
Super-Resolution of Multispectral Multiresolution Images from a Single Sensor
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Abstract

Some remote sensing sensors, acquire multispectral im-

ages of different spatial resolutions in variable spectral

ranges (e.g. Sentinel-2, MODIS). The aim of this research

is to infer all the spectral bands, of multiresolution sensors,

in the highest available resolution of the sensor. We formu-

late this problem as a minimisation of a convex objective

function with an adaptive (edge-reserving) regulariser. The

data-fitting term accounts for individual blur and down-

sampling per band, while the regulariser ”learns” the dis-

continuities from the higher resolution bands and transfers

them to other bands. We also observed that the data can

be represented in a lower-dimensional subspace, reducing

the dimensionality of the problem and significantly improv-

ing its conditioning. In a series of experiments with simu-

lated data, we obtain results that outperform state-of-the-

art, while showing competitive qualitative results on real

Sentinel-2 data.

1. Introduction

In remote sensing there are a growing number of sensors

that acquire multi-spectral images in which the spatial reso-

lution (or Ground Sampling Distance – GSD) varies across

different spectral bands. This is mainly the case for satel-

lite sensors and prominent examples are MODIS, ASTER,

VIIRS, Worldview-3 and Sentinel-2 (S2). The underlying

reason is that design considerations, sensor hardware limi-

tations, and further influences like atmospheric absorption,

necessitate the use of different spatial resolutions for vari-

ous channels, so as to achieve a satifactory signal-to-noise

ratio (SNR). It is unlikely that all such resolution differences

will go away with hardware improvements, thus it is natu-

ral to try and improve the resolution of the coarser bands

computationally, by exploiting the structure in the optical

signal.

Without loss of generality, we focus here on Sentinel-2,

which records 13 bands at 3 different (spatial) resolutions,

with good geometric and spectral details. A list of the S2

(a) Sentinel-2 input (b) Result of SupReME

Figure 1. Results on real Sentinel-2 images with a false

color composite of bands (B5, B6, B7). Left: The input 20

m resolution bands. Right: The super-resolved image.

bands is given in Table 1. The frequent revisit rate, global

access and freely available data constitute a great utility

for a wide range of applications based on remote sensing.

Sentinel-2 data is, among others, used for the monitoring of

vegetation, soil, water cover, inland waterways and coastal

areas, as well as for the estimation of geophysical variables.

The aim of the present work is to increase the spatial

resolution of lower-resolution bands, such that all bands

have the same, maximal resolution. This is obviously de-

sirable from a product point of view, since then all further

down-stream products can be derived at high spatial reso-

lution and can create new opportunities, e.g. better obser-

vation of clouds/ice/snow and better estimation of climate

variables. The environment and climate applications can es-

pecially benefit from this approach, since they require many

bands in the infrared spectrum.

Interestingly, this problem can be seen as an extension

of pan-sharpening, with the main differences that (i) there

can be more than one channel at the highest resolution, and

(ii) the high-resolution bands need not spectrally overlap

the lower-resolution ones. These two conditions of clas-

sical pan-sharpening, however, are not met by any of the

mentioned instruments. Some recent work has explored an
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Table 1. The 13 Sentinel-2 bands.

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Center wavelength [nm] 443 490 560 665 705 740 783 842 865 945 1380 1610 2190

Spatial Resolution [m] 60 10 10 10 20 20 20 10 20 60 60 20 20

intermediate solution, where a single high-resolution band

(a “virtual panchromatic image”) is synthesised and used as

input to a standard pan-sharpening approach. We take one

step further and disconnect from the classic pan-sharpening

paradigm, integrating channels of different spectral sensi-

tivity and spatial resolution into a compact imaging model.

Contribution. We propose a high-quality solution for this

“smart upsampling”. Our method relies strongly on the

observation model of the imaging (blurring and downsam-

pling) process that generates the low-resolution images.

Given the nature of blurring and downsamling, the inver-

sion of the model is an ill-posed problem. To overcome this,

we exploit the fact that spectral bands are correlated and can

thus be represented in a lower-dimensional subspace, where

most of the energy is contained. We learn this subspace

from the input data, to reduce the number of unknowns and

further stabilise the computation. Moreover, we fully ex-

ploit the textural information from the high resolution bands

to tailor a regulariser, by encoding the discontinuities of the

data and propagating the spatial information to the lower

resolution bands. The main underlying assumption is that

the discontinuities are likely to be located in the same loca-

tion across all bands. Given the quadratic data term and the

adaptive quadratic regulariser we formulate a convex prob-

lem to invert the observation model, and propose an efficient

numerical solver. The proposed method performs, in a sin-

gle step, a super-resolution for all lower resolution bands to

the maximum resolution. We term our method SupReME

(SUPer-REsolution for multispectral Multiresolution Esti-

mation).

2. Related Work

The problem of enhancing the spatial resolution based

on spectral bands from the same sensor has been ap-

proached for (at least) MODIS, ASTER, and more re-

cently for Sentinel-2 and VIIRS. Tonooka [16] performs

super-resolution for the thermal infrared and shortwave in-

frared bands of ASTER, using the visible and near infrared

bands, by means of spectral similarity. Similarly, Aiazzi et

al. [2] super-resolve the ASTER TIR channels by inject-

ing spatial detail from the VNIR channels using a General-

ized Laplacian Pyramid method. Also to super-resolve the

ASTER TIR channels, Fasbender et al. [7] propose a gen-

eral Bayesian data fusion approach. Thermal sharpening of

VIIRS data was investigated by Picaro et al. [10], by con-

sidering various “thermal sharpening” methods.

A few studies also increase the resolution of the 500

m bands in MODIS. Sirguey et al. [15] use wavelet-

based multiresolution analysis, based on the ARSIS con-

cept [11], in an ”injection-type” method, which was applied

for sub-pixel monitoring of seasonal snow cover [14]. Tr-

ishchenko et al. [17] proposed a non-linear regression and

normalization to preserve radiometric consistency of the

super-resolved channels. This method was further applied

for producing clear-sky, cloud and cloud shadow masks at

250 m resolution [9]. In technically similar work, Wang et

al. [20] propose a pan-sharpening method termed ATPRK

(area-to-point regression kriging) that also starts from re-

gression modeling, then residual upsampling in order to

comply with the spectral properties of the lower-resolution

bands.

The same method (ATPRK) has been applied to sharpen

the 20 m bands of S2 [21] with the help of the 10 m bands.

Since ATPRK only accepts one high resolution image, it

is proposed to use either the spectrally nearest 10 m band,

or an average of all 10 m bands. Du et al. [6] compare

four different pan-sharpening methods to sharpen the SWIR

band (B11) of S2. Their application is to compute the Mod-

ified Normalized Difference Water Index (MNDWI) at 10

m resolution, for monitoring of water bodies. Moreover,

Vaiopoulos and Karantzalos [18] compared 21 different fu-

sion algorithms to sharpen the VNIR and SWIR bands of

Sentinel-2. Surprisingly, they report that standard bicu-

bic interpolation outperforms sophisticated pan-sharpening

methods in terms of the QNR metric (Quality with No Ref-

erence, [3]). They believe that this is, at least in part, due to

a bias in the QNR metric. Most recently, Brodu [4] intro-

duced a so-called ”geometry of scene elements” to unmix

(super-resolve) the low-resolution bands of S2, while pre-

serving their overall reflectance. This is the only work we

are aware of that also enhances the low resolution bands (60

m).

We take a somewhat different approach: We set up a joint

model of the physical imaging process in all the different

channels, and invert that model with variational calculus.

3. Problem Formulation

Without loss of generality, we present our model for

the case of S2. Our inputs have L1 = 4 high resolution

bands with GSD 10 m, L2 = 6 medium resolution bands

(20 m), and L6 = 3 low resolution bands (60 m), in total

L = L1 + L2 + L6 spectral bands. The output shall have
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10 m resolution for all bands, thus the upsampling factors

are r1 = 1, r2 = 2, r6 = 6, and a fixed image area con-

tains n = n1 = n/r21 high-resolution pixels, n2 = n/r22
medium-resolution pixels, or n6 = n/r26 low-resolution

pixels. To derive our method it is convenient to vectorise

the images: the pixel intensities of each individual band are

collected into a vector yi, and the bands are then concate-

nated (in arbitrary, fixed order) into y = (y1,y2, . . . ,yL) ∈
R

L1n1+L2n2+L6n6 . Similarly, the unknown output image is

x = (x1,x2, . . . ,xL) ∈ R
Ln, except that now all bands

have the same, maximal, resolution, xi ∈ R
n. Accordingly,

the output bands can also be reformatted into a matrix when

necessary, X = [x⊤
1 ;x

⊤
2 ; . . . ;x

⊤

L ] ∈ R
L×n, and we have

x = vec(X⊤).
The input and output images are, up to noise, related

through the following observation model:

y = MBx , (1)

where M ∈ R
(L1n1+L2n2+L6n6)×Ln and B ∈ R

Ln×Ln

are two block diagonal matrices. Every sub-block, in both

of them, acts on one spectral band. For M, the blocks

represent the sampling of x to obtain y, i.e., blocks are

identity matrices for high-resolution channels, and down-

sampling functions (masks) for other channels, i.e., a sub-

set of rows of the identity matrix. The blur matrix B is a

block-circulant-circulant-block (BCCB) matrix, where each

block represents a 2D cyclic convolution, associated with

the point spread function (PSF) of the corresponding band

at the resolution of x (highest spatial resolution). The blur

can be different in every spectral band1, and is assumed to

be spatially invariant. The model in eq. (1) in its raw form is

obviously ill-posed, since there are fewer observations than

unknowns.

3.1. Subspace representation

It has often been observed that multi-spectral image data

are correlated and can be projected into a subspace of

lower dimensionality without losing information. For the

13 bands of S2, we find that > 99% of the signal energy is

retained in the p = 6 largest components of the correlation-

based eigen-decomposition. The dimensionality reduction

significantly reduces the number of unknowns, and proves

to be a (implicitly or explicitly used) key ingredient for

the envisaged super-resolution. Formally, the columns of

X (i.e., spectral vectors) live in a subspace spanned by the

columns of U ∈ R
L×p and thus we may write:

X = UZ , (2)

where Z ∈ R
p×n are the representation coefficients with re-

spect to U. We assume that U is semi-unitary. Vectorising

1This is why we use the vector notation x and y. Matrix format is

impractical if one allows for band-specific blur.

the matrices yields

x = vec(X⊤) = vec(IZ⊤U⊤)

= (U⊗ I)vec(Z⊤) = (U⊗ I)z , (3)

where I is an identity matrix with suitable dimensions.

With the dimensionality reduction, the observation

model of eq. (1) becomes

y = MB(U⊗ I)z . (4)

Note that, algebraically, the reduced problem is no longer

ill-posed, as long as pn < L1n1 + L2n2 + L6n6. How-

ever, it is still very ill-conditioned. A direct solution is not

practical, as it is extremely sensitive to the presence of noise

(even with low magnitude).

Estimation of the subspace. To compute the subspace U,

we need to have access to X, respectively to the span(X).
However, we only have a version of X that is blurred

and downsampled, namely y. Our objective is to esti-

mate the span(X), using a blurred version of X, XQ,

where Q ∈ R
n×n is a blurring matrix representing a 2D

cyclic convolution. The main motivation behind this is that

the blurring operator Q does not affect the span(X), i.e.

span(X) = span(XQ), given that it is a linear combination

of the columns of X and that rank(Q) ≥ p. To do so (i)

we upsample all the bands of y to the same high resolu-

tion, using bicubic interpolation and (ii) we blur each band,

such that the blur of all the bands is more or less the same,

i.e. equivalent to the strongest blur. This image serves as a

the best approximation of XQ. Next, we perform singular

value decomposition analysis on the blurred data. We re-

tain the first p left singular vectors (with decreasing order

of singular values) as the columns of U. We assume in this

way that the columns of U span the same subspace as the

columns of X.

4. Proposed Solution

To invert our image model, we solve the optimisation

min
z
∥MB(U⊗ I)z− y∥2 + λφw,q(Dhz,Dvz) , (5)

where φw,q is a regularisation term, based on weights

w,q (see Sec. 4.1) and λ is the regularisation strength.

Dh,Dv ∈ R
Ln×Ln are two block-diagonal linear opera-

tors (each with identical blocks) that approximate horizon-

tal and vertical derivatives of the images in z. For simplicity,

we treat these matrices with periodic boundary conditions

as cyclic convolutions. For the regulariser, we choose the

quadratic form

φw,q(z) =

p
∑

i=1

n
∑

j=1

{qiwj(Hhzi)
2
j + qiwj(Hvzi)

2
j} , (6)
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where the index i runs over the subspace dimensions and j
over all pixels for basis vector i. Hh,Hv ∈ R

n×n are the

individual blocks of the finite difference operators (deriva-

tives) Dh and Dv , respectively, such that Dh = I⊗Hh and

Dv = I⊗Hv .

To solve the minimisation (eq. 5), we use C-SALSA [1],

an instance of ADMM, as follows:

min
z,v1,v2,v3

∥MBv1 − y∥2 + λφw,q(v2,v3) (7)

subject to v1 = (U⊗ I)z

v2 = Dhz

v3 = Dvz .

This splitting makes it possible to solve each individual

problem in a much easier way. The Augmented Lagrangian

of the above problem is:

L(z,v1,v2,v3,d1,d2,d3) = ∥MBv1 − y∥2

+
µ

2
∥(U⊗ I)z− v1 − d1∥

2 + λφw,q(v2,v3)

+
µ

2
∥Dhz− v2 − d2∥

2 +
µ

2
∥Dvz− v3 − d3∥

2 , (8)

where d1,d2 and d3 are the scaled Lagrange multipliers

and µ is a positive weight. The solution of eq. (8) with

respect to z is

z = (I+DhD
⊤

h +DvD
⊤

v )
−1

{(U⊗ I)(v1 +d1) +D⊤

h (v2 +d2) +D⊤

v (v3 +d3)} ,
(9)

given that U⊤U = I. The matrix to be inverted is block di-

agonal, from the definition of Dh and Dv . We can therefore

solve separately for each subspace dimension of z. Even

so, the numerical inversion of a block element would be

impossible on a normal computer in terms of memory and

operation count. The trick is to exploit the structure of Dh

and Dv . They are both BCCB matrices and thus, one can

compute the solution in the frequency domain [13]. In the

following we minimise the Lagrangian (eq. 8) with respect

to v1:

v1 = (B⊤M⊤MB+ µI)−1

(B⊤M⊤y + µ(U⊗ I)z)− d1) . (10)

Recently, it has been shown that systems of equations in-

volving this type of matrices can be efficiently solved in

the frequency domain [22]. The inversion is done indepen-

dently for each diagonal block, i.e., each dimension of the

subspace. The unknown v2 and v3 in eq. (8) is obtained

from

v2,v3 ∈ arg min
v2,v3

λφw,q(v2,v3)

+
µ

2
∥Dhz− v2 − d2∥

2 +
µ

2
∥Dvz− v3 − d3∥

2 . (11)

Algorithm 1 SupReME. Solver for the optimisation of (5).

Require: data:y, sensor blurs:B, regularisation parame-

ter λ, weigths q

Estimate the subspace U and weights w from eq. (14,15)

k ← 0
Initialise v1

(0),v2
(0),v3

(0),d1
(0),d2

(0) and d3
(0)

while not converged do

k ← k + 1
Estimate z(k) with eq. (9)

Estimate v1
(k),v2

(k),v3
(k) with eq. (10,12)

Estimate d1
(k),d2

(k),d3
(k) with eq. (13)

end while

return x = (U⊗ I)z

The solution is uncoupled with respect to v2 and v3 and

can be computed for each element as

v2ij =
µ(Hhzi − d2i)j
µ+ 2λwiqj

, v3ij =
µ(Hvzi − d3i)j
µ+ 2λwiqj

,

(12)

where i represents the ith image in z and j each pixel.

Finally, we update the Lagrange multipliers as:

d1
(k) = d1

(k−1) − ((U⊗ I)z− v1)

d2
(k) = d2

(k−1) − (Dhz− v2)

d3
(k) = d3

(k−1) − (Dvz− v3) .

(13)

The complete optimization scheme is summarized in Al-

gorithm 1. Initial values for the parameters v1,v2,v3,d1,
d2 and d3 can be chosen arbitrarily, since the problem is

convex. The convergence to the global minimum is guaran-

teed for any µ > 0, see [1].

4.1. Adapting the spatial regularisation

For the quadratic smoothing used as spatial regulariser,

we can introduce weights w for each pixel, so as to reduce

smoothing across discontinuities. We take

w = exp(−
g2
max

2σs

) (14)

and define gmax = max(g(x1), . . . ,g(xL1
)), of the high

resolution bands, where the max(·) operator is applied

element-wise (per pixel), g(·) is the Prewitt image gradient

magnitude. The weights (eq. 14) are in the range [0 . . . 1].
We found that very strong edges are downweighted too

strongly, and truncate values smaller than 0.5:

w = max(0.5,w) . (15)

Empirically, this improves the result.

By their definition, the subspace coefficients have differ-

ent value ranges. The first few dimensions (basis vectors)
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cover most of the energy (information), and thus are – rel-

atively – less affected by noise, whereas in the last dimen-

sions the noise is more dominant. It is therefore necessary

to apply progressively stronger regularisation. We simply

reweight the regulariser with q ∈ R
p, in an heuristic fash-

ion. At this stage the best setting is

q = [1 1.5 4 8 15 15 20] . (16)

We tried using principal component based schemes, but it

was not leading to better results compared to the heuristic

approach, that performed well across all tested datasets.

4.2. Implementation details

Our method requires the PSF of each band. The vari-

ance of the Gaussian blur (termed sdf) included in B differs

for each band, and is computed from the calibrated MTF

(Modulation Transfer Function) supplied by ESA as part of

the meta-data [5]:

sdf = ri

√

−2 ln(mtf)

π2
, (17)

with i = 1, 2, 6 for the different resolutions. The high-

est resolution bands are assumed to have a point response

(sdf = 0). Empirically, the estimation is not very sensitive

to small variations of the blur. For better numerical condi-

tioning we also normalize the images before the processing,

such that their mean squared intensities are 1 (normalisation

has been undone for the qualitative results below). As men-

tioned before, the blur B and the difference matrices Dh

and Dv have periodic boundary conditions. For this rea-

son we remove a border of 18 pixels, to suppress artifacts

originating from the periodic boundaries. The subspace di-

mension is set to p = 7, as it was able to capture the spectral

variability in all our experiments. The value µ = 0.2 is kept

constant for the whole processing, and the normalization of

the weights w is set to σs = 1.

As convergence criterion for the optimiser, we iterate un-

til the residuals associated with the variable splitting fall

bellow 0.001, or at most 200 iterations. With this criterion

we have obtained a solution for every scenario we tested.

For an image of dimensions 180×180 pixels the program

runs on average less than 10 seconds on a Intel Xeon E5 3.2

GHz CPU, in a MATLAB implementation.

5. Experimental Results

Quality indices. As a primary quality metric for the eval-

uation we use the signal-to-reconstruction error (SRE),

given in dB. It is computed from the reconstructed image

x̂ and the ground truth x as:

SRE = 10 log10
µ2
x

∥x− x̂∥2/n
, (18)

where µx is the average value of x. As a complementary

metric we also report the Spectral Angle Mapper (SAM)

[23] for each image, defined as

SAM =
1

n(L2 + L6)

∑

arccos
X⊤

:jX̂:j

∥X:j∥2∥X̂:j∥2
, (19)

where X:j , X̂:j are the spectral values of the L2 and L6

bands at pixel j, of the ground truth and reconstruction

respectively. The SAM is computed only for the super-

resolved bands (per pixel) and is averaged over the whole

image. It is given in degrees.

The QNR value has also been used to judge super-

resolution results [18]. However, as mentioned in Sec. 2 the

result can be misleading. The QNR was primarily designed

to evaluate pan-sharpening results and appears unsuitable to

compare conceptually different types of algorithms [19].

Baselines. As baselines to compare against, we use the

following 4 methods. As the simplest solution to the prob-

lem we use a bicubic upsampling, implemented in MAT-

LAB. The second baseline is MTF-GLP-HPM-PP, which

is an injection-based pan-sharpening method, initially pre-

sented by Lee and Lee [8]. That method performed best

against other pan-sharpening methods in [18] and we follow

the same experimental procedure as described there. The

third baseline, termed SuperRes, is the method of [4]. The

last baseline is ARTPK [21], which reported the best results

for our task that we are aware of. From the two variants de-

scribed in that publication (“selected” and “synthesized”),

we compare against “synthesized”, which is the average of

all high resolution bands and gave the best numerical re-

sults. For all baselines, code has been made available, and

we use those original implementations.

5.1. Simulated data

For the simulated data, we use the Open Science Dataset

of APEX [12], available online2. APEX is a hyperspec-

tral sensor that covers the wavelengths from 0.4 to 2.5 µm

and can be used to simulate S2 images, given the nominal

spectral response of S2 (Table 1). We took care to model

the spectral downgrading as well as possible, by using a

few more bands, if the inputs were noisy. From the APEX

scenes, we created two sets of inputs with different resolu-

tions, and consequently different levels of object detail. The

first set has maximum resolution ≈2m, which is the nom-

inal resolution of the APEX image. The second one has

maximum resolution ≈10m, for a strict simulation of S2.

The corresponding medium and low resolution images are

2 and 6 times degraded respectively, by pixel aggregation

with the known PSF of S2. Band B10 is discarded from all

2http://www.apex-esa.org/content/free-data-

cubes

24

http://www.apex-esa.org/content/free-data-cubes
http://www.apex-esa.org/content/free-data-cubes


Table 2. Numerical results on simulated data, SRE in dB and SAM (last column) in degrees. The input APEX data are in their

original resolution (2 m). Note that, the resolution mentioned does not correspond with the actual resolution of the image,

but gives an overview of the resolution of the S2 bands. Best results in bold font.

B1 B5 B6 B7 B8a B9 B11 B12

Method 60m 20m 20m 20m 20m 60m 20m 20m SAM

Bicubic upsampling 8.39 14.97 15.88 15.86 15.93 12.66 19.55 17.12 7.80

MTF-GLP-HPM-PP – 19.38 21.66 21.48 22.42 – – – –

SuperRes 12.13 19.58 20.40 20.48 14.00 21.99 20.78 18.59 7.84

ARTPK – 25.29 29.80 30.35 31.08 – 20.93 20.45 –

SupReME 22.01 25.16 27.87 31.29 32.12 19.78 21.42 21.16 4.63

Table 3. Numerical results on simulated data, SRE in dB and SAM (last column) in degrees. The input APEX data has been

downsampled to match the true GSD of S2 bands. Best results in bold font.

B1 B5 B6 B7 B8a B9 B11 B12

Method 60m 20m 20m 20m 20m 60m 20m 20m SAM

Bicubic upsampling 8.35 16.46 17.59 17.51 17.54 13.20 16.70 13.47 5.77

MTF-GLP-HPM-PP – 2.53 23.37 18.71 23.92 – – – –

SuperRes 11.78 21.22 22.37 22.37 17.54 22.23 17.99 14.59 4.55

ARTPK – 25.47 30.84 31.34 31.84 – 21.09 17.14 –

SupReME 20.64 26.36 29.85 34.26 34.23 23.69 19.95 16.41 2.71

further processing. That band is primarily there to detect

Cirrus clouds, but it does not show any ground structures,

and is always very noisy (both in real S2 data and when cre-

ated from APEX). The dimensions of the image used are in

both cases 180× 180. Gaussian noise of SNR = 40dB has

been added to all simulated images. In the current version

of SupReME we use λ = 0.005 for APEX.

Tabulated numerical results for 2 m and 10 m super-

resolution are presented in Tables 2 and 3, respectively. The

best results are marked in bold font. ARTPK and SupReME

perform best, with SupReME dominating in bands B1, B7,

and B8a and ARTPK performing well in B6. Most chal-

lenging of all are bands B11 and B12, which lie in the

SWIR range, far away from all high-resolution bands. B1

and B9 also have slightly weaker results, simply because

the original (input) bands are of low resolution. To be fair,

SAM is reported in Tables 2 and 3 for methods that re-

construct all channels. Here, SupReME always delivers

the best result. That means that the errors are distributed

more evenly across the 8 bands compared to other meth-

ods. This is especially useful for applications where spec-

tral properties of materials (their proportions) are important.

To compare to ARTPK in terms of SAM, we only evaluate

the spectral angle on the 6 bands with 20 m resolution. In

both cases SupReME is considerably better and achieves a

smaller spectral angle: in the full resolution APEX (2 m),

3.30 vs 4.43 and in the reduced resolution APEX (10 m),

2.31 vs 2.98.

Figure 2 visually compares the results of all baselines

to the 10 m ground truth, using a false color composite of

bands (B8a, B6, B5). As expected, Bicubic upsampling

and SuperRes lack high-frequency detail and appear blurry.

MTF-GLP-HPM-PP is better, but exhibits a number of ar-

tifacts. ARTPK and SupReME are clearly best and are vi-

sually almost indistinguishable from the ground truth. Fig-

ure 3 compares the two top-performing methods ARTPK

and SupReME to the 2 m ground truth on a scene detail, us-

ing a composite of bands (B12, B11, B7). SupReME in this

case gives the best result, whereas ARTPK introduces arti-

facts at spectral discontinuities, c.f . the stadium tartan or the

grass area near the top left corner. Notice that both recon-

struction results are significantly sharper than the ground

truth, likely due to the imaging system of APEX. Its VNIR

and SWIR sensors have rather different PSF. In contrast,

super-resolution transfers high-resolution detail from spec-

tral bands in different wavelengths, which are sharp. In that

sense, computational super-resolution can also be seen as a

way to remedy wavelength-dependent blur in imaging sys-

tems that record all pixels at the same nominal resolution,

by exploiting correlations across spectral bands.

5.2. Real Sentinel­2 data

Complementary to simulated data, we use real Sentinel-

2a data, acquired on 29th of April 2016 over the Czech

Republic in the vicinity of Prague. In this work we use a

cut-out of 180× 180 pixels that contains a variety of scene

elements, close to the Prague airport, see Figure 4. Since

we have no access to the true high-resolution information,

we cannot perform any quantitative evaluation.

For this data we use a stronger regularisation λ = 0.01.
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(a) Ground truth (b) Bicubic upsampling (c) MTF-GLP-HPM-PP

(d) SuperRes (e) ARTPK (f) SupReME

Figure 2. Comparison of all 5 methods to the ground truth (APEX with 10 m resolution). The false color composite is created

with bands (B8a, B6, B5).

(a) Ground truth (b) ARTPK (c) SupReME

Figure 3. Comparison of ARTPK and SupReME to the ground truth (APEX with 2 m resolution). The false color composite

is created with bands (B12, B11, B7).
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(a) Natural color image of the scene (b) Input low resolution image (c) Super-resolved image with SupReME

Figure 4. Qualitative results on real S2 images. Left: The scene in true colors (10 m GSD). Centre and Right: A color

composite of bands (B12, B9, B11) before and after the super-resolution.

The visual results in Figure 1 and 4 show two different false

color composites, with bands (B5, B6, B7) and (B12, B9,

B11). In both cases the result of SupReME is compared

to the input lower resolution images, resized with nearest

neighbor to be able to overlay them with equal pixel size.

One clearly sees that, also for real S2 data, the result is much

sharper than the input, and does not seem to suffer from any

visible spectral (color) distortion.

6. Discussion

So far, work on S2 super-resolution has largely disre-

garded the potential of the 60 m channels. Even though

these bands are primarily intended for atmospheric correc-

tions, we find that they can be upsampled to 10 m, with an

accuracy similar to that of the 20 m bands. Although up-

sampling 1 pixel to 36 may at first sight seem unrealistic,

the results indicate that the spectral correlations are strong

enough to do it, and these bands could be used to derive

high-resolution information, rather than only for calibrating

the other high-resolution bands.

We have observed that our approach is not independent

of the texture scale (respectively, object size) in the input

image. Thus, its performance might change across differ-

ent sensor resolutions, or across scenes with very different

object scales, even if recorded with the same sensor. In

future work it should therefore be investigated how well

our method generalises to much lower image resolutions

(e.g. MODIS). Such images have much smaller homoge-

neous areas and correspondingly more high-frequency tex-

ture. We note that, also for such low-resolution, global im-

agery, super-resolution may have interesting uses. E.g., en-

hancing the even lower resolution of some spectral bands

to 250 m could make quite a difference for coastlines and

coastal mapping.

In our current setup, we have not attempted to automati-

cally set the parameters p, λ and q. Fixed, empirically cho-

sen values gave good results, but for larger areas of interest

it may become necessary to chose them automatically, or

even to adaptively change the subspace to best represent the

local spectral distribution.

7. Conclusions

We have presented a novel method to deal with the differ-

ent resolutions in contemporary multi-spectral satellite sen-

sors. Our method integrates information from all channels,

independent of their input resolution, into one joint, con-

vex optimization. The model is computationally efficient,

and super-resolves all lower-resolution channels to the high-

est available resolution, by transferring high-frequency in-

formation from multiple, non-overlapping high-resolution

bands to the entire data cube. The method has been tested

on both simulated data and real Sentinel-2 imagery, and

achieves state-of-the-art results.

Future extensions shall include locally adaptive subspace

projection to deal with strongly varying, locally heteroge-

neous scene content. Eventually, we aim to super-resolve

entire S2 tiles (100×100 km2). Moreover, as longer time

series become available, we would like to investigate high-

resolution change detection. It is an interesting open ques-

tion how to best integrate time series analysis with super-

resolution.
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