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Abstract

This paper proposes a method for reconstructing 3D ball

trajectories by using multiple temporally and geometrically

uncalibrated cameras. To use cameras to measure the tra-

jectory of a fast-moving object, such as a ball thrown by a

pitcher, the cameras must be temporally synchronized and

their position and orientation should be calibrated. In some

cases, these conditions cannot be met, e.g., one cannot ge-

ometrically calibrate cameras when one cannot step into a

baseball stadium. The basic idea of the proposed method

is to use a ball captured by multiple cameras as a corre-

sponding point. The method first detects a ball. Then, it

estimates temporal difference between cameras. After that,

the ball positions are used as corresponding points for geo-

metrically calibrating the cameras. Experiments using ac-

tual pitching videos verify the effectiveness of our method.

1. Introduction

Computer vision-based sport assistance has been widely

investigated using various methods [2], [4], [14], [16]. Our

particular focus was on analyzing the trajectories of balls

pitched in baseball. In baseball games, almost all plays start

with the pitcher throwing the ball. The average number of

balls the pitcher throws is 300 per game. Thus, analyzing

ball trajectories can be a quite effective support method both

for batters and pitchers.

In addition to analysis purposes, some commercial prod-

ucts tackle the problem of providing a virtual experience

about the opposing pitcher before the game by using mea-

sured ball trajectories. To address this problem, EON

Sports proposes a CAVE-based method and NTT proposes

an HMD-based system. These are promising ways to pro-

vide sports training and can also be applied to entertainment

purposes. Currently, commercially available sensors such

as Trackman and PITCHf/x are used for professional base-

ball games. However, such systems are rather expensive and

hard to carry to another cite. Ball trajectory measurement

systems with portability significantly benefit scouting and

recruiting. Thus, our target is a 3D ball trajectory measure-

ment system with ordinary cameras that does not require

calibration in advance.

The basic approach for measuring 3D trajectories from

multiple cameras consists of two steps. First, it detects a

ball at each camera image. Second, it measures the 3D po-

sition on the basis of triangulation. For this approach, some

premises exist; shutter timing of the cameras is synchro-

nized, and geometric relations such as relative position and

orientation are known. However, these premises are diffi-

cult to be met when applying this approach to actual game

situations. For example, to synchronize shutter of cameras,

the signal generator and cameras should be connected, and

thus camera setup is limited drastically. Another example

is extrinsic calibration of cameras. To calibrate cameras ex-

trinsically, an object with a known shape should be located

on the view shared area. The main target in the work we

describe in this paper is to overcome these difficulties.

To calibrate asynchronous cameras, Noguchi et al. used

a marker. They simultaneously estimated differences in

shutter timing and geometric information by using the tra-

jectory of the marker. Tamaki et al. applied this method to

table tennis. They used a ball during a rally substitute for

the marker for asynchronous camera calibration.

Meanwhile, much computer vision research has been
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conducted focusing on baseball [10],[11],[13]. In addi-

tion to the above mentioned commercially available 3D ball

trajectory sensors, various methods such as Kalman filter-

based object tracking have been applied to ball detection

[3],[5],[12]. These studies mainly focus on ball analysis

from one viewing angle, thus putting 3D ball trajectory re-

construction out of their focus. Gueziec et al. [7] used a

camera deployed orthogonal to the batter’s box to detect and

reconstruct the 3D trajectory of the ball. However, this sys-

tem relies heavily on camera setup, which can be done by

using broadcasting systems.

This study tackles the problem of obtaining 3D ball tra-

jectories under an easy setup, i.e., using an asynchronous

and uncalibrated camera set. The main procedure of the

proposed method is (1) ball detection in a 2D image se-

quence, (2) temporal and geometrical calibration on the ba-

sis of 2D ball trajectory, and (3) reconstructing 3D ball tra-

jectory by triangulation.

The remainder of the paper is organized as follows: Sec-

tion 2 introduces how the 3D ball trajectory is used in base-

ball. Sections 3 and 4 describe and evaluate the proposed

method. We summarize key points in Section 5.

2. 3D Ball Trajectory in Baseball

As mentioned in Section 1, some commercial systems

track ball 3D trajectory in baseball games. In this section,

we first briefly introduce the system and then show some

examples of how it is used.

One widely used ball tracking system is PITCHf/x,

which is a camera-based ball tracking system. It is currently

installed in all U.S. major league baseball stadiums. In ad-

dition to ball 3D trajectory, it provides various ball statis-

tics, such as BRK, which represents how the ball bends,

and PFX, which represents the spin derived deflection of

the ball. Another ball tracking system is Trackman, which

uses 3D Doppler radar. It provides a wide variety of infor-

mation on topics such as the ball’s spin rate, its spin axis,

and how it bends.

Numerous ball trajectory analysis studies have been con-

ducted on the basis of ball trajectory [1, 8, 15, 6]. Hamilton

et al. applied machine learning technologies to PITCHf/x

data and in doing so were able to predict the type of pitch

that would be thrown before it was actually thrown [8].

Whiteside et al. analyzed performance changes in accor-

dance with the number of innings that had been played on

the basis of PITCHf/x data [15].

Recently, another way of using trajectory data has

emerged, i.e., one that shows what the batter had experi-

enced before. One example is a cave-based system provided

by EON Sports. Another one is a HMD-based VR system

that has been used by the Rakuten Eagles, a Japanese pro-

fessional baseball team. They released the news they had

obtained by installing a VR-based training system. These
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Figure 1. Multi-view capture system.

circumstances have increased the need to obtain 3D ball tra-

jectory at the outside of the stadium.

3. Proposed Method

In this section, we will describe the method we propose

to estimate the 3D trajectory of a flying object such as a

ball thrown by a pitcher from multi-view videos captured

by unsynchronized and uncalibrated cameras.

Figure 1 illustrates the setup of our multi-view capture

system. It consists ofNc static camerasCi(i = 0, · · · , Nc−
1) that are not synchronized and not calibrated extrinsically.

We assume that all cameras can observe the entire area of

the field, that is, all the ball trajectories are in the field of

view

We assume that all cameras can observe the all ball tra-

jectories and their intrinsic parameters are estimated by us-

ing Zhang’s method [17] beforehand.

Figure 2 shows the outline of the proposed algorithm.

It first detects ball region candidates for all 2D images.

Since these candidate regions include some misdetections,

our proposed method removes them and estimates the 2D

trajectory of the ball by fitting a uniformly accelerated mo-

tion model to the sequence of candidates of the ball region.

Next, it calibrates the multiple cameras temporally and geo-

metrically by using epipolar geometry. Finally, it estimates

the 3D ball trajectory by using triangulation. The details of

our algorithm are described below.

3.1. Detection of Candidates of Ball Region

In order to detect ball regions automatically, we intro-

duce a frame subtraction approach. Let f
j
i (i = 0, · · · , Nc−

1, j = 0 · · · , Nfi − 1) denote the j th frame in an input

video that has Nfi frames captured by Ci. We obtain a

frame subtraction result s̄
j
i of the frame f

j
i as

s̄
j
i = s

j−1,j
i ∗ sj,j+1

i , (1)

where s
j−1,j
i and s

j,j+1

i are the frame subtraction results we

respectively obtained by using the two frames (f j−1

i , f
j
i )

and (f j
i , f

j+1

i ).

109



Detection of 

Candidates 

2D Trajectory 

Estimation

Temporal and 

Geometric 

Calibration

3D Trajectory 

Estimation

Multi-

view

Video

3D 

Trajectory

Proposed Algorithm

Figure 2. Outline of our algorithm.

The s̄
j
i value includes all change regions in time. We

labeled these regions and added them to the ball region can-

didates Rj
i = {rji:k}(k = 0, · · · , |Rj

i |−1) in the input video

with f
j
i frames , where |Rj

i | denotes the number of candi-

dates. Note that obvious non-ball regions such as those with

too large an area, which represent the areas of a pitcher and

a catcher, and too small an area, which represents obser-

vation noise, are removed beforehand by adapting a image

filter which removes such area based on its size.

3.2. 2D Trajectory Estimation Based on Uniformly
Accelerated Motion

In order to find the ball region from the candidates Rj
i

for each frame, we focus on the sequential movements of

the ball in time and take a RANSAC approach. We assume

that the local movement of the ball can be modeled as uni-

formly accelerated motion in 2D images. In three sequen-

tial frames, we randomly chase one candidate from Rj
i per

frame, such as r
j
i:k, r

j+1

i:k′ and r
j+2

i:k′′ , and compute the model

parameters of uniformly accelerated motion from them. Let

a
j
i and v

j
i denote the acceleration and velocity of the 2D

ball trajectory in frame f
j
i and these parameters are com-

puted as

a
j
i = 2

δt
j+1

j (cj+2

i − c
j+1

i )− δt
j+2

j+1(c
j+2

i − c
j
i )

δt
j+1

j δt
j+2

j+1(δt
j+1

j + δt
j+2

j+1)
(2)

v
j
i =

c
j+1

i − c
j
i

δt
j+1

j

−
aijδt

j+1

j

2
(3)

δt
j+1

j = t
j+1

i − t
j
i (4)

where t
j
i denotes the time of frame f

j
i , and c

j
i is the 2D

coordinate of the centroid of r
j
i:k. Suppose that the time of

f
j
i is t0 and that the 2D position of the centroid of the ball

on time t, i.e. ĉti , is represented as

ĉti = ĉ
t0
i + (t− t0)v

j
i +

a
j
i (t− t0)

2

2
. (5)

Let d(cti:k , ĉ
t
i) denote the 2D distance between the centroid

of one ball region candidate on time t and its estimated

value be shown by Eq 5. If d(cti, ĉ
t
i) is smaller than thresh-

old dth, we regard c
j
i:k as the inlier for the estimated pa-

rameters. By introducing this distance value, we define the

evaluation function of the estimated parameters as

E = Σi+NW

j=i−NW
Σ

|Rj

i
|−1

k=0
ρ(cji ) (6)

ρ(cji ) =

{

d2(cji , ĉ
j
i ) if d(cji , ĉ

j
i ) < dth

d2th otherwise,
(7)

where NW denotes the window size for the local area. In

our algorithm, we selected one combination with the most

inliers and the smallest value of 7 as the best combination

of ball regions for modeling the 2D ball trajectory. Again,

we computed the inliers with the best parameters and set

them as the true 2D ball trajectories. Since these 2D ball

trajectories are discrete values, we obtained continuous val-

ues for the entire 2D trajectories of the ball by applying a

cubic spline interpolation to them.

3.3. Estimation of 3D Trajectory with Temporal and
Geometrical Calibration

Let us assume that C0 is the basis camera and that Ci has

the time lag τi that satisfies t0j = tij + τi. If τi is known,

i.e. C0 and Ci are synchronized, the fundamental matrix Fi

betweenC0 andCi can be computed on the basis of epipolar

geometry by utilizing the 2D trajectories of the ball in each

camera as corresponding points. However, we assume that

these cameras are casually set up and not synchronized. To

address this problem, we focused on the epipolar geometry

constraint and simultaneously estimated the ideal time lag

τi and fundamental matrix Fi from the 2D ball trajectories

Let pt
0 and pt

i denote the 2D positions on continuous 2D

ball trajectories on time t in each camera. When synchro-

nizing these cameras, pt
0 and pt

i satisfy the epipolar con-

straint

p̃t⊤
0 F0p̃

t
i = 0 (8)

where x̃ represents the homogeneous coordinate of x. Us-

ing this constraint, we define the error function with a time
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lag τi as

E(τi) =
1

Nt

ΣNt

t=−Nt
{D(p̃t

0, Fi(τi)p̃
t+τi
i )+

D(p̃t+τi
i , Fi(τi)

⊤p̃t
0}

(9)

where Nt denotes the evaluation range and Fi(τi) is the

fundamental matrix estimated from the 2D trajectories with

time lag τi. D(x̃, l) means the distance between a point x

and a line l. We obtain τ∗i that minimizes Eq (9) as the

appropriate time lag and obtain the fundamental matrix F ∗
i

with τ∗i . Note that since corresponding two points from 2D

ball trajectories sometimes do not satisfy the epipolar ge-

ometry due to some observation noise, we reject the outliers

with LMedS when computing F ∗
i .

The essential matrix Ei can be computed from the fun-

damental matrix F ∗
i and the intrinsic camera parameters.

This Ei can be decomposed to extrinsic parameters, such

as rotation matrix and translation vector [9]. From these

parameters, we estimate the 3D trajectory ball by DLT[9].

4. Experiment

To verify the effectiveness of the proposed method, we

conducted 3D ball trajectory reconstruction from videos.

4.1. Experimental Setup

We captured baseball pitching with two cameras at an

actual baseball stadium, reconstructing 3D ball trajectory

reconstruction on the basis of the proposed method and

that of the baseline method. For the baseline method, we

employed the ball positions obtained by manual detection

and the fundamental matrix calculated from 540 points of

chessboard patterns placed between the pitcher’s mound

and home plate.

We used a Sony XDCam with resolution of 1280x720

pixels and 59.94 fps. Figure 3 shows the position of the two

cameras and corresponding snapshots. Their shutter timings

were synchronized. Intrinsic camera parameters for each

camera were obtained by the method described by Zhang et

al.[18].

We used ten pitches from the pitcher to the catcher to

calibrate extrinsic camera parameters of cameras and recon-

structed 3D ball trajectories. Though the shutter timings of

the cameras were synchronized, we displaced two frames

for one camera. In the following experiment, we examined

time displacement at every 0.005 frame.

4.2. Ball Detection

Table 1 shows the detection results obtained for a moving

object. In the table, “Only ball” means that the only mov-

ing object is the ball, “Ball+other object” means an object

other than the ball was detected, and “Other object” means

only objects other than the ball were detected. “Detection

Figure 3. Position of cameras and corresponding images.

Table 1. Ratio of moving object detection.

Cam1 Cam2

Only ball 61.6 84.8

Ball+other object 23.7 0.02

Other object 4.8 0.0

Detection rate 87.7 85.1

Table 2. Ball detection ratio.
Cam1 Cam2

True positive 84.8 83.7

False positive 0.0 0.0

Detection rate 87.1 83.7

rate” is the ratio of the number of frames in which the ball

region was detected among frames in which the ball exists.

To determine whether the ball is detected or not, we used

the position displacement between positions of the detected

object and that of the manually detected ball; if the displace-

ment was lower than 20 pixels, we judged that the ball was

detected. As shown in Table 1, the proposed method failed

to detect the ball in about 15% of the frames in each view.

Table 2 shows the ball detection results. Using the ball

trajectory restriction allowed us to correctly distinguish the

ball from other moving objects. In this case the detection

rate was slightly deteriorated by the ball trajectory fitting.

We believe this is due to the trajectory model we used.

Moving object detection and ball detection are shown in

Fig. 4. Black dots denote detected moving objects. Dots

surrounded by cyan are detected as balls. Red circles denote

manually provided ball positions.

4.3. Temporal and Geometrical Calibration

Estimated temporal displacement was 2.01 frames. In

Fig. 5 we depict reprojection errors that occurred when

displacement was changed, which shows that the proposed

method conducts temporal calibration well. The evaluation

result we got for the fundamental matrix is shown in Ta-
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View 1 View 2

View 1 View 2

Figure 4. Detected moving object and detected ball.
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Figure 5. Temporal displacement estimation.

Table 3. Fundamental matrix evaluation.
Baseline Proposed

Distance from Epipolar line 0.962 1.13

ble 3; it shows the sum of reprojection errors, i.e., distances

between corresponding points and epipolar line. For com-

parison purposes, we used the fundamental matrix obtained

from manually provided ball positions. As shown in Table

3, the proposed method calculated the fundamental matrix

with reprojection errors comparable to those obtained with

the baseline method.

4.4. 3D Ball Trajectory Reconstruction

Figure 6 shows the results obtained for ball trajectory re-

construction. It shows positions of two cameras used for re-

construction and a reconstructed ball trajectory in 3D space.

Camera position is shown by the combination of three lines

that correspond to camera’s light direction and horizontal

axis and vertical axis. The blue lines show the results ob-

tained with the proposed method and the red lines show

Figure 6. 3D reconstruction results.

those obtained with the baseline method. As the figure

makes clear, the reconstructed trajectories of the two meth-

ods are duplicated, which means the proposed method well

reconstructs 3D ball trajectories.

5. Conclusion

This paper proposes a method for reconstructing 3D ball

trajectories by using asynchronous and uncalibrated cam-

eras. Our main idea is to use ball positions as correspond-

ing points. We successfully reconstructed 3D ball trajecto-

ries by estimating them from videos and using the results

obtained as corresponding points. In applying the proposed

method to actually captured baseball pitching and compar-

ing it with a baseline method, we verified that it accurately

reconstructed the ball trajectories. Because our current ex-

periments were limited, our future work includes verifica-

tion in various setup.
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