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Abstract
The burst of video production appeals for new browsing

frameworks. Chiefly in sports, TV companies have years

of recorded match archives to exploit and sports fans are

looking for replay, summary or collection of events.

In this work, we design a new multi-resolution motion

feature for video abstraction. This descriptor is based on

optical flow singularities tracked along the video. We use

these singlets in order to detect zooms, slow-motions and

salient moments in soccer games and finally to produce an

automatic summarization of a game.

We produce a database for soccer video summarization

composed of 4 soccer matches from HDTV games for the

FIFA world cup 2014 annotated with goals, fouls, corners

and salient moments to make a summary. We correctly de-

tect 88.2% of saliant moments using this database. To high-

light the generalization of our approach, we test our system

on the final game of the handball world championship 2015

without any retraining, refining or adaptation.

1. Introduction

In the world of digitization we live in, big quantities of

numerical data are stored and available. This is particularly

common for image and video databases since a simple clip

in high definition of 30s contains 750 frames (with 25fps)

and therefore more than a billion pixels. The amount of

stored videos keeps increasing every hour. For instance, last

IPhone and Samsung smart phones take short videos instead

of static pictures, that they called respectively ”live pho-

tos” and ”motion photos”. ”Live photo” is perfectly chosen

name since even a very brief motion recording gives life to a

simple picture. Besides every Facebook user can now have

a video profile on his main own page instead of a classic

profile picture. The number of Youtube videos increased to

such an extent that Google Research just released a dataset

called YouTube-8M that contains half a million hours of

videos [1]. To face this always increasing amount of videos,

algorithms must analyze and recognize the content of these

elements to be able to extract knowledge, statistics and ev-

erything that a user could look for. With over a decade of

extensive research, there has been a tremendous develop-

ment in the domain of video content mining [13, 24].

In this article, we present a new motion descriptor based

on extracting singularities in the motion domain in Sec-

tion 3, that is detecting specific motion patterns in the op-

tical flow. In Section 3.2, we build a unified description

of optical flow that allows us to describe different aspects

of video semantics. We call this descriptor singlet which

corresponds to motion singularities at different resolutions

tracked along a video. As a good context of video abstrac-

tion, we focus on the application of our new motion fea-

tures for sport analysis, more specifically soccer matches.

In the experiment section, our flow description is detailed

for zoom detection, extraction of salient moments and slow-

motion detection. We then propose an automatic method of

production of video skimming. Finally, we evaluate the sin-

glets’ efficiency in various contexts: soccer games from the

World cup 2014 and the final game of handball world cham-

pionship 2015.

2. Related Works

We classify the contributions regarding video analysis

along two axes: retrieval and abstraction [10].

On the one hand, video retrieval is a very active research

field aiming at providing tools to retrieve videos from con-

tent. The current state of the art methods for video con-

tent representation start by detecting keypoints. Most of the

time, these keypoints are then tracked along the video, and

finally described by combining a description of both static

and dynamic visual information (shape, appearance...).

Among these contributions, let us cite the seminal work

on Space-Time Interest Points (STIP) [12] which proposed

to combine Histograms-on-Oriented-Gradients (HOG) with

Histograms-on-Optical-Flow (HOF). In [17], the tracklets

are also defined from HOG and HOF and classified using

dynamic time warping. Improved dense trajectories (iDT)

adds SURF and MBH (derivative of HOF) to the descrip-

tion, keeping a combination of keypoint displacements [25].
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However all these standard motion descriptors usually do

not hold complex motion information. Recently, deep learn-

ing convolution networks for video description, such as the

C3D network [22], have been considered, but for now they

only achieves complementary results compared to iDT.

Abstraction consists in segmenting the video stream into

consistent content units and generating a brief overview

of the video from these units. Truong et al. [23] lists

and compares techniques providing video abstraction by

distinguishing video summarization, made of static video

keyframes, from video skimming, made of dynamic video

shots. Four types of video are much analyzed: meetings,

movies, broadcast news and sports [28]. The growing mass

of available video data is well illustrated in the sports do-

main: TV channels have broadcast matches in soccer com-

petitions for years. Nowadays, the amount of sport broad-

cast has drastically increased with the legalization of sports

betting. The algorithms to enhance these broadcasts are ea-

gerly awaited and related research works have emerged.

In video abstraction and in particular in soccer video ab-

straction, people do not use the state of the art representa-

tion, iDT, which is made for retrieval and is not suitable for

motion abstraction. From a single match, there is already a

big amount of information to extract in order to summarize

the match: number of passes or goals, players’ statistics...

For example, by focusing on play-break session can filter

video information [6]. To detect the play-break moments,

Xu et al. [29] used heuristic rules based on view classi-

fication (long, medium and close-up views) while Xie et

al. [27] used a stochastic structured model by HMM. Also

in a stochastic approach, Leonardi et al. [14] proposed con-

trolled Markov chains to detect goals.

In general, the first approach in soccer video analysis is

to segment shots and extract features. These low-level fea-

tures are extracted from the frames and are often associated

with hand-crafted features, like line marks, ball tracking or

the color of the players jersey. Gong et al. [8] use these

features to classify events like shots or corner kicks.

A soccer match is quite long and contains few interest-

ing actions, which is why detecting salient moments is the

most active research side in the soccer video domain. Other

hand-crafted features like the overall excitement computed

from shot length, motion and audio activity are used to

characterize game extracts in [9]. These features are found

by building mid-level representation of the shots that can

be learned to recognize events: Duan et al. [4] used shot

lengths and texture maps to train a SVM while Wu et al.

[26] used global motion estimation to train a neural net-

work. Sadlier et al. [19] focused on audio features, and

low-level features to train a SVM and they claims their tech-

niques to be generic while only focusing on “field sports”

and thus benefiting from knowing the ground color (grass),

field line marks and others shared characteristics. Yow et

al. [31] built a panoramic representation of a shot and then

select important shots using heuristics. Assfalg et al. [2]

and Tabii et al. [21] used finite state machines, respectively

one based on ball motion, players positions and jerseys and

the other one based on play field segmentation, shot detec-

tion and classification, however this method requires good

handmade rules. Ye et al. [30] chose an incremental learn-

ing SVM on a mid-level description containing the features

of successive moments like view labels, line mark positions

and shot descriptors to select highlights. After using an ar-

tificial neural network in order to detect the appearance of

logos and score and using Hough and k-means to detect goal

mouths, Zawbaa et al. [32] classified goals, attack and other

events with an SVM from the detection of goal mouth po-

sition. In recent work, Raventos et al. [18] ranked shots

and their associated keyframe using face and skin detection,

whistle detector and user specifications.

All these methods use at best an energy function to mea-

sure the motion activity whereas the motion in a soccer

game is probably the most important information. We now

present our adaptive and generic representation to describe

the motion and show how this representation allows us to

build a video abstraction.

3. Video movement analysis

Our method of motion content analysis is inspired by the

work of Kihl et al. [11] which extracts singularities from

motion in the domain of fluid mechanics. A singularity is a

vanishing point akin to root for polynomials. It can be seen

like keypoints in optical flow. Optical flows are projected to

polynomial bivariable function space to detect these vanish-

ing points from their polynomial approximations. Starting

from the definition of these singularities, we design a new

local motion video content descriptor.

3.1. Polynomial projection of optical flow and sin­
gularities

The two horizontal and vertical components of the op-

tical flow U and V at each pixels (x1, x2) are computed

using the method of Gunnar Farneback [7]. U and V are

projected onto Legendre basis to get the best approxima-

tion in the polynomial optical flow space. Then they are

expressed in a canonical basis.

PU (x, y) =

K
∑

k=0

L
∑

l=0

uk,l.x
k.yl;PV (x, y) =

K
∑

k=0

L
∑

l=0

vk,l.x
k.yl

(1)

with K + L ≤ degree. Similarly to the work of Kihl et

al. [11], we restrict approximations to degree 1.

(

U

V

)

≃ A

(

x1

x2

)

+ b =

(

a11x1 + a12x2 + b1
a21x1 + a22x2 + b2

)

(2)

2 11



Indeed, according to A and b, the singularities of the

optical flow appears at the position (x1 x2)
T

= −A
−1

b.

The type of a singularity depends on tr(A) and ∆(A).

∆(A) = (tr(A))2 − 4 det(A) (3)

We present the different configurations in figure 1.

Figure 1. Classification of singularities based on the value of A

(illustration from [11]).

Singularities are detected using a sliding window at dif-

ferent scales (from 0.1h to 0.5h by steps of 0.1h where h

is the smallest dimension of the video, usually the height).

This makes the singularity to be multi-resolution compliant.

Multiple singularities are detected at different scales at the

same position. These multiple singularities have not been

merged, as for SIFT features, since they could be of differ-

ent types or intensity and carry different information.

By definition, a singularity corresponds to vanishing

points. Thus no singularity will be detected in a pure trans-

lation. A singularity is not detected in situations where A

is not invertible. Moreover the highest the determinant is,

the more significant singularities are preserved: a thresh-

old on det(A) permits to filter the noisy singularities and to

keep informative ones. No thresholding on det(A) implies

to keep every singularities, even the ones with very small

motion which are most probably produced by pixel noise.

Thereafter, we globally or locally extract these singular-

ities, according to what we focus on.

3.2. Spatio­temporal representation

As introduced above, singularities can be tracked along

a video to describe a time lapse.

For T frames, T−1 optical flows are computed. On each

of these optical flows, we extract the singularities. In or-

der to build chains of singularities, called singlets, they are

matched in reverse time. Based on the hypothesis that a sin-

gularity has a small displacement between two frames and

to reduce computational cost, we match only singularities

in a near neighborhood. Thus, for each singularity sings in

the optical flow ft, the singularity candidates in the optical

flow ft−1 are restricted to a near neighborhood V (sings).
Two singularities are considered in the same neighborhood

if their sliding windows have a suitable overlap ratio (fig-

ure 3.2) as defined directly below:

V (sings) =

{

sing;
area(W (sing) ∩W (sings))

area(W (sing) ∪W (sings))
> α

}

(4)

where W (sings) is the sliding window of sings.

Figure 2. Two successive optical flows: Searching a match for the

singularity s
c
t within the singularities in the previous optical flow.

Regarding the overlap ratio, s
sp

t−1
and s

c
t−1 are candidates while

s
sn
t−1 is not. The match is the closest singularity regarding local-

ization and type: s
sp

t−1
. Singularity types sp, sn and c respectively

correspond to spiral, star node and center.

To match singularities during time, the best candidate

within a close neighborhood is selected as the one which

minimizes the singularity distance described below:

d(





A

x

y



 ,





A
′

x′

y′



) = ||A−A′||F+λ||

(

x

y

)

−

(

x′

y′

)

||2 (5)

where λ is a weight balancing the distance between the po-

sitions and the similarity between singularity coefficients

values. In each affine optical flow ft, a singularity sings
is described by 6 coefficients, 4 in A and 2 in b, and the

distance matching deals with these information.

• Since b contains information about the singularity cen-

ter location within its windows W (sings), we convert

this center in a pixel position (x, y).

• Since A contains information about the singularity

type (fig 1), matching the coefficients of A leads to

match singularities of the same type or at least with

close vector field aspects.

The entire algorithm to extract singularities and match

them as a singlet is described in algorithm 2. An example

of singlet is presented in figure 3.

Collecting singlets along a video and analyzing their

shapes, positions or their lengths provide robust description

of optical flow within this time lapse. Besides, in the next

section, we detail our application of singlets description on

soccer videos in order to sum up sport matches.
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foreach frame in the shot do

get the frame fn;

if previous frame exists then
compute the optical flown=(U,V) from fn−1

and fn;

foreach sliding window do

crop the optical flow within the window;

compute the projection of each component

U and V by doing the scalar product of

each component with each element Pi,j

of the Legendre basis;

change of basis to get A and b;

detect if there is a singularity and its

characteristics;

end

end

foreach detected singularity sings in flown do
foreach singularity of flown−1 within V(sings)

do
find the one with the best distance between

their As and the singularities positions;

end

if the bestdistance is under 2 then
if the bestMatch is at the end of a singlets

then add sings in this singlets;

else create a singlets with the both

singularities.;

if no match has been found within flown

then
search a match in the previous flow

until an historic of 5 flows
end

end

end

end

Algorithm 2: Algorithm to extract singlets

4. Experiments

4.1. Data

Facing the lack of benchmark from TV in the domain

of sport video analysis, we have recorded our own videos

from HDTV broadcasting. We manually annotated zooms

and slow motions from 4 soccer matches of the FIFA World

CUP 2014 (Germany vs Portugal, Nigeria vs Argentine,

France vs Honduras, Switzerland vs France) and the Qatar

Handball World Cup 2015 final. Each video has been scaled

to 25 fps.

In order to evaluate our salient moment detection, we

have extracted the ground-truth for the 4 selected matches

(Germany vs Portugal, Nigeria vs Argentine, France vs

Honduras, Switzerland vs France) from lists of salient mo-

ments extracted on the official FIFA website [3]. As can

be seen from these ground truths, the description of each

Figure 3. Singlets: illustration of matching of singularities ex-

tracted from real optical flow on three consecutive frames in a soc-

cer match. It is a spiral singularity (red, as in figure 1) as can be

seen from the flow.

Match FIFA Extended

ground-truth ground-truth

Germany vs Portugal 30 27

Nigeria vs Argentine 51 35

France vs Honduras 54 32

Switzerland vs France 40 26

Table 1. Number of salient moments in each match according to

the ground-truth of all the moments described on FIFA official

webpage vs our extended ground-truth.

salient event is linked to a given minute of the match and

describes roughly the action. We manually annotated the

salient moments from the FIFA description with the num-

ber of starting and ending frames to obtain a frame level

decision.

We improved the annotation of this benchmark to make

it compliant with a computer vision groundwork. First, we

have completed this list of salient moments by adding all

corners and kick-off to fill missing actions. Secondly, we

have merged the salient moments which are listed twice:

for instance, a goal from a kick-off listed as first an action of

kick-off and an action of goal. We call the ground-truth with

this completed list of salient moments: Extended ground-

truth. In table 1, we report the amount of salient moment in

each games and in each database.

In this database, there are more than 7 hours, precisely

696002 frames. For reproducible research sake, all our

metadata and our code will be available on our website1.

4.2. Zoom detection

In a soccer match from TV channel, zooms, and in par-

ticular zoom(s)-in(s), are effective indicators of highlights

and salient moments of the match, since they represent a

1http://www.i3s.unice.fr/˜kblanc/
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Figure 4. ROC curves of our method for different thresholds on

det(A). Best result is obtained when there is a threshold of 0.2 on

det(A) and an averaged ∆(A) on 30 frames.

natural reaction of the cameraman to an action salience.

To evaluate, we use a video of the half soccer game, i.e.

more than 128500 frames. We only annotated persistent

zooms which are important in intensity and in time. There

are exactly 5659 positive optical flows and 122841 nega-

tive optical flows. To compare each methods, we use ROC

curves (figure 4 and 5) which well illustrate performances,

even in the case of unbalanced classes.

The two singularities star node and improper node (fig-

ure 1) represent zooms. Two conditions are required for

these detection: a strong determinant det(A) and a low

∆(A) (cf eq. 3). det(A) corresponds to the intensity of

the optical flow. In figure 4, we evaluate the influence of

a threshold on det(A) over zoom detection performance:

no threshold on det(A) implies that every global motion is

a zoom candidate, even slight ones and as one could guess,

that option gives poor results; with a threshold on det(A),
results are quite stable. Since projections are all computed

from optical flows and in order to get a detection with time

consistency closer to human perception, we add a chrono-

logical window to average these ∆(A) during time. Af-

ter grid search on the window size from 5 to 100, best re-

sults are obtained with a time history of 30 frames, that al-

most corresponds to a second. We obtain best results with a

chronological average, a threshold of 0.2 on det(A) and a

threshold of 4 on ∆(A) (figure 4).

Usually zooming are detected by the Global Motion Es-

timation (GME) method [30]. For this method, we used the

RGMC [20] method to compute the homography ht that

models the camera motion for each frame t.

x′ = m0x+m1y +m2

y′ = m3x+m4y +m5

According to [16], a zoom is then detected if m0 and m4

are equals. We set then a threshold on their difference. The

best threshold value found for GME method is 0.0004.

In [5], Duan quantified motion vectors to produce two

histograms, on angles and on magnitudes. A zoom is

detected if there is enough vectors with small norms

and enough vector angles between the following angles
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Figure 5. ROC curves for each methos for zoom detection: our

method vs Duan method vs GME method.

Method Precision Recall Accuracy

GME 3.68 % 68.4 % 19.79 %

Duan 8.92 % 50.62 % 75.06 %

ours 19.45 % 63.47 % 86.82 %

Table 2. Precision, recall and accuracy for zoom detection.

[15; 75] ∪ [105; 165] ∪ [195; 255] ∪ [285; 345]. Therefore,

this method requires two thresholds which are not provided.

The detection gives best results without filtering the mag-

nitude histogram (i.e. no threshold on the magnitude his-

togram) leading us to focus on the angle histogram. The

best threshold value for Duan method on the angle his-

togram is 42% of the pixels numbers.

We compare our method with the best parameter setting

with reference approaches but we can see by looking at fig-

ures 4 and 5 jointly that our method is not very sensitive

to the parameter setting since most of the settings provide

better results than reference approaches.

In the table 2, we compute the accuracy of each method

with the best corresponding threshold. Since our database

is unbalanced with 5% of positives samples, the precision

values are weak but are still a good indicator of recogni-

tion rate to check if the classifier does not always answer

negative classes.

Our zoom detection method has three advantages. The

main advantage of our method is that zooms are detected

even if the zoom direction is not in the image center. As can

be seen in figure 6, the optical flow center (represented as

the light blue dot on the third row) is very far from the zoom

center which is still detected. To the best of our knowledge,

such a result can only be achieved with our approach. More-

over, we can also localize the zoom center which is an indi-

cator of where the action happens. Finally, the last advan-

tage is to easily differentiate zoom-in and zoom-out. In the

case of those singularities, star node and improper node, the

eigenvalues of A are equals. Thus we simply have to check

the sign of one of the eigenvalues to differentiate zoom-in

and zoom-out. This method is very efficient to detect zoom

anywhere in the video.

Therefore, extracting global singularity on the whole op-
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Figure 6. A zoom detected in a soccer match. From left to right: 3 consecutive frames. From top to bottom: original frames (ball highlighted

by a red square), original optical flows and polynomial optical flow approximations. In the last rows, the singularity center is represented

by a small target and it is centered on the soccer ball that you can see in the first row.

foreach frame in the shot do

get the frame fn;

if previous frame exists then
compute the optical flown=(U,V) from fn−1

and fn;

compute the projection of each component U

and V by doing the scalar product of each

component with each element Pi,j of the

Legendre basis;

change of basis to get A and b;

if | det(A)| > 0.2 and |∆(A)| < 4 then
zoom detected

zoom center position at −A
−1

b if

trace(A) < 0 then zoom-out detected;

else zoom-in detected;

end

end

end

Algorithm 3: Zoom detection

tical flow can provide useful video editing information such

as zoom detection while extracting local singularities help

to measure the amount of motion.

4.3. Global excitement

We made the hypothesis that a salient moment of team

sports is when several players are in conflict to get the ball

or when players are running towards the goal (attack). In

that cases, there are local singularities around moving zones

and these singularities will have a temporal consistency.

We detect singularities in each optical flow within a slid-

ing window and compute a spatial histogram on their posi-

tions. Our purpose is to detect regions where there is an

global excitement. Each image is splitted by a 3x3 his-

togram, 9 uniform bins (see figure 7).

In order to stabilize spatial histograms through time, we

sum spatial histograms within a temporal window of size

10 frames. We discard video regions where there is a score-

board and sum up the remaining bins. We choose this in-

dicator to select moments for a summary and sort them

according to their intensity based on the aforementioned

hypothesis. These histograms are particularly interesting

when they are extracted from the farthest view in a match.

Figure 7. Left: a shot with all detected singularities. Each col-

ored square corresponds to one singularity, with the color of their

type (figure 1). Right: their corresponding space-time histogram

expressed with the given heat scale representing the amount of sin-

gularity.

Other clues indicate that an important action just hap-

pened such as replays (slow motions).

4.4. Slow motion detection

When a fast action deserves to be detailed, producers

usually use slow motions, often from an other point of view
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Dataset Precision Recall Accuracy

Train 97.06 % 80.49 % 89.41 %

Test 76.32 % 87.88 % 79.36 %

Test on handball 100 % 20 % 60 %

Table 3. Precision, recall and accuracy for slow motion detection

on different datasets.

to see all details. Thus we can detect the match salient mo-

ments in spotting slow replay. Most of the proposed solu-

tions for this detection problem use the video production

habits that consist usually in putting a logo before and af-

ter each replay. Pan et al. [15] used a HMM algorithm to

detect slow motion from differences between frames and an

HMM to model states before and after the slow motion like

editing effects for shot transition. Zawbaa et al. [32] filter

each frame of the video with the logo dominant color and a

trained SVM predicts if the logo appears or not. This type

of method has the drawback of both requiring a training set

of logo appearance and totally ignoring that the motion is

very slow.

To detect slow motion, we focus on the slowness inten-

sity of motion. Our method is based on a simple assumption

that is: in a slow replay, a motion will be consistent during

time. A singlet describes a typical motion evolution until

it totally change its type. Therefore the length of singlets

tells us how long a motion last. Thus several long singlets

implies that the shot is a slow motion.

We compute the length of each singlet and store their

length in a histogram of 100 bins. The histogram is then

considered as the feature vector for detecting video slow-

ness. To detect slow motion in video, we train a SVM

with a radial basis kernel function after whitening and a

PCA on our slow motion feature vector. To train an SVM,

we use a database of 82 videos containing 41 slow motion

and 41 non slow motion video parts extracted from three of

the soccer matches. In our experiment, we set the param-

eters as α = 0.4 for the neighborhood selection (cf eq 4),

λ = 0.02 for the matching distance (cf eq 5) and C = 29
and γ = 4.103 for the SVM training.

The test sets is composed by the rest of slow motion and

non slow motion samples in each soccer matches, being 33

slow motion segments and 33 non slow motion segments.

In order to evaluate the power of generalization of our de-

scriptor, we add 5 slow motions and 5 non slow motions

part extracted from the handball game.

Table 3 presents our recognition results on each slow mo-

tions dataset. As you can see, we obtain high accuracy for

soccer slow motions classification. With the same feature

extraction framework and without retraining the SVM, we

obtain a slow motion detection at high precision score for

the handball dataset. Since our framework was trained on

soccer matches and since we do not change any parame-

ters, regarding the results on the handball game, it is indeed

generic in spite of an over detection effect.

In the next part, we describe how singlets are useful

through these detections to extract salient moments of a

match and make a summary.

4.5. Salient moment detection and match summa­
rization

Singularities and singlets represents motion regions.

Globaly extracted, singularity represents camera motion:

we use star node and improper node to spot zooms in sec-

tion 4.2. Locally extracted, they represents players and ball

mouvements: we use the amount of singularities to char-

acterize global excitement. Singlet identifies singularity’s

evolution during time: we use their length to notice slow

motions by their nature.

From the singlets’ descriptions, we compute a summa-

rization. We select best moments by a combination of sev-

eral zoom-in and zoom-out, followed by a peak in the space

time histogram of singularities and then a replay of the ac-

tion with a slow motion.

In order to combine different clues of the salient mo-

ments, we build a frieze for each different values. In figure

8, you can see on the left a soccer video frame and on the

right its actual singlets space-time histogram. Underneath,

from top to bottom, there are 5 friezes. The first frieze cor-

responds to extracted zooms: red for zoom-in and blue for

zoom out. The second frieze shows the quantity of zoom

changes within a second according a heat scale. The next

frieze shows the amount of large vectors also using a heat

scale. We use this light indicator to contrast close-up view

from large field view. The forth frieze indicates SVM clas-

sification for slow motions in close up views: red for slow

motion and blue for non slow motion. Finally the last frieze

indicates the amount of singularities: the global excitement

indicator.

A match summarization is the concatenation of de-

tected salient moments. A salient moment is detected if

within 30 seconds time frame there are:

• at least two zoom direction changes, and

• an activity peaks higher than 1500 (at least 1500 singu-

larities) in a farthest view, and

• a slow motion replay in a close up view.

Therefore, we extract a list of main moments of the

match with these rules. On these 4 matches, our method

obtains the results referred in table 4.

Unfortunately, the authors of summarization methods for

soccer games do not provide any source code nor any binary

executable to reproduce their results on our database and the

re-implementation implies either human user specifications,
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Figure 8. Top left: random frame of a soccer match. Top right:

its space time histogram. Bottom: 5 friezes that describe a salient

moment detection criteria (from top to bottom: zoom-in/out, zoom

changes count, saturation, slow motion detection and activity

score).

Match FIFA Extended

ground-truth ground-truth

Germany vs Portugal 80 % 88.9 %

Nigeria vs Argentine 53 % 77.2 %

France vs Honduras 53.7 % 90.7 %

Switzerland vs France 62.5 % 96.6 %

Mean 62.3 % 88.2 %

Table 4. Precision rate of detected salient moments by our method

over all the salient moments, using two different ground-truth (see

paragraph 4.1).

not provided thresholds or logo database collection. This

makes the comparison impossible for video summarization.

We can summarize a soccer match by extracting zooms,

by detecting slow motion and salient moments without

any hypothesis on the player movements, just in analyzing

global video motion. To compute the summary, the shots

that contains the detected activity peaks are aggregated.

Since we do not use either soccer characteristics or pro-

ducing specificities (e.g. logos), our approach is generic.

In order to confirm this, we have set all parameters of our

method for soccer and train the SVM on soccer video train-

ing set. We have then extracted salient moments on a ex-

tract of an handball match without any retraining, refining

or adaptation. The extract is a part the HDTV video of the

final of the 2015 world championship, Qatar against France

(figure 9). We detect on that extract one salient moment,

followed by one slower replay, out of the three which are

indeed in this extract ground-truth. Please notice that the

handball field is purple, and that the players are moving dif-

ferently with zone restriction rules really different from soc-

cer games.

5. Discussion

In this article, we focus on detecting salient moments as

zooms, slow motion replays and global excitement of play-

Figure 9. Frame of the extract of handball game.

ers. However our description gives other information within

the projection coefficients that could lead to a semantic de-

scription of a game.

For instance, the simple degree 0 on polynomial basis

(cf eq.1) can provide interesting information in the process

of semantic description: u0,0 and v0,0 gives the translation

on the vertical and the horizontal axis. These coefficients

from the projection of the global optical flow, as computed

for zoom detection 4.2, characterize the camera translation

and then they determine the presence of an attack phase or

a counterattack phase.

These projections can be done from any bivariable func-

tion to any degree of polynomial bivariable function. We are

currently studying these coefficients to provide other clues

on a soccer match.

In the open code, we provide the possibility to set the

degree of polynomial projection, so these other motion fea-

tures can be easily computed.

6. Conclusion

We have presented in this article a new robust multi-scale

video descriptor: the singlets. They correspond to the track-

ing of singularities in the polynomial projections of optical

flow along the temporal dimension of the video.

This descriptor proves its informativeness in detecting

zooms (in and out), slow motions and salient moments dur-

ing sport events without any ad-hoc elements (no logo, no

particular ground color), thus allowing to build relevant

sport summary.

On future works, we will evaluate the potential of sin-

glets for a retrieval task as a motion descriptor itself or as

a complementary description to a shape and color descrip-

tion.
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