71.9% precision and 56.3% recall.

Our model is trained on satellite images of zoom level

19 (0.5m resolution) and of size 19K ∗ 19K, provided by

Digital Globe. Our GIS experts created binary road masks

of same size tiles, by manually labeling each pixel as road

or not road. Both training and testing are done with patches

of 192∗192. The training set includes 4-16 tiles per city and

the test set includes all the rest of the tiles. We also created

manually labeled junction masks with same specifications

to emphasize the connectivity of roads in our predictions,

and then trained on junctions to have another SegNet model

that learns actual road intersections.

In the next step of our pipeline, we combine the road

predictions and junction predictions, in a new image with

weighted pixels based on confidence. The post-processing

step starts by first binarizing the image with thresholding

by Otsu’s method. Afterwards we run a depth first search

with 8-neighborhood to join connected roads based on the

confidences in the original grayscale prediction. Then, we

apply an orientation-based adaptive median filtering on the

road end points in the processed image, in order to balance

preserving the connections and removing the noise. The fil-

ter kernel adapts to the direction of the road and amplifies

the road along the current direction. If it meets with another

road with similar (< ǫ) direction, then the roads are con-

nected with a curve approximated by the directions at the

two end points. Overall post-processing approach mimic re-

sults like the centerline extraction method [25]. After merg-

ing such broken connections, we divide the roads into road

segments based on bucketed orientations. At each intersec-

tion, we keep the roads undivided for reciprocal incoming

road segments (i.e. horizontal end points of a T-junction),

else we add new end points at the intersection to create new

road segments (i.e. the intersection of the vertical road with

the horizontal at a T-junction). That yields the road seg-

ments, consistent with the road topology and land forms.

4.2. Region Creation

After we have the road segments, we convert them into a

road graph where the nodes correspond to intersections (and

end points) and edges correspond to road segments. We

weight the edges based on the segment distance, although

some more features (i.e., road width, sift features from the

cropped road from the satellite images, etc.) can be easily

encoded into the edge weights. We partition the road graph

into communities that have the maximum inter-connectivity

and minimum intra-connectivity. We have experimented

with normalized min-cut [36], Newman-Girvan [10], and

optimal modularity based [6] graph partitioning and clus-

tering approaches. Unfortunately, the concept of region is

hard to formulate mathematically, so we used the input of

our domain experts to evaluate the success of region cre-

ation approaches. Based on some urban planning rules (i.e.,

Figure 4. Comparison of NN Models. An example (a) satellite

image and superimposed ground truth, and road predictions using

(b) VGG, (c) U-Net, (d) ResNet50, (e) ResNet101, and (f) SegNet.
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Figure 5. Comparison of Region Creation Methods. Exper-

iments with (a) normalized min-cut, (b) Newman-Girvan, (c)

modularity-based partitioning of the road graph.

natural boundaries, road distribution, etc.) they have con-

cluded that the regions obtained using [36] and [10] were

the closest to real-world regions, thus we chose to use [36]

being significantly more efficient choice.

For the min-cut parameters, to limit the number of ad-

dressable streets within a region, we used n = |roads|/88
clusters and we used a third degree polynomial affinity ma-

trix with combined with the weighted adjacency matrix. En-

forcing a probabilistic approach to behave deterministically,

we set the number of seeding iterations to a high num-

ber (1000) with discretized labels to ensure convergence.

We have also experimented with weighted k-means[16],

super-pixels [15] and mean-shift [8] segmentations on both

the pixelated version of the road graph, and on the origi-

nal and down-sampled satellite images. However, graph-

partitioning approaches were more favorable in clustering

the dense regions and dividing the graph from the sparse

connections, as road networks have an abundance of natural

cuts such as bridges, mountain passes, and rivers. Finally,

partitioning the dual-graph of the road network using same

methods succeeded similarly with more complicated weight

computations, concluding our analysis.

4.3. Region, Road, and Block Labeling

After we gather all clustered segments from segmenta-

tion phase, we start by labeling the regions based on prox-

imity and orientation. We compute the most dense region

by a simple metric of average number of roads per unit area

and we name that region ‘CA’ for the city center. We di-

vide all other regions into four categories based on where

the region midpoint is located with respect to the city cen-

ter: N(orth), S(outh), W(est), and E(ast). Next, we trace

the adjacent regions in each bucket, based on their distance

from the city center, and assign letters in that specific order,

following the spiral pattern of London post code system.

For example, the regions at the north of the center would be

named as NA, NB, NC, etc. respectively. Figure 6a shows

three such example regions, NE, NF, and NH.

Naming the regions allows us to start naming the roads.

The roads in each region is divided into two groups based

on two main directions of the roads. we need such direc-

tionality to decide on the parity of the road name, odd for

north-south bound, and even for east-west bound. We use a

similar orientation bucketing approach to decide the domi-

nant orientations. If a road does not belong to any of the two

main directions, it is approximated to the closest one. The

main direction is assigned the odd parity and the second

main orientation (in most cases perpendicular to the main

orientation) is assigned even parity. Then the road segments

are numbered according to their order. Figure 6b demon-

strates the roads named following the design requirements

mentioned in Section 3.

Labeled roads enable us to proceed to the last stage:

house labeling. For each road segment, we place a virtual

meter marker in every five meters (calculated in euclidian

pixel space). We also compute a distance field of the roads

and discretize that field by 5 meter step size. Every band

of the distance field is assigned a block letter, concluding

the address generation. We use the discretized orthogonal

distances and meter markers as an oriented x and y axis,

and decide the house number of a point accordingly. The

distance computation in all cases is approximated by pixel

neighborhood: four-neighborhood pixels incrementing by

1 and eight-neighborhood pixels incrementing by 1.4. Fi-

nally, Figure 6c depicts the meter markers along the la-

beled roads, and the gradient towards the roads represents

the block letters.

Figure 6. Hierarchical Labeling. Naming (a) regions, (b) roads,

and (c) houses is demonstrated.

Finally, we vectorize our road and region maps to ex-

port in OSM format, by converting the pixels into nodes

with latitude and longitude, with their relative meter marker

distance encoded as an attribute. Moreover, we output some

.json files for encoding per pixel house naming information.

Being a generative map, it is not possible to store all the per

pixel information beforehand, thus the last half of the first

field of the address format is computed and generated on the

fly, whereas the other fields can be precomputed and stored

for efficient querying.

5. Results and Applications

Our system is written in python and C++, is not multi-

threaded and the implementation is on CPU (except the
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Figure 7. Ground Truth Comparison. (a) Satellite image with

superimposed ground truth of roads, (b) correctly found (white)

and missing (red) road pixels.

road extraction part, which runs on 8+ GPUs). We use

the chainer implementation skeleton for all the neural net-

work models, and use networkx and sci-kit libraries for

some clustering algorithms. We developed an automatic

pipeline to process any satellite imagery, and we used our

approach to process more than 10 cities, totaling up to more

than 16Kkm2. Except the learning part, the system is

O(n) where n is the number of road pixels in an upsam-

pled image, or number of road segments for region cre-

ation. We compare our intermediate outputs and resulting

maps to ground truth and other available maps, in different

stages. We also share our preliminary results for improving

travel times based on user experience with Robocodes. Fi-

nally, the source code to convert .osm files and geotiffs to

Robocodes is available at http://robocode.info.

Similar to the preparation of the training data, we created

binary road masks from additional tiles of unmapped areas

as ground truth and consolidated these together with our

road extraction results (before finding individual road seg-

ments). Figure 7 shows the comparison with ground truth

for the extracted roads of an unmapped suburban area. Our

SegNet model plus our post-processing approach were able

to learn 90.51% of the roads (white), and the missing parts

are colored in red. This success ratio (defined by the ratio

of manual corrections) was close to 80% in average per city,

increasing in more structured urban environments.

We demonstrate intermediate results of our algorithm in

a traditional US city that is already well-mapped. We com-

pare street segments dictated by the traditional addresses

and Robocodes (Figure 8). Comparing the road segments,

we have accomplished to extract 95% of the roads (i.e.

the ratio of overlapping road pixels over all the road pix-

els present in the rastered map), in that particular city

tile. Comparing the addresses, we also observed that even

though traditional addresses are more established by the

people and the culture, our addresses are easier to remember

and support intuitive self-location and navigation.

Figure 8. Stages of a generative map of a US city. We show (a)

the input satellite image tile, (b) the extracted roads, (c) the created

regions, and (d) the generated map, comparing to (e) the OSM of

the same area. (zoom in for details)

Figure 9. Comparison of Our Maps. (a) parrot.casino.failed

of [12], (b) Green Park of Google Maps, (c) absolutely no address

other than latitude longitude information in OpenStreetMap, and

(d) full address as 715D.NE127.Dhule.MhIn of our maps.

However, keeping the motivation of providing street ad-

dresses to the 4 billion unconnected people, our results ac-

tually shine for developing countries where the structure of

the road network is less grid-like. Figure 10 shows our gen-

erative maps in the same format, on 3 different cities in

unmapped developing countries. We accomplished to au-

tomatically address more than 80% of the populated areas,

which significantly improves the current map coverage in

those areas.

We also show how we bridge the gap between traditional

addresses and geocodes, as well as increased map cover-

age. Our design principles (Section 3.1) allow us to use

advantages of both and all are easily convertible to each

other. Furthermore, being an automatic system, based on

human-built structures on the ground, we neither need hu-

man authorities to map an area nor map deserted areas like

geocodes. We compared our maps to other popular address-

ing solutions in Figure 9. For the same point on earth, [12]

contains some unlabeled roads, and outputs three random

words parrot.failed.casino as the address. Google Maps

also contains some roads around that point, however since

such places are unmapped, it outputs Green Park based on

the landmark, for a couple of kilometers around that point.

OpenStreetMap on the other hand, does not even contain the

roads and the point can be reached only by its latitude and

longitude. However, our generative maps extracts the roads

almost completely and assigns a unique address to that point

as 715D.NE127.Dhule.MhIn. Overall we improve the se-

mantic relations of addresses compared to [12]. For our test

region, our contribution is even more visible on the actual
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Figure 10. Street Addresses in Developing Countries. Satellite image, extracted roads, labeled regions and roads, and meter markers and

blocks of three example unmapped cities.

street names, we increase the addresses compared to Google

Maps (by comparing labeled vs. unlabeled road geometry)

and almost 100% overall coverage compared to Open Street

Maps (by comparing aligned maps).

We evaluated the usefulness of our generative maps with

some treasure-hunt like user experiences. We compared the

Figure 11. User Experience. Travel times with old (landmark

based) and new addresses in a treasure hunt. Robocodes decreased

the arrival time by 21.7%.

travel times using the old and new addressing schemes. For

data collection with old addresses, we simply tracked the

users with GPS devices to collect their trails. They also

clicked a button when they start a new trail and when they

find the address (so that we refrain ourselves from the time

spent on the puzzles and other factors). For data collection

with new addresses, we first converted the places of inter-

est with old addresses to Robocodes. Then we printed a

map of the area that we generated, and informed the users

about how to read our map. Afterwards, they followed the

same procedure and same (or more efficient) trails follow-

ing our map. Some example trails and the corresponding

travel times are shown in Figure 11, note that the travel

times decreased by 21.7% with our system with a 52.4 sec-

onds improvement on the average, and decreasing the last

mile activity (which includes asking around the exact build-

ing) proving the accuracy of our addresses.

We used population density data [38] to evaluate how

our algorithm reflects density criteria demonstrated in an
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example tile in Figure 12a. The evaluation criteria includes

the number of assigned houses aligned along the road, and

a penalty of building road overlap. The results of the first

experiments indicate that Robocodes are coherent with the

population density.

6. Limitations and Future Work

As most remote sensing approaches, our algorithm is

sensitive to unpaved roads, and less structured urban spaces.

There exist mapping cases that even the ground truth seg-

mentation is fundamentally wrong or disconnected, which

our data is trained on (Figure 13). However, we have exper-

imentally observed that our learning model is deep enough

to support training on more data. As a consequence we be-

lieve that the more diverse cases (i.e. more countries) we

add to our training data, the more accurately we will be able

to handle such cases.

Figure 12. Evaluation with Population Density and Parcel Sub-

division Experiment. (Left) We show an example city where the

population density is indicated with red and our roads are drawn

with white. (Right) We show an experiment of smart parcel subdi-

vision, applicable to our addressing scheme.

Due to the loosely connected nature of the definition of

regions, we intend to validate our regions by first establish-

ing a metric similar to the maps validation but also employ

human annotators to validate qualitatively the presence of

significant differences among regions. Our domain experts

helped us enumerate some criteria (borrowed from urban

Figure 13. Limitations. (a) Some unpaved roads or farm bound-

aries do not even exist in the (b) training data, consequently (c)

phantoms appear.

planning world) to evaluate our regions, however we would

like to mathematically formulate those rules to evaluate our

regions numerically.

The last limitation that we are currently running experi-

ments on is to change our meter marker logic to a state-of-

the-art parcel subdivision method [30], where parcels also

obey the road topology and follow some constraints: such

as having adequate street access, having parcels of approx-

imately same sizes, having less split irregularity between

the parcels, etc. The first optimized experiment is shown

in Figure 12b. We believe that instead of simple proximity

queries, smart subdivision is needed to respond to real urban

planning scenarios of both developing and future cities.

7. Conclusions

Overall, we have presented a generative system that can

be applied to any given mapped or unmapped area produc-

ing a complete street labeling solution. Improved street

labels will eventually lead to more coverage of addresses,

both connecting the invisible population to the world, and

increasing their contribution to humanity in developing

countries. Connecting the unconnected should increase eco-

nomic, juridical, and life-sustaining involvement of people

all around the world. It improves the outreach of businesses

and the economy, as well as the accuracy and efficiency of

providing first aid in disaster zones.

To accomplish our aims, we have introduced an address-

ing scheme and a full system to generate addresses coher-

ent with road topology. Our approach merges state-of-the-

art deep learning and computer vision techniques to detect

roads and regions from satellite images. We then perform

labeling of such urban elements to provide accurate, topo-

logical, and intuitive addresses. In future, we would like to

scale up and enable large entities such as states or cities to

adopt our addressing system.
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