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Abstract

In this paper, we propose a method for cloud re-

moval from visible light RGB satellite images by extending

the conditional Generative Adversarial Networks (cGANs)

from RGB images to multispectral images. Satellite im-

ages have been widely utilized for various purposes, such

as natural environment monitoring (pollution, forest or

rivers), transportation improvement and prompt emergency

response to disasters. However, the obscurity caused by

clouds makes it unstable to monitor the situation on the

ground with the visible light camera. Images captured by

a longer wavelength are introduced to reduce the effects of

clouds. Synthetic Aperture Radar (SAR) is such an exam-

ple that improves visibility even the clouds exist. On the

other hand, the spatial resolution decreases as the wave-

length increases. Furthermore, the images captured by long

wavelengths differs considerably from those captured by

visible light in terms of their appearance. Therefore, we

propose a network that can remove clouds and generate

visible light images from the multispectral images taken as

inputs. This is achieved by extending the input channels

of cGANs to be compatible with multispectral images. The

networks are trained to output images that are close to the

ground truth using the images synthesized with clouds over

the ground truth as inputs. In the available dataset, the

proportion of images of the forest or the sea is very high,

which will introduce bias in the training dataset if uniformly

sampled from the original dataset. Thus, we utilize the t-

Distributed Stochastic Neighbor Embedding (t-SNE) to im-

prove the problem of bias in the training dataset. Finally,

we confirm the feasibility of the proposed network on the

dataset of four bands images, which include three visible

light bands and one near-infrared (NIR) band.
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Figure 1: McGANs for cloud removal

1. Introduction

Satellite images have been widely utilized in various of

fields such as remote sensing, computer vision, environ-

mental science and meteorology. With the help of satel-

lite images, we can observe the situation on the ground

for natural environment monitoring (pollution, forest or

rivers), transportation improvement and prompt emergency

response to disasters. There are many research area deal-

ing with satellite images, e.g., object recognition from the

satellite images, change detection for ground usage or dis-

aster situation analysis.

However, the obscurity caused by the cloud makes it un-

stable to monitor the situation on the ground with a visi-

ble light camera. To be unaffected by the cloud, images

captured by longer wavelengths are introduced. Synthetic

Aperture Radar (SAR) [6] is such an example, which im-

proves visibility even in the presence of clouds. On the

other hand, the spatial resolution decreases as the wave-

length increases. Furthermore, the image captured by a long
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wavelength differs considerably in appearance from the one

captured by visible light. This affects the visibility for ob-

servation.

In this paper, we propose Multispectral conditional Gen-

erative Adversarial Networks (McGANs) based on con-

ditional Generative Adversarial Networks cGANs), for

cloud removal from visible light RGB satellite images with

multispectral images as inputs. See Fig.1 for illustration.

Compared with cGANs, the input channels of McGANs are

expended for multispectral images. For the input of RGB

images obscured by clouds and the registered NIR images,

McGANs is trained to output the RGB images that are close

to the ground truth. However, it is impractical to capture the

cloud-free and the cloud obscured images of the completely

same scene at the same time. Hence, we synthesize im-

ages with the simulated clouds over the ground truth RGB

images to generate the training data. Furthermore, the pre-

diction accuracy is expected to be improved by training the

networks to detect the region of cloud simultaneously. Both

the synthesized and the ground truth RGB images are color

corrected to eliminate the affection of color tone caused by

variety of imaging conditions such as weather, lighting and

the processing method of the image sensor.

In the available dataset, the ratio of images of the for-

est or the sea is very high, which will introduce bias in

the training dataset if uniformly sampled from the origi-

nal dataset. Thus, we utilize the t-Distributed Stochastic

Neighbor Embedding (t-SNE) [13] to reduce the bias prob-

lem of the training dataset. Finally, we confirm the feasi-

bility of the proposed networks on the dataset of four bands

images, which includes three visible light bands and one

near-infrared (NIR) band.

2. Related Work

In the field of remote sensing, microwave is usually uti-

lized since it is unaffected by the cloud cover. Synthetic

Aperture Radar (SAR) is mounted on airplanes and satel-

lites to overcome the shortage of low spatial resolution of

the microwave. Nonetheless, the resolution of SAR im-

ages is still much lower than that of the images captured by

visible light. Besides, it is difficult to understand the SAR

images directly. To improve the visibility of SAR images,

there also exists the work about coloring these SAR images

[6].

In the field of computer vision, many dehazing methods

have been proposed for RGB images only [8, 2] or for both

RGB and NIR images [19, 5, 20]. The pre-knowledge or as-

sumption about the color information of the hazed imaged

is necessary in the former method. In the latter, NIR im-

ages, which possess higher penetrability through fog than

the visible light, are used as the guide to dehaze the RGB

images.

Generative Adversarial Networks (GANs) [7] is the most

relevant to our work. GANs is consisted of two types of net-

works, Generator and Discriminator. Generator is trained to

generate images that cannot be discriminated by Discrimi-

nator with the ground truth, while Discriminator is trained

to discriminate between the generated images by the Gener-

ator and the ground truth. The conditional version of GANs

was also proposed in [14]. However, learning by GANs is

unstable. To increase the stability, convolutional networks

and Batch Normalization are introduced to Deep Convolu-

tional Generative Adversarial Networks (DCGANs) [17] is

proposed.

Research about image generation based on cGANs and

DCGANS has been widely applied for image restoration

or the removal of certain objects such as rain and snow

[15, 21]. In particular, the method in [10] can generate

general and high-quality images by combing Generator of

U-Net [18] and Discriminator of PatchGAN [12]. The Gen-

erator of U-Net spreads the missing spatial features in the

convolution layers of Encoder to each layer of Decoder by

introducing the skip connection between layers of Encoder

and Decoder. PatchGAN is able to model the high fre-

quencies for sharp details by training the Discriminator on

the image patches. Generally, these cGANs-based meth-

ods predict the obscured regions of the image with the sur-

rounding unobscured information only from the input RGB

images.

Based on the aforementioned research, we propose the

cloud removal networks by taking the advantage of the color

information from visible light images and the high pene-

trability from images captured by longer wave. The pro-

posed networks predict the obscured region from not only

the RGB images but also images captured by longer wave-

lengths that can partly or completely penetrate the cloud.

Our final purpose is to implement the networks that can

merge SAR images captured by the cloud-penetrating mi-

crowave. As the first step, we construct and evaluate the net-

works for cloud removal with the visible light RGB images

and the near-infrared spectrum NIR images in this work (the

region of NIR wavelength is the closest to visible light).

3. Dataset Generation for Cloud Removal

In this work, images captured by the WorldView-2 earth

observation satellite are used. Both visible light images and

the NIR images possess the resolution of 20, 000× 20, 000
with the spatial resolution of 0.5 [m/pixel]. We chose eight

comparatively cloudless images, which mainly captured ur-

ban areas, for actual learning. In total, 37,000 images with a

resolution of 256×256 are extracted for training McGANs.

3.1. Synthesis of cloud-obscured images

Both cloud obscured images and cloud-free images are

indispensable to train the networks for cloud removal, as

they form the training and ground truth data respectively.
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(a) (b) (c) (d)

Figure 2: Synthesis of cloud obscured images. a: Original RGB image. b: Simulated cloud using Perlin noise. c: Merged

image with the cloud by alpha blending. d: Final result after color correction

(a) (b)

Figure 3: Example of color correction for real RGB image

with cloud. a: Original RGB image obscured by the cloud.

b: Color corrected result.

However, the appearance varies greatly as the imaging con-

ditions, such as lighting and status on the ground, changes

with time even for the same location. Therefore, we cre-

ate the dataset for learning by synthesizing the simulated

cloud on the cloudless or cloud-free ground truth images.

Furthermore, to compensate for the difference in color tone

between the cloud synthesized images and the original im-

ages, color correction [9, 4] is performed on both images.

In this work, the clouds are simulated by Perlin noise

[16] firstly. Then the simulated clouds are combined with

the RGB images by alpha blending to generate obscured im-

ages. Fig.2 shows an example of the image synthesis pro-

cess. The RGB image (Fig.2a) is overlaid by a Perlin noise

simulated cloud (Fig.2b) with the alpha blending method to

synthesize the image (Fig.2c). Then generated image is fur-

ther processed by color correction (Fig. 2d). To show the

necessity of color correction, we take another image (Fig.3)

for comparison. Fig.3a is the original RGB image of a dif-

ferent location from that in Fig.2. The color corrected result

is shown in Fig.3b. By comparing the two groups of im-

ages, we can observe that the variety of color tone is greatly

improved with the process of color correction.

3.2. Uniformization of the dataset with t-SNE

Since most of the earth is covered with seas and forests,

the contents of the satellite images used in the work are also

mainly of these two types. If we randomly sample the im-

ages for training, the learning result is prone to overfitting in

certain categories due to the bias of the training data. Hence,

we utilized t-SNE to sample the images by categories to

avoid this problem.

First, we extract a feature vector of 4096 dimensions

from each image with the AlexNet [11]. The extracted

feature vectors are mapped to the 2D space with t-SNE.

Then, we uniformly sample 2000 images from the 2D fea-

ture space to create the training dataset.

The ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) dataset [3] and the land use image dataset

UC Merced land use dataset [1] (21 classes and 100 images

for each class) are used for training the AlexNet. The pro-

cessed results of the features from the two datasets after us-

ing t-SNE are shown in Fig.4. Fig.4a shows the distribution

of the training images mapped with features from ImageNet

dataset, and Fig.4b shows the result with features from UC

Merced land use dataset. In the Fig.4a, images of the ur-

ban areas are clustered in the upper region, forest images

are clustered at the right, images of the sea are clustered in

the lower region and images of farmlands are clustered at

the left. We can see that the images are well clustered by

their categories. We also can see a similar result in Fig. 4b

except that some images from the same category are dis-

tributed separately, e.g., images of forests are divided into

the left and the lower parts. This is probably caused by the

differences between the images used in this work and the
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(a) (b)

Figure 4: Visualization by t-SNE. a:ImageNet [3]. Images of urban areas are clustered in the upper region, forests images

are clustered at the right, images of the sea are clustered in the lower region, ant the farmlands are clustered at the left. b:UC

Merced Land Use Dataset [1]. Some images from the same category are distributed separately, for example images of forests

are divided into the left and the lower parts.

images in UC dataset, in addition to the insufficiency of the

images in the UC dataset. Therefore, we adopt the features

extracted by the AlexNet from ImageNet for t-SNE.

The number of images in each cluster is shown in a heat

map in Fig.5. From Fig.5 we can see that the images are

uniformly distributed except in some regions of the grids.

Images are uniformly sampled by the grid to improve the

overfitting caused by the bias of in the training data.

4. Multispectral conditional Generative Adver-

sarial Networks (McGANs)

In this paper, we propose Multispectral conditional Gen-

erative Adversarial Networks (McGANs), which extends

the input of cGANs to multispectral images in order to be

capable of merging input visible light images and images of

longer wavelengths to remove clouds from the visible light

images. The detailed architecture of McGANs are shown in

Fig. 6 and Tab.1.

We extend the input of the cGANs model proposed in

[10] to four channels RGB-NIR images 1. Furthermore, the

output is also extended to a total number of four channels,

including the predicted RGB image after cloud removal and

1By adding images captured using other wavelength, such as far in-

frared rays and microwaves, the input will be further extended

Figure 5: Heat map of image distribution mapped by t-SNE.

The colors indicate the number of images in the correspond-

ing 2D feature space.
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Figure 6: Network Architecture of Generator

Table 1: Network Architecture of McGANs

Encoder Decoder Discriminator

CR (64, 3, 1) CBRD (512, 4, 2) CBR (64, 4, 2)

CBR (128, 4, 2) CBRD (512, 4, 2) CBR (128, 4, 2)

CBR (256, 4, 2) CBRD (512, 4, 2) CBR (256, 4, 2)

CBR (512, 4, 2) CBR (512, 4, 2) CBR (512, 4, 2)

CBR (512, 4, 2) CBR (256, 4, 2) C (1, 3, 1)

CBR (512, 4, 2) CBR (128, 4, 2)

CBR (512, 4, 2) CBR (64, 4, 2)

CBR (512, 4, 2) C (4, 3, 1)

the grayscale mask image, which is estimated simultane-

ously to improve the prediction accuracy. The input RGB-

NIR image, the output RGB image and the cloud mask im-

age are normalized to [−1, 1] at each channel and then trans-

ferred to the network.

Network Architecture

Details of the network structure about McGANs used in

this work are shown in Tab.1. The layer of Convolution,

Batch Normalization, and ReLU are represented by C, B, R

respectively. D indicates that the Dropout is applied. Num-

bers in parentheses indicate the number, size, stride of the

convolution filters sequentially. In addition, Leaky ReLU is

used in all ReLU layers of Encoder and Discriminator.

The objective of a conditional GAN can be expressed as

LcGAN (G,D) =Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))],

(1)

where Generator G tries to minimize the objective against

an adversarial Discriminator D that tries to maximize it. To

encourage less blurring, L1 loss can be added to the objec-

tive as follows [10]

G∗ = argmin
G

max
D

LcGAN (G,D) + LL1(G). (2)

Let IM be the input multispectral image and IT be the

target RGB image with a total of four channels, including

RGB and the grayscale mask image of the cloud. The L1

Loss function (denoted as LL1) of the Generator is defined

in Eq.3. λc represents the weight of each channel for the

loss calculation 2, and φ(IM ) represents the predicted result

from the input image IM from the trained networks.

LL1(G) =
1

4HW

4∑

c=1

H∑

v=1

W∑

u=1

λc|I
(u,v,c)
T − φ(IM )(u,v,c)|1

(3)

5. Evaluation Results

To evaluate our proposed method, experimental results

are listed and discussed in this Section. From the exper-

imental results, we expect to show that the proposed Mc-

GANs are able to improve visibility by cloud removal with

RGB and NIR satellite images.

As explained earlier, the satellite images captured at dif-

ferent times (even though they might be of the same area),

vary greatly in their appearance as imaging conditions, such

as lighting and the situation on the ground, change. This

makes it difficult to acquire the ground truth of the area

blocked by the cloud. We use 2,000 groups of images as

described in Sec.3 to train the network. Each group in-

cludes an image of the area not obscured by the cloud, a

mask image of the simulated clouds using Perlin noise, a

synthesized image and an NIR image. All images are pro-

cessed with color correction. The number of minibatch is

set to 1 and the number of epochs is 500.

2λc is set to 1 in this work.
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RGB NIR Cloud-free RGB Ground truth Cloud mask

Figure 7: Prediction results by McGANs with the synthesized cloud images

To verify the advantage of using multispectral images

for cloud removal, we also compare them against the RGB

images generated by the networks (NIR-cGANs) with only

NIR images as input. NIR images are used as input and im-

ages that are not obscured by the cloud are used as ground

truth. The same dataset (as in McGANs) is used for training

NIR-cGANs. The number of minibatch and epochs is also

the same.

Sample results of the synthesized cloud obscured images

are shown in Fig.7. The columns represent the synthesized

cloud obscured RGB images, NIR images, RGB images

predicted by McGANs, the ground truth and the mask im-

ages of the clouds predicted by McGANs, from left to right.

Sample results of real cloud obscured images are shown

in Fig.8, Fig.9 and Fig.10. The columns represents RGB

images obscured by the cloud, NIR images, RGB images

predicted by McGANs, RGB images predicted by NIR-

GANs and the mask images of the clouds predicted by Mc-

GANs, from left to right. From Fig.8, we can observe that

although the images, which are generated only with NIR

images, look like visible light RGB images, their colors dif-

fer from the ground truth. While the clouds are well re-

moved in the predicted results by McGANs except for the

region obscured by the cloud that infrared can not penetrate.

Even for these regions in the predicted images, the color ap-

pears similarly to the very light color in the input images.

This also proves that McGANs dose not predict color from

the information only from the NIR images.

On the other hand, in Fig.9, we can see that the white

object is erroneously recognized as the cloud from the out-

put mask image. This indicates that it is difficult to sepa-

rate the cloud from the white object with only the visible

light images and NIR images, when they are overlapped. In

addition, as seen in Fig.10, clouds are not removed when

they are too thick to be penetrated by NIR. The purpose of

this research is to observe the real situation on the ground.

Thus, the regions blocked by clouds in the NIR image will

not be predicted, which is different from [15]. When pre-

dicting the area blocked by clouds in both visible light and

NIR images, it is necessary to model the cloud penetration

of NIR based on the visible light images, process the simu-

lated cloud with the penetration model and then synthesize

53
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Figure 8: Prediction results by McGANs with real cloud images

the modeled cloud on the NIR images. To verify the neces-

sity of the NIR images, we also compare the results gener-

ated by our proposed method with that generated from only

a RGB image as the input. For thin clouds that can be partly

penetrated by the visible light, the results dose not differ

much. However, for clouds that can be only penetrated by

NIR light, the result with the presence of NIR appears more

natural as shown in Fig.11. We can see some line contours

of the roads on the ground from the upper left part of the

NIR image in Fig.11, while these contours are occluded in

the RGB image. This can be considered as the reason why

the result generated with both the NIR and RGB images

looks more natural that generated with the RGB image.

From the above results, we have confirmed that the pro-

posed McGANs can remove clouds and predict the color

properly when the cloud is thin enough to be penetrated by

the NIR.

6. Conclusion

In this paper, we have proposed a method to remove thin

clouds from satellite images formed using visible light by

extending cGANs to multispectral images. The dataset for

training networks is constructed by synthesizing simulated

clouds with Perlin noise over images without clouds, which

makes it possible to generate cloud obscured training im-

ages and ground truth of the same area. In addition, to avoid

overfitting to certain categories caused by biased datasets,

we introduce t-SNE to sample images uniformly in each

category. Finally, the experimental results evaluated on the

constructed data prove that the clouds in the visible light

images can be removed if they are penetrated in NIR im-

ages.

In the future, we will extend McGANs to far infrared

(FIR) images and SAR images which captured by longer

wavelengths and build the networks that can remove all the

clouds in the visible light images. The findings obtained by

analyzing the filters of McGANs in this work can also be ap-

plied to establish the model of cloud penetration for waves

at each wavelength region or to the physical model of SAR.

In addition, the simulated clouds with Perlin noise used in

this work are somewhat different from real clouds in visible

light images. Therefore, statistical analysis of actual cloud

images is necessary to improve the reality of the simulated

clouds for training data. Furthermore, we aim to improve

the prediction accuracy for different areas by increasing the

number and variety of images.
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RGB NIR Cloud-free RGB NIR2RGB Cloud mask

Figure 9: Failure case due to a white object

RGB NIR Cloud-free RGB NIR2RGB Cloud mask

Figure 10: Thick cloud case

RGB NIR Cloud-free RGB RGB2RGB Cloud mask

Figure 11: A prediction result with cGANs with only a RGB image
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Image Dehazing using the Near-Infrared. In IEEE In-

ternational Conference on Image Processing (ICIP),

pages 1629–1632, 2009.

[20] T. Shibata, M. Tanaka, and M. Okutomi. Unified

Image Fusion based on Application-Adaptive Impor-

tance Measure. In IEEE International Conference on

Image Processing (ICIP), pages 1–5, 2015.

[21] H. Zhang, V. Sindagi, and V. M. Patel. Image De-

raining Using a Conditional Generative Adversarial

Network. arXiv preprint arXiv:1701.05957, 2017.

56


