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Abstract

In this paper, we present a Self-Supervised Neural Ag-

gregation Network (SS-NAN) for human parsing. SS-NAN

adaptively learns to aggregate the multi-scale features at

each pixel “address”. In order to further improve the fea-

ture discriminative capacity, a self-supervised joint loss is

adopted as an auxiliary learning strategy, which imposes

human joint structures into parsing results without resort-

ing to extra supervision. The proposed SS-NAN is end-

to-end trainable. SS-NAN can be integrated into any ad-

vanced neural networks to help aggregate features regard-

ing the importance at different positions and scales and in-

corporate rich high-level knowledge regarding human joint

structures from a global perspective, which in turn improve

the parsing results. Comprehensive evaluations on the re-

cent Look into Person (LIP) and the PASCAL-Person-Part

benchmark datasets demonstrate the significant superiority

of our method over other state-of-the-arts.

1. Introduction

Human parsing, also known as human semantic segmen-

tation, relates to the problem of assigning fine-grained se-

mantic labels (e.g. “hair”, “face”, “dress”, etc.) to every

pixel in the image, as illustrated in Figure 1. It is a very

challenging computer vision task and one of the most cru-

cial steps towards detailed image understanding for human-

centric analysis. Successful human parsing techniques

could facilitate huge higher-level artificial intelligence ap-

plications, such as human behavior analysis [11, 25], cloth-

ing style recognition and retrieval [8], and automatic prod-

uct recommendation [20].

Recently, deep learning methods, and in particular Fully

Convolutional Networks (FCNs) [31] based methods, e.g.,

Segnet [1], DeepLabV2 [27], Attention [4], have shown re-

markable success in human parsing on several benchmarks.

One of the key elements to successful human parsing among

these models is the use of multi-scale features. Compared to

the counterparts with single-scale, multi-scale based meth-

ods perform a human-like “auto-zoom” process to exploit
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Figure 1. Examples for human parsing by our SS-NAN architec-

ture. Best viewed in color.

diverse contextual information from global and local re-

gions, which compensate each other and naturally benefits

the human parsing task to solve. However, it is still an open

problem to build an appropriate representation of the multi-

scale features, such that it can effectively incorporate use-

ful information across different scales together, maintaining

beneficial while discarding noise.

One intuitive approach would be combining features

from the intermediate layers of FCNs, which we refer to as

Skip-Net and they have dominated human parsing recently

[31, 26, 38, 30]. Hierarchical features within a Skip-Net are

multi-scale in nature due to the increasing receptive field

sizes. Such a combined representation comprehensively

maintains the information across all scales. However, to

train a Skip-Net, one usually needs to employ a two-stage

process [31, 26, 38, 30] by first training the backbone model

with a classifier and then slightly fine-tuning during multi-

scale feature extraction. Such training process is not ideal

due to separate stages and expensive time cost (e.g., three to

six days [26]).

We argue that it is more desirable to come with a com-
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pact and static feature representation across different scales,

irrespective of the varied number of scales. Such represen-

tation learning would allow a more efficient training pro-

cess. A straightforward solution might be Share-Net, which

resizes the input image to several scales and passes each

through a shared FCN. The resulting multi-scale features

are then aggregated together by conducting a certain type

of pooling to form the final dense prediction[12, 28].

The most commonly adopted pooling strategies may be

average- or max-pooling over scales [10, 21, 2]. While these

intuitive pooling strategies were shown to be effective in

the previous works, features at each scale are either treated

equally or selected sparsely. We believe that a good aggre-

gation strategy should adaptively weigh and aggregate the

features across all scales. The intuition is simple: a human

image may contain several big and small semantic fashion

/ body regions (e.g., upper-clothes v.s. sunglasses), and a

smart algorithm should favor features that are more relevant

(or more “needed”) and prevent noise from jeopardizing hu-

man parsing.

To this end, we look for an adaptive weighting scheme to

spatially aggregate all features from several different scales

together to form a compact and static representation. Dif-

ferent from previous methods, we neither fix the weights

for addressing feature map values nor rely on any particular

heuristics to set them. Instead, we design a neural network

to adaptively learn the weights.

Our neural aggregation network is designed to inherit the

main advantages of pooling techniques, including the abil-

ity to handle arbitrary scale number and producing order-

invariant representations. The idea is inspired by the Neural

Turing Machines [15], which applied an attention mecha-

nism to organize the input through accessing an external

memory. This mechanism can take arbitrary number of in-

put and work as a tailor emphasizing or suppressing each in-

put element via a weighted averaging, and very importantly

it is order independent and has trainable parameters. In this

work, we employ a Share-Net associated with this adaptive

weighting mechanism for multi-scale feature aggregation.

Motivated by [14], in order to explicitly enforce the pro-

duced parsing results to be semantically consistent with the

human joint structures, in addition to using the conven-

tional pixel-wise part annotations as the supervision, we

further employ a joint loss to enhance the quality of pre-

dicted parsing results from a joint structure perspective.

That means a satisfactory parsing result should be able to

preserve a reasonable spatial joint layout structure of hu-

man parts. We generate approximated human joints directly

from the parsing annotations and use them as the auxiliary

supervision signal for the joint loss, which is hence a “self-

supervised” strategy. We thus term our approach as the Self-

Supervised Neural Aggregation Network (SS-NAN), which

can be trained in an end-to-end way for human parsing. The

SS-NAN not only enjoys the time and memory efficiency

due to the adaptively aggregated representations, but also

exhibits superior performance, as we will show in our ex-

periments.

We demonstrated the effectiveness of the proposed SS-

NAN on the challenging human parsing benchmarks, in-

cluding Look into Person (LIP) [14] and PASCAL-Person-

Part [5]. Experimental results show that the proposed SS-

NAN consistently improves over strong baselines. More

importantly, the proposed SS-NAN can serve as a gen-

eral framework for learning multi-scale adaptive pooling.

Therefore, it may also serve as a feature aggregation scheme

for other computer vision tasks.

Our contributions can be summarized in the following

three aspects:

• We propose an effective Self-Supervised Neural Ag-

gregation Network (SS-NAN) for human parsing,

which adaptively aggregates the multi-scale features

while explicitly enforcing consistency between the

parsing results and the human joint structures. Our

model is flexible in that it can be modified in various

ways.

• The proposed SS-NAN can be effectively trained in an

end-to-end way without any separate pre-processing or

post-processing, which is crucial for best human pars-

ing performance.

• The proposed SS-NAN significantly surpasses the pre-

vious methods on both challenging LIP [14] and

PASCAL-Person-Part benchmark datasets [5].

2. Related Works

Our model draws success from several areas, including

FCNs, multi-scale features for human parsing, and feature

aggregation schemes.

FCNs: FCNs [31] based methods have demonstrated

state-of-the-art performance for the human parsing prob-

lem, including [31, 26, 38, 30, 4]. Our method works

directly on the pixel-level representation, similar to many

some recent research on semantic image segmentation.

Farabet et al. [9] proposed a multi-scale FCN based frame-

work appended with a dense pixel-level Conditional Ran-

dom Field (CRF) for pixel-wise labeling. Chen et al.

[4] proposed an attention mechanism that learns to weight

the multi-scale features at each pixel location. The main

difference between our proposed SS-NAN and these pre-

vious methods is the seamless integration of the state-

of-the-art backbone Skip-Net (e.g., ResNet-101 [17]) and

Share-Net architecture, the adaptive neural aggregation

scheme across multi-scale features, and the auxiliary self-

supervised structure-sensitive learning strategy in consis-

tence with human joint structures into an end-to-end train-

able unified network, which is very important in boosting
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the human parsing performance as demonstrated in the ex-

periments.

Multi-scale features for human parsing: Multi-scale

features have been shown significantly useful for computer

vision problems and in particular for human parsing, which

enables the network implicitly “look into” the most impor-

tant information within an image. There are several exist-

ing methods which exploit multi-scale features for semantic

image segmentation. Skip-Net exploits hierarchical multi-

scale features from different levels of the network. Hyper-

column [16] merges multi-scale features from intermediate

layers and learns the final dense prediction through a stage-

wise training process instead of end-to-end training. Seg-

Net [1] and U-Net [33] apply skip-connections in the decon-

volution architecture to exploit the multi-scale features from

intermediate layers. Share-Net exploits multi-scale features

by applying multi-scale input images to a shared network.

Farabet et al. [9] employed a Laplacian pyramid, passed

each scale through a shared network, and fused the features

from all the scales. Lin et al. [28] resized the input images

into three scales and concatenated the resulting three-scale

features to generate the unary and pair-wise potentials of

a CRF. Although there are many existing work exploiting

multi-scale features for human parsing, few of them provide

satisfactory results.

Feature aggregation schemes: For multi-scale feature

aggregation, existing methods either use average-pooling

[6, 7] or max-pooling [10, 32] over different scales. Moti-

vated by [14], we propose to jointly learn an adaptive neural

aggregation model that softly weights the features from dif-

ferent input scales when predicting the semantic label of a

pixel. The final dense prediction is produced by the aggre-

gated probability maps across all the scales. Incorporated

with a self-supervised structure-sensitive learning approach,

the proposed SS-NAN leverages human joint structure more

effectively and efficiently, which can be modified in various

ways. As previously mentioned, this work is also related

to the Neural Turing Machines [15]. However, it is worth

noting that we only borrow their differentiable memory ad-

dressing scheme for our multi-scale feature aggregation.

3. Self-Supervised Neural Aggregation Net-

work

As shown in Figure 2, our proposed SS-NAN seam-

lessly integrate the state-of-the-art backbone Skip-Net and

Share-Net architecture for multi-scale feature learning, the

adaptive neural aggregation scheme across various scales,

the pixel-wise softmax loss and an auxiliary self-supervised

joint loss in consistence with human joint structures into an

end-to-end trainable unified network, which is beneficial for

boosting the human parsing performance. We now present

each component in detail.

3.1. Multiscale feature learning

As noted previously, we aim to exploit multi-scale fea-

tures to “look into” the most important information for hu-

man parsing. SS-NAN provides a generic means to learn

hierarchical multi-scale features. A crucial aspect of the de-

sign ensures that the gradient can be effortlessly backprop-

agated through the network all the way to low-level layers

over multiple skip connections with shared weights between

each scale embedding, ensuring that the entire network can

be trained end-to-end.

Deeper networks have shown to yield better performance

for many computer vision problems [17, 21, 35]. However,

naively increasing depth of the network may introduce addi-

tional optimization difficulty as stated in [34, 23]. An effec-

tive solution to this problem is Skip-Net (e.g., ResNet-101

[17]), which adds a skip-connection that bypasses the non-

linear transformations with an identity function:

xl = fl(xl−1) + xl−1, (1)

where xl is the output of the lth layer, fl(·) can be a

composite non-linear transformations, such as Convolution

(Conv), Batch Normalization (BN) [18], Rectified Linear

Units (ReLU) [13], or Pooling [22].

As FCNs [31] based methods have proven significantly

successful in human parsing [31, 26, 38, 30], we further

modify the Skip-Net architecture to be fully convolutional,

which captures the cross-layer context, facilitates the gradi-

ent Backpropagation (BP), and produces reasonable dense

predictions. In particular, the last fully-connected layers are

turned into convolutional layers (e.g., the last layer has a

spatial convolutional kernel with size C × 3 × 3, where C

is the number of human parsing classes of interest).

As shown in Figure 2, our basic multi-scale learning

archiecture is a Share-Net, which incorporates three FCN

based Skip-Nets with shared weights. It simultaneously

considers the local fine details and global structure infor-

mation. The input to our proposed SS-NAN is a 321× 321
color image and then resized to three different scales / res-

olutions s ∈ {0.5, 0.75, 1.0} according to [14]. The re-

sulted multi-scale input are then fed to the subsequent par-

allel FCN based Skip-Nets for multi-scale feature learning.

More details are provided in Sec. 4.

3.2. Adaptive neural aggregation

Herein, we discuss how to adaptively aggregate the

multi-scale features for our proposed model.

Based on the above-mentioned Share-Net, each scale in-

put is passed through the corresponding Skip-Net (the FCN

weights are shared across all scales), and produces a proba-

bility map for scale s, denoted as xs
i,c where i ranges over all

the spatial pixel-wise “address” and c ∈ {1, · · · , C}. The

probability map xs
i,c is then resized to the same resolution

w.r.t. the finest scale by bilinear interpolation. Our goal is
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Figure 2. Overview of the proposed SS-NAN architecture. SS-NAN takes the human images as input and outputs the corresponding

dense parsing results. It seamlessly integrate the state-of-the-art backbone Skip-Net and Share-Net architecture and the adaptive neural

aggregation scheme across various scales for multi-scale feature learning and adaptive neural aggregation, which is significantly beneficial

for the human parsing problem. Best viewed in color.

to utilize all probability maps from all scales to generate a

compact and static feature representation, i.e.,

ri,c =

S∑

s

w
s
i · x

s
i,c, (2)

where r denotes the aggregated probability map at (i, c) for

all scales.

Obviously, the key of Eq. 2 is its weights {ws
i }. If ws

i ≡
1

NS
, Eq. 2 will degrades to naive average-pooling, which is

usually non-optimal as the naive max-pooling. We instead

seek to employ a better aggregation scheme.

Two main principles have been considered in our adap-

tive neural aggregation module. First, the module should

be able to process different number of scales and invari-

ant to the scale order for further modification and generic

use. Second, the module should be adaptive to the learned

multi-scale features and has parameters end-to-end train-

able through the standard Stochastic Gradient Descent

(SGD) and BP algorithm.

Our solution is inspired by the memory addressing

mechanism described in [15]. The idea therein is to use a

neural model to read external memories through a differen-

tiable addressing scheme, which is applicable to our adap-

tive aggregation scenario. In this work, we treat the multi-

scale features as the memory and cast adaptive weighting

as a memory addressing procedure. Our neural aggrega-

tion module reads all scale feature tensors from the multi-

scale feature learning module, and adaptively generate lin-

ear weights for them for aggregation. In particular, the

weight ws
i is computed by

w
s
i =

exp(as
i )∑S

s exp(as
i )
, (3)

where asi is the feature map produced by the adaptive neural

aggregation module at (i, s). Note that ws
i is shared across

all channels. The adaptive neural aggregation module takes

as input the multi-scale probability maps from each Skip-

Net, and it consists of two Conv layers with the kernel size

512× 3× 3 and NS × 3× 3, repectively.

It can be seen that our adaptive neural aggregation al-

gorithm essentially selects one point inside of the convex

hull spanned by all the multi-scale features. In this way, the

number and the order of scales do not affect the aggregation
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× Element-wise multiply Tensor transfer

Figure 3. Illustration of our optimization strategy for the proposed

SS-NAN. The generated joints and joints ground truth coordi-

nates are obtained by computing the center points of correspond-

ing regions in parsing maps, including head (H), upper-body (UB),

lower-body (LB), right-arm (RA), left-arm (LA), right-leg (RL),

left-leg (LL), right-shoe (RS), left-shoe (LS). The final loss func-

tion for SS-NAN is generated by weighting the pixel-wise Cross-

Entropy loss with the joint loss. Best viewed in color.

results. The weight ws
i reflects the importance of feature at

(i, s). As a result, the neural aggregation module adaptively

descides how much attention to pay to features at differ-

ent “addresses” and scales. We emphasize that the adaptive

neural aggregation module computes a soft weight for each

“address” and scale, and it allows the gradient to be back-

propagated through, similar to [15]. One significant advan-

tage is that tedious annotation of the “ground truth scale”

for each pixel is avoided, allowing the neural aggregation

module adaptively learn the best weights on scales.

3.3. Optimization

We optimize the network parameters using training im-

ages with pixel-wise annotations. The final output is pro-

duced by performing a softmax operation on the aggregated

probability maps across all scales. Inspired by [14], in or-

der to enforce the human parsing results to be semantically

consistent with the human joint structures, in addition to

the conventional pixel-wise Cross-Entropy loss, we further

employ a structure-sensitive learning strategy, which is a

self-supervised strategy without any expensive human pose

annotation. Nine joints are defined to construct the human

joint structure, i.e., the centers of regions of head, upper

body, lower body, left arm, right arm, left leg, right leg, left

shoe, and right shoe, as shown in Figure 3. Each region is

generated by merging parsing labels of several related small

regions (e.g., the region of head is merged by regions of

hat, hair, sunglasses, and face). For each parsing result and

the corresponding ground truth, the centers of regions are

computed dynamically to obtain joint coordinates. Then an

Euclidean (L2) distance is used to measure the quality of

the generated joint structures, which also reflect the human

joint layout consistency between the predicted parsing re-

sults and the ground truth. Finally, we minimize the loss

function weighted by the pixel-wise Cross-Entropy loss av-

eraged over all pixel “addessses” and the joint loss with the

standard SGD and BP algorithm. More formally, the final

loss function for our proposed SS-NAN is calculated as:

LSS−NAN = Lparsing · Ljoint, (4)

where Lparsing is the pixel-wise Cross-Entropy loss cal-

culated based on the parsing annotations, Ljoint =
1

2Njoint

∑Njoint

i=1
‖Jp

i − J
gt
i ‖22, J

p
i is the ith joint coordi-

nates computed according to the dense predictions, J
gt
i is

the joint coordinates obtained from corresponding parsing

ground truth, Njoint is the pre-defined joint number 9.

In addition to the supervision to the final output, ex-

tra supervision (i.e., dense classifier Conv 20 × 3 × 3 &

LSS−NAN ) is injected to the final output of each Skip-Net

(i.e., each scale) within the Share-Net. Such deeply super-

vised strategy allows the proposed SS-NAN to be trained

effectively and efficiently in an end-to-end way.

4. Experiments

4.1. Experimental settings

Benchmark datasets: We evaluate the performance of

our proposed SS-NAN for human parsing on the challeng-

ing LIP [14] and PASCAL-Person-Part [5] public bench-

mark datasets.

LIP benchmark dataset1 [14]. To further push the fron-

tiers of semantic image segmentation and in particular hu-

man parsing research, recently Liang et al. [14] developed

and publicly released a new large-scale benchmark dataset

Look into Person (LIP) focusing on semantic fine-grained

understanding of human bodies, which makes a significant

advance in terms of scalability, diversity and difficulty. LIP

is an order of magnitude larger and more challenging than

previous similar attempts [5, 26, 37]. The images in the LIP

dataset are cropped person instances from Microsoft COCO

[29] training and validation sets. Thus, the images of LIP

are collected from the real-world scenarios containing peo-

ple appearing with challenging poses, viewpoints, heavy oc-

clusions, various appearences and in wide range of resolu-

tions. Moreover, the background of images of LIP is also

more complex and divese than the one in previous coun-

terparts. LIP is well-annotated with elaborated pixel-wise

1http://hcp.sysu.edu.cn/lip/.
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annotations with 19 semantic human part labels (i.e., hat,

hair, gloves, sunglasses, upper-clothes, dress, coat, socks,

pants, jumpsuits, scarf, skirt, face, left-arm, right-arm, left-

leg, right-leg, left-shoe, and right-shoe) and one background

label. There are 50, 462 images in the LIP dataset, includ-

ing 19, 081 full-body images, 13, 672 upper-body images,

403 lower-body images, 3, 386 head-missed images, 2, 778
back-view images, and 21, 028 images with occlusions. LIP

is further split into separate training set containing 30, 462
images, validation set containing 10, 000 images, and test-

ing set containing 10, 000 images. The annotations for test-

ing set is officially withheld for benchmarking purpose.

PASCAL-Person-Part benchmark dataset2 [5].

PASCAL-Person-Part benchmark dataset is a set of ad-

ditional annotations for PASCAL VOC 2010. It goes

beyond the original PASCAL object detection task by

providing fine-grained pixel-wise labels for six body part

of the human, i.e., head, torso, upper- / lower-arms, and

upper- / lower-legs. The rest of each image is considered

as background. There are 3, 535 images in the PASCAL-

Person-Part dataset, which is split into separate training set

containing 1, 717 images and testing set containing 1, 818
images.

Metrics: We report three metrics for human parsing that

are variations on pixel accuracy and region Intersection over

Union (IoU).

• Pixel accuracy:
∑

i nii∑
i ti

,

• Mean accuracy: 1

C

∑
i
nii

ti
,

• Mean IoU: 1

C

∑
i

nii

ti+
∑

j nji−nii
,

where nji is the number of pixels of class i predicted to be-

long to class j, C is the parsing class number, ti =
∑

j nij

is the total number of pixels of class i.

Network architecture: The input to our proposed SS-

NAN is a 321 × 321 color image and then resized to three

different scales s ∈ {0.5, 0.75, 1.0}. Our Skip-Net back-

bone architecture for each scale within the Share-Net is ini-

tialized from the publicly available model, Pyramid Scene

Parsing (PSP) network [39] due to its leading accuracy and

competitive efficiency, with slight modification by drop-

ping the top pyramid pooling module and dense prediction

module. Thus, each Skip-Net in our SS-NAN becomes a

ResNet-101[17] with PSP pre-trained weights. The adap-

tive aggregation module in our SS-NAN consists of two

Conv layers with the kernel size 512×3×3 and NS×3×3,

repectively.

Training: SDG with mini-batch is used for training. We

set the mini-batch size of 30 images. Inspired by [3], we use

2http://www.stat.ucla.edu/ xianjie.chen/pascal part dataset/pascal part.html.

Method Overall accuracy Mean accuracy Mean IoU

SegNet [1] 69.04 24.00 18.17

FCN-8s [31] 76.06 36.75 28.29

DeepLabV2 [27] 82.66 51.64 41.64

Attention [4] 83.43 54.39 42.92

Attention+SSL [14] 84.36 54.94 44.73

SS-NAN (ours) 87.59 56.03 47.92

Table 1. Performance comparison of SS-NAN with five state-of-

the-art methods on the LIP validation set. The best performance is

highlighted in bold.

the “poly” learning rate policy where the current learning

rate equals to the base one multiplying (1− iter
max iter

)power.

We set the base learning rate of 0.001 (0.01 for the final

dense classifier layer) and power to 0.9. We use the mo-

mentum of 0.9 and weight decay of 0.0005. For data aug-

mentation, we adopt random mirror and random resize be-

tween 0.6 and 1.4 for all datasets. This comprehensive data

augmentation scheme makes the network resist overfitting.

Following [14], two training steps are employed to optimize

our SS-NAN. First, we train the basic network with only

Lparsing for 40 epoches, which takes about three and a half

days. Then we perform “self-supervised” strategy to fine-

tune our model with the LSS−NAN for roughly 30 epoches

and it takes about two days. In the testing stage, one image

takes 0.5 second on average.

Reproducibility: The proposed method is implementated

by extending the Caffe framework [19]. All networks are

trained on a single NVIDIA GeForce GTX TITAN X GPU

with 12GB memory. The source code and trained models

for our SS-NAN will be released.

4.2. Results and comparisons

We compare the proposed method with the strong base-

lines on the two challenging public benchmark datasets.

LIP benchmark dataset [14]. We report the quantitive

results and comparisons with five state-of-the-art methods

on LIP validation set in Table 1. We can observe that the

proposed SS-NAN achieves a huge boost in average IoU:

3.19% better than Attention+SSL [14] and 5.00% better

than Attention [4]. This superior performance of SS-NAN

demonstrates the effectiveness of our multi-scale feature

learning (i.e., automatically “looks into” the most impor-

tant information for human parsing), adaptive neural ag-

gregation (i.e., adaptively descides how much attention to

pay to features at different “addresses” and scales), and

self-supervised structure-sensitive learning (i.e., incorpo-

rates the human joint structure into the pixel-wise dense

prediction).

We further report per-class IoU on LIP validation set to

verify the detailed effectiveness of our SS-NAN, presented

in Table 2. With the carefully designed multi-scale feature

learning module, adaptive neural aggregation module, and
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Table 2. Performance comparison w.r.t. per-class mean IoU of SS-NAN with five state-of-the-art methods on the LIP validation set. The

best performance is highlighted in bold.

Method Head Torso Upper-arms Lower-arms Upper-legs Lower-legs Background Mean IoU

DeepLabV2 [27] 78.09 54.02 37.29 36.85 33.73 29.61 92.85 51.78

HAZN [36] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11

Attention [4] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

LG-LSTM [24] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Attention+SSL [14] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

SS-NAN (ours) 86.43 67.28 51.09 48.07 44.82 42.15 97.23 62.44

Table 3. Performance comparison w.r.t. per-class mean IoU of SS-NAN with five state-of-the-art methods on the PASCAL-Person-Part

benchmark dataset. The best performance is highlighted in bold.

optimization scheme, we achieved the best performance on

all the classes. As observed from the reported results, SS-

NAN significantly improves the performance of the labels

like arms, legs, and shoes, which demonstrates its excel-

lent ability to distinguish “left” v.s. “right”. Furthermore,

the labels covering small regions such as sunglasses, gloves,

socks, are predicted better with higher IoU. This improve-

ment also verified the effectiveness of the proposed SS-

NAN especially for small labels.

PASCAL-Person-Part benchmark dataset [5]. Table 3

shows the performance of our SS-NAN and comparisons

with five state-of-the-art methods on the standard mean

IoU criterion. Our method can significantly outperform

all baselines. In particular, our SS-NAN achieves mean

IoU of 62.44%, 3.08% better than Attention+SSL [14] and

4.47% better than LG-LSTM [24]. This huge improve-

ment demonstrates that our proposed SS-NAN is signifi-

cantly beneficial for human parsing with the combination

of Skip-Net, Share-Net, multi-scale feature learning, adap-

tive neural aggregation, and deep supervision.

Note that without self-supervision via human joint pre-

diction, around 1% performance decrease can be observed

on both benchmarks, which proves its effectiveness and

benefits for human parsing.

4.3. Qualitative comparison

The qualitative comparisons of human parsing results

on the LIP validation set are visualized in Figure 4. As

can be observed, our SS-NAN outputs more semantically

reasonable, meaningful and precise predictions than Atten-

tion+SSL [14] despite the existence of large pose, view-
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Figure 4. Visualized comparison of human parsing results on the

LIP validation set. Best viewed in color.

point, occlusion, appearance and resolution variations. For

example, observed from the full-body image, the small re-

gions (e.g., sunglasses and left-shoe) can be successfully

segmented out by our method. Taking half-body and sit-

ting images for example, our approach can also successfully

handle the confusing labels such as upper-clothes, coat, and

scarf. These regions with similar appearances can be recog-

nized and separated by the guidance from local and global

multi-scale information and human joint structure informa-

tion. For the most difficult back-view and occlusion images,

the left-arm, right-arm, gloves, left-shoe, right-shoe, and

part of the right-leg are excellently predicted and masked

out by our approach. In general, by effectively exploiting

multi-scale information and human joint structure informa-

tion with the carefully designed network architecture, our

approach outputs more accurate results for confusing labels

on the human parsing task.

Moreover, in order to gain insight into the adaptive

neural aggregation mechanism, we further visualized the

pixel-wise weight maps w.r.t. three different scales s ∈
{0.5, 0.75, 1.0} learned by our SS-NAN in Figure 5. As

can be observed, our SS-NAN has adaptively learned to put

higher weights on small regions for scale 1.0, on middle re-

gions for scale 0.75, and on large regions and background

for scale 0.5. Such a human-like “auto-zoom” process ex-

ploits diverse contextual information from global and local

regions, which compensate each other and naturally benefits

Full-body

Half-body

Back-view

Occlusion

Sitting

Lying

Image
Adaptive neural aggregation maps 

scale: 1.0, 0.75, 0.5

Figure 5. Visualized adaptive neural aggregation maps w.r.t. three

different scales s ∈ {0.5, 0.75, 1.0} learned by our SS-NAN. Best

viewed in color.

the human parsing task to solve.

5. Conclusion

In this paper, we proposed an effective and efficient Self-

Supervised Neural Aggregation Network (SS-NAN) for hu-

man parsing. SS-NAN learns the comprehensive multi-

scale features through a Share-Net containing Skip-Nets for

each scale stream. The multi-scale features are adaptively

aggregated while explictly enforcing consistency between

the parsing results and the human joint structures. SS-NAN

can be effortlessly optimized in an end-to-end way with the

pixel-wise Cross-Entropy loss and an auxiliary joint loss

and can be generalized to more real-world applications. Ex-

tensive evaluations on the two challenging human parsing

benchmark datasets (i.e., LIP and PASCAL-Person-Part)

clearly verified the effectiveness of the proposed approach.
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