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Abstract

Human pose analysis has been known to be an effective

means to evaluate athlete’s performance. Marker-less 3D

human pose estimation is one of the most practical meth-

ods to acquire human pose but lacks sufficient accuracy re-

quired to achieve precise performance analysis for sports.

In this paper, we propose a human pose estimation algo-

rithm that utilizes multiple types of random forests to en-

hance results for sports analysis. Random regression forest

voting to localize joints of the athlete’s anatomy is followed

by random verification forests that evaluate and optimize

the votes to improve the accuracy of clustering that deter-

mine the final position of anatomic joints. Experiential re-

sults show that the proposed algorithm enhances not only

accuracy, but also efficiency of human pose estimation. We

also conduct the field study to investigate feasibility of the

algorithm for sports applications with developed golf swing

analyzing system.

1. Introduction

For sporting activities such as golf, the posture of the

player and how his/her motions are formed can heavily

impact the performance of the game. Given such im-

portance, especially for golf, various studies and services

have attempted to scrutinize golf swings with human pose

[1, 19, 17] that would have been difficult to perceive with

the naked eye. To obtain accurate human pose, human pose

estimation technologies such as [2, 4, 7] are used. However,

such technologies are difficult to be widely utilized because

they all require either wearing a device or placing markers

on the player’s body.

On the other hand, in the computer vision research

community, with proliferation of advanced depth cameras

such as Kinect [3], various researches regarding marker-less

3D human pose estimation have been performed. Specif-

ically, by analyzing depth images, the researches effec-

Figure 1. Verification forests evaluate votes and filter invalid votes

to accurately and efficiently estimate human pose. (a) all votes

cast by random regression forest, (b) only verified votes and their

confidence values, and (c) result of 3D human pose estimation in

three different views.

tively localize human anatomic joints via tracking meth-

ods [8, 23, 12, 24] or utilizing a pre-trained machine like

random forest [13, 20, 10, 21, 15, 16]. However, in spite of

its convenience, the lack of precision has been a major ob-

stacle for applications that require sufficient accuracy such

as 3D pose analysis for sports.

Among them, [13, 21] introduce random regression for-

est based methods that cast 3D votes and cluster them to

localize joints even when the joints are occluded. However,

examining the votes generated by random regression for-

est shows that a significant amount of the votes has noise

as shown in Fig. 1-(a). Although the clustering algorithm

such as mean shift might alleviate the noise of the votes, it is

obvious that the invalid votes hinder accurate and efficient

localization of the joints.

In this paper, we propose a 3D human pose estimation al-

gorithm which enhances its precision and efficiency by ver-

ifying the votes. Initially, a random regression forest casts

3D votes to estimate position of joints as shown in Fig. 1-(a)

which are then efficiently evaluated by a set of random ver-

ification forests as shown in Fig. 1-(b). By result of the ver-

ification, the verified votes maintain their weight, while the

invalid votes lose their weight or even they are eliminated.

With the enhanced conciseness of the votes, an algorithm
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to estimate clusters of the votes accurately and efficiently

localizes 3D joints as shown in Fig. 1-(c). By performing

the scheme over a 10,000 frames of golf swing data set, we

notice that our proposed approach of validating the votes

not only improves the accuracy but also reduces the com-

putation time compared to the algorithm just utilizing the

random regression forest.

Furthermore, we conduct a field study by developing a

prototype system for golf swing analysis utilizing the pro-

posed human pose estimation algorithm. With no additional

devices but depth camera, the system evaluates golf swing

by examining 3D human pose such as the angle of the joints,

swing trajectories, etc. With a sequence of poses extracted

from the swing, the system is capable of automatically iden-

tifying seven important phases of the swing such as back-

swing top or impact.

The organization of the paper is as follows: Sec. 2 con-

tains a brief introduction to relevant work existing in litera-

ture, Sec. 3 elucidate the golf swing data set we acquired.

Sec. 4 explains the random forest based algorithm and how

to train it. Sec. 5 describes experiments and presents their

results that verifies the performance of the algorithm, and

sec.6 introduces a conducted field study by developing a

prototype system for evaluating poses in golf swing using

the proposed algorithm. Sec. 7 organizes the contributions

of our work and introduces future work.

2. Related work

We will briefly mention previous work related to hu-

man pose estimation, and introduce existing applications for

evaluating pose of golf swing.

2.1. Existing human pose estimation algorithms

2D human pose estimation with RGB images is a tradi-

tional problem that has been widely investigated. Currently

researches like [18, 22, 9] aim to enhance the estimation

performance by using deep learning approaches. Among

them, [18] performs 3D analysis using 2D images; however,

this strategy cannot replace 3D human pose estimation be-

cause of ambiguities between 2D and 3D human poses.

With the development of feasible depth cameras, various

studies related to human pose estimation have been con-

ducted by utilizing advantages of 3D information. Exist-

ing algorithms can be categorized into generative and dis-

criminative approaches. Generative approaches fit articu-

lated models to current depth observation frame by frame

[8, 23, 12, 24]. The tracking approaches require delicate

algorithms to build appropriate articulated models for each

user [24] and complex optimization algorithms to minimize

the difference between articulated model and depth infor-

mation, such as Iterated Closest Point. Consequently, these

approaches hardly achieve estimation results in real-time

except [12]. Moreover, the tracking mechanisms, which uti-

lize the pose of previous frame, exhibit limitations when the

algorithm analyzes rapid movements, such as golf swing;

that is, poses with considerable differences from sequential

frames are difficult to optimize.

Discriminative approaches analyze human poses from

a single depth image by training a machine in advance.

[20, 10, 21] introduce algorithms based on random clas-

sification forest which examines that each visible pixel of

foreground is belonging to which body part. Meanwhile,

random regression forests can be used to estimate the entire

human joints, including occluded joints, by learning rela-

tive offset [13, 21], or direction [15] from the foreground

pixels to the ground truth joints. [16] enhances the accuracy

of estimation by partitioning localization of joints into two

sub-problems. In this study, joint localization and identifi-

cation are sequentially performed. This strategy enhances

the accuracy of pose estimation but exhibits low efficiency;

as such, without verification, the entire votes cast by the

regression forest should be considered by clustering algo-

rithm such as mean shift. The low efficiency is one of the

issues in implementing the application since the entire sys-

tem should run in real-time including not only the pose es-

timation algorithm, but also related preceding and follow-

ing algorithms, such as subtracting the background from the

scene, rendering the user interface, and so on.

2.2. Pose analysis of golf swing

When playing golf, the driving distance and direction are

considerably changed by minimal alterations in pose, such

as trajectories of arm. Researches and tools like [1, 19, 17]

investigate the human pose to scrutinize golf swing by uti-

lizing motion capture system for acquiring accurate pose

data. Motion capture systems [4, 7] can directly estimate

and evaluate human poses without occlusions by tracking

markers placed on subject’s body. However, processes to

operate the systems are complicated and expensive. For

instance, operations, such as calibrating multiple cameras,

wearing suit, and placing markers, must be preceded. Sim-

pler wearable device like [2] is also developed but still can-

not avoid forcing a user to wear the devices.

On the other hand, camera-based approaches conve-

niently provide pose analysis without difficult settings and

any additional device that a user need to wear or hold. [6]

just provides functionalities of capturing video and manual

visualization tools to analyze a golf swing. [5] performs au-

tomated 3D analysis by using a depth camera. The system

visualizes head, backbone, and hips, and provides informa-

tion, such as weight balance and hip turn. This approach

seems similar to a prototype system we will introduce, but

we focus on precisely estimating raw-level pose data in real-

time to allow service providers to design numerous func-

tions what they need.
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3. Ground truth data

A data set including the depth image and correspond-

ing 3D position of joint is required to implement human

pose estimation algorithm. An input depth image I =
{p0, p1, p2, ..., pwh} represents the distance from the depth

camera to the scene for each pixel p. A set of 3D posi-

tion of ground truth joints J is J = {J1, J2, ..., Jn}, where

Ji ∈ R
3.

3.1. Data acquisition

We utilize KinectV2 [3] and Vicon motion capture sys-

tem [7] to acquire I and J respectively. Kinect is a time-

of-flight depth camera that captures depth images I in 30

frames per second (fps). The installed Vicon system con-

sists of 17 infrared cameras, which surround a subject to

track markers without occlusion. By referring to Vicon’s

Plug-in-Gait Marker Placement, we extract 21 joints, in-

cluding head, neck, shoulder L/R, elbow L/R, wrist L/R,

hand L/R, hip L/R, knee L/R, ankle L/R, foot L/R, shoulder

spine, middle spine, and base spine in 120 fps.

We synchronize acquired I and J in terms of their coor-

dinates and captured time. In implementing the calibration

tool based on OpenCV[14], two coordinates are matched

so that the data from each system can be transferred to the

other coordinates. To synchronize timings of I and J , we

utilize the time stamps of I and J .

To maximize the variation of the poses in the data set,

we define seven typical swing types and ask a subject to

take a swing by following the swing types. The seven types

of swing are Sway, Reverse spine angle, Hanging back,

Chicken wing, Early extension, Wide stance, and Narrow

stance. Adding one free swing, eight swings are collected

from a subject. We also control the distance between Kinect

and the subject from 1.5 m to 3.0 m. Twenty subjects (14

males and 6 females) are invited, and as a total, 10,476

frames of golf swing data are acquired.

3.2. Data set arrangement

We apply a background subtraction algorithm to I in

advance, so that only pixels on user are remained as fore-

ground; we then assign a large constant number to pixels

for background. We also optimize the number of the target

joints. Shoulder spine, middle spine, and base spine are ex-

cluded in the data set for ground truth, and as a result, set of

joints J consists of 18 joints.

We define the visibility of each joints. In general, J pen-

etrates a depth image I because J describes the position of

anatomic joints below human skin, and the amount of pen-

etration is various by the thickness of each joint. We denote

half of the thickness of each joint j as ρj , and measure ρj
by estimating the maximum penetration depth among entire

cases in the data set I and J . Table 1 describes decided ρj .

With ρj , the visibility V of the joint j denoted as

Name
Neck* Head Shoulder Elbow Wrist

Hand Hip Knee Ankle Foot

ρj(mm)
80.00* 167.03 128.97 89.25 56.72

68.17 159.59 83.35 82.79 64.80

Table 1. The maximum penetration depth for joint j in the data set

is defined as ρj . In the case of neck, the penetration depth of neck

is difficult to be measured due to occlusion by the head. We define

ρ of neck as 80.00 mm.

Vj =

{

0 if Jj .z − I(p(Jj)) > ρj
1 otherwise

(1)

where p(Jj) is a 2D pixel position in the depth image where

joint Jj is projected. Finally, all data set for human pose

estimation algorithm in this paper is based on the arranged

data set S = (I, J, V ).

4. Human pose estimation algorithm

A random forest is a well-known ensemble learning

method that contains multiple decision trees and collects es-

timation results from the trees. Researches like [13, 20, 21,

15, 16] aim to estimate 3D human pose by using random

forest. In particular, [13, 21, 16] utilize random regression

forest, which learn the relative position of target joints from

foreground pixels. In testing time, foreground pixels tra-

verse the random forest and generate votes to estimate a

location of target joints. Then, mean shift which examines

clusters from a distribution of the votes decides final estima-

tion result. However, the votes are not always appropriate

as Fig. 1-(a) visualized. The algorithm we present in this

paper aims to verify and optimize the votes in order to en-

hance accuracy and efficiency of estimating human pose.

In this section, we introduce details of proposed human

pose estimation algorithm in this paper. We explain struc-

ture of the algorithm which has multiple types of random

forest, and then describe what and how each random forests

learns the acquired golf swing data set. At the end of fol-

lowing section, we describe procedures of the algorithm in

testing time with its pseudocode.

4.1. Type of decision trees

Initially, we construct two types of decision trees,

namely, regression decision tree Treg and verification de-

cision tree Tver. Treg learns offsets from foreground pixels

to ground truth joints; in testing, the tree casts 3D votes

to determine the position of target joints regardless of their

visibility[13, 21, 16]. For training set for Treg , we sam-

ple foreground pixels and measure offsets from the pixels

to ground truth joint j. Finally, training set for Treg is

Sreg = (Pr,∆p→J), where Pr is set of sampled pixels and
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X Z

Y Y
Left Elbow

Figure 2. A left elbow is occluded by a right arm. In this case,

Tver,o learns feature of the pixels of right arm(point cloud in blue

square) which occlude a left elbow(green dot).

∆p→J is a set of 3D vectors from the sampled pixels to each

ground truth joints.

The verification decision tree Tver evaluates votes cast

by Treg by analyzing foreground pixels placed where the

votes are projected. Two verification decision trees are de-

signed in this paper. The verification decision tree for visi-

ble joint, namely Tver,v , investigates the only pixels for visi-

ble joints to estimate probabilities that the test pixels belong

to certain joints. We employ classification methodologies

like in [20]. For training data set for Tver,v , we sample pix-

els distant within the pre-defined threshold γ from ground

truth joint likely in [10]. The sampled pixels for visible

joints Pv is denoted as

Pv =

{

p| ‖p− p(Jv)‖2 <
γ

Jv.z

}

(2)

where γ is a pixel distance threshold, and Jv is ground truth

joints whose V is 1 mentioned in Eq. 1. γ is decided as six

pixels through a prior experiment. We also compensate γ

by the depth of the target joint, because the size of the joint

in depth image will be decreased by its depth. At last, the

training data set of Tver,v is arranged as Sver,v = (Pv, iPv
),

where iPv
is a integer index of the joint related to each pixel

of Pv .

We then extend the concept of Tver,v to the case of oc-

cluded joints. Specifically, as Tver,v learns features of pix-

els near the ground truth joint, another verification decision

tree for occluded joints Tver,o learns features of pixels cov-

ering the ground truth joints. For a specific example visu-

alized in Fig. 2, when a left elbow is covered by pixels of

a right arm(in a blue sqaure), features of those pixels are

learned by Tver,o. In testing time, when Treg cast a vote for

left elbow and the vote is placed behind input depth image,

a pixel which covers the vote traverses Tver,o for examining

probability that the pixel covers left elbow.

Po =

{

p| ‖p− p(Jo)‖2 <
γ

Jo.z

}

(3)

where Jo is ground truth joint whose V is 0. Similarly, the

coupled data of the sampled pixels and their indices of the

related joint is training data set for Tver,o and it is denoted

Sver,o = (Po, iPo
).

4.2. Training decision trees

As shown in [13, 20, 21, 15, 16], the depth difference

comparison is an efficient feature extracted from depth im-

age. All decision trees in this paper utilize the depth differ-

ence f defined as follows.

f(p|φ) = z(p+
δ1

I(p)
)− z(p+

δ2

I(p)
) (4)

where p is the pixel on foreground, and φ = (δ1, δ2) is a

set of two randomly sampled 2D offsets, δ1 and δ2. The

sampled offsets φ are compensated by I(p), similar to that

in Eq. 2 and Eq. 3. Threshold of depth difference τ is also

sampled to partition the pixels into two subsets by compar-

ing τ and their f . Specifically, after f(p|φ) is evaluated for

each training pixel, the pixels whose f is larger than τ , are

classified to subset Sl, otherwise to Sr. In conclusion, for

each sampled θ = (φ, τ), two subsets, namely, Sl and Sr,

are decided.

The training at each node aims to determine parameter

θ that optimizes the objective function E. The result of E

is defined by the summation of the objective function for

each subset, namely, E(Sl) and E(Sr). To balance a tree,

we multiply a split ratio for each E(Sl) and E(Sr). The

objective function for θ at certain node is defined as follows:

E(S, θ) =
|Sl|

|S|
E(Sl) +

|Sr|

|S|
E(Sr). (5)

The objective function E varies depending on the type of

decision tree. Treg employs sum-of-squared-difference as

the objective function [21, 16] to measure how the offsets

∆p→J are converged. To minimize the effects of outliers,

we set threshold λ for length of the offset, and exclude the

offsets whose length is longer than λ when we evaluate E.

λ is empirically decided as 500mm in order to allow Treg to

localize occluded joints generally placed further from fore-

ground pixels. Finally, the objective function of Ereg is

denoted by

Ereg(S) =
∑

j

∑

p∈Pj

‖∆p→j − µj‖
2

2

µj =
1

|Pj |

∑

p∈S

∆p→j , and (6)

Pj =
{

p ∈ S| ‖∆p→j‖2 < λ
}

.

Like [20], for the objective function for the Tver,v and

Tver,o, the Shannon entropy is utilized like
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Ever(S) = −
∑

j

h(j|S) log h(j|S) (7)

where h(j|S) is normalized histogram of the training pixels

for a joint j in set S.

After we sample and find θ which optimizes E(S, θ) for

a node, the found θ is assigned at the node as learned param-

eters. Following two children nodes iterate identical proce-

dures with each of the partitioned training data set, namely

Sl and Sr.

4.3. Learing data at leaf nodes

When we visualize ∆p→J of the entire training pixels at

a leaf node of Treg , the offsets are distributed in 3D space.

We utilize mean shift [11] to decide representative clus-

ters of the offsets as the final training results. We evaluate

the confidence value of training by analyzing the proper-

ties of the cluster. We consider two properties: how many

offsets construct the cluster and how the offsets are con-

verged. Hence, the confidence value for each cluster is pro-

portional to the number of the related offset and inversely

proportional to the average distance between the center of

the cluster and each related offset. The confidence value wr

for joint j is denoted as

wr(j) = |Cj |
|Cj |

∑

∆cj
∈Cj

||Cj −∆cj ||2
(8)

where Cj is the cluster and ∆cj is the offset in Cj .

Like [20], Tver,v and Tver,o utilize the estimated normal-

ized histogram h(j|S) to decide the confidence value of ver-

ification wv for joint j as follows.

wv(j) = h(j|S) (9)

4.4. Procedures of the algorithm

We build three types of random forests with the intro-

duced decision trees. We will denote the random regression

forest, the random verification forest for visible votes, and

the random verification forest for occluded votes as Freg ,

Fver,v , and Fver,o respectively.

The purpose of the algorithm is estimating 3D position

of joints using a single depth image. Specifically, the pose

estimation algorithm start by casting votes with Freg . The

visibility of the votes is decided by ρj introduced in table

1. Depending on the visibility, Fver,v or Fver,o , verifies the

votes with pixels where the votes are projected. The algo-

rithm decides the final weight of the votes by combining the

confidence values of the random forests. Finally, consider-

ing the final weight, mean shift algorithm estimates clusters

of the votes, and the center of each cluster describes the es-

timation result for a joint. The algorithm 1 is a pseudocode

of the proposed algorithm. In following section, we discuss

Algorithm 1 Estimating 3D human pose

1: for sampled foreground pixel p in depth image I do

2: //Generate votes

3: run Freg to generate votes vp,j and their weight wr

4: //Verify the votes

5: for all vp,j do

6: acquire pixel position p(vp,j) in I

7: acquire depth of the position I(p(vp,j))
8: if p(vp,j) is not on foreground then

9: //Exclude the votes

10: W(vp,j) = 0.0

11: //ρj is half of thickness of the joints, so double it

12: else if (vp,j).z – I(p(vp,j)) ≦ 2ρj then

13: run Fver,v and acquire wv

14: else

15: run Fver,o and acquire wv

16: evaluate final weight W(vp,j) with wr and wv

17: //Clustering the votes

18: for all joint j do

19: perform mean shift with vp,j and W(vp,j)

20: return 3D position of all joints

design of weight models which merge the results of each

random forests.

4.5. Weight models

In order to define the final weight of each votes, we

designed two weight models for each Fver,v and Fver,o.

Firstly, we employ a weight model defined as

W1 = wrwv (10)

where wr and wv are confidence values from Freg and Fver

respectively. In Eq. 10, the result of verification wv directly

affects to the final W1. For instance, if a vote is failed to be

verified, W1 becomes zero, and the vote is excluded when

estimating clusters.

When we apply W1 to Fver,o, a significant number of

the occluded votes are eliminated, and even some of joints

cannot be localized due to a lack of related votes. Fver,o

employs indirect verification scheme dissimilar to that of

Fver,v . Specifically, Fver,o evaluates the votes by using not

features of the pixels for the joints, but features of the pixels

which occlude the joints. Therefore, we need to design an-

other weight model in order to alleviate the impact of Fver,o

on the final weight. The weight model W2 is denoted by

W2 = wr(αwv + (1− α)) (11)

where α is a constant value. We obtain the best α through

a prior-experiment. α is decided as 0.99 which maximizes

an influence of wv , and prevents W2 from becoming zero
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Figure 3. Mean average precision and mean error of the each hu-

man pose estimation algorithm in total(first row), in the case of

estimating visible joints(second row), and in the case of estimat-

ing occluded joints(third row).

Figure 4. Estimation result of RA(upper figures) and RFV (lower

figures) to localize a left elbow. The less votes exist in the result

of RFV because some of the votes are eliminated by the verifica-

tion. The confidence value of votes visualized as color from red

to black, and estimation result and ground truth are visualized in

orange and green respectively at the figures right side.

by wv . In conclusion, a decided weight model of Fver,v and

Fver,o is W1 and W2 respectively.

5. Experiments

We conduct experiments with the golf swing data set in-

troduced in Sec.3. For cross-validation, we apply repeated

learning-testing scheme that the data set is iteratively di-

vided into training set and test set, and the data is parti-

tioned by the subject in order to evaluate performance of

the algorithm when the algorithm does not train swings of a

particular subject. Specifically, we randomly select data of

16 subjects as training set, and the other data of 4 subjects

as test set. We perform a couple of iterations to confirm a

performance of the algorithm.

We define mean error(mE) as the average distance be-

tween estimation results and ground truth joints. If an error

is less than 100mm, we determine the estimation as true

[13, 20, 21, 15, 16]. The ratio of true cases among entire

test cases is defined as mean average precision(mAP). We

type
# of

tree
depth

avg # of sampled

pixels per frame

#of sampled

(φ,τ )

Freg 2 20 2000.00 (1500,30)

Fver,v 3 19 2171.35 (1000,30)

Fver,o 2 18 1228.59 (1000,30)

Table 2. The training parameters for each random forest. In the

case of Fver,v and Fver,o, the number of sampled pixels of each

frame is various because amount of sampled pixels depends on

visibility of ground truth joint.

run the algorithm on single-core computation with Intel i7-

6850K CPU when measuring computation time for the al-

gorithms.

5.1. Experimental setting

Various parameters exist for training each random

forests. The training parameters are optimized empirically,

and table 2 describes details. As a total, seven decision trees

construct the proposed algorithm.

In this section, we monitor performance changes among

three types of human pose estimation algorithm as follows:

• RA: utilize Freg and consider all votes

• RF : utilize Freg and consider the only votes projected

on foreground

• RFV : utilize Freg , Fver,v , and Fver,o which we pro-

posed in this paper.

When we test the algorithms, about 750 pixels in aver-

age are sampled from the foreground per each frame, and

the pixels traverse the random forests to localize 18 joints

of a subject. The following sections will introduce the ex-

perimental results with respect to accuracy and computation

time.

5.2. mAP and mE

Fig. 3 describes the measured performance of each algo-

rithms in terms of mean average precision and mean error.

As shown in first row of Fig. 3, supplementing the verifi-

cation forests improves overall accuracy of the algorithm.

We confirm the improvement in the case of not only visible
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joints(second row in Fig. 3) but also occluded joints(third

row in Fig. 3). The enhancement is even remarkable when

estimating occluded joints.

We also verify the effect of the random verification

forests by visualizing the votes of RA and RFV as shown

in Fig. 4. Specifically, as upper images in Fig. 4 illustrates,

Freg casts votes to localize left elbow of a user, but the votes

are not converged enough to correctly localize ground truth

joint(green) by clustering. Meanwhile, as shown in lower

images of Fig. 4, when we verify the votes with the random

verification forests, the only verified votes(red dot) maintain

their weight considered by clustering process. Otherwise,

the votes lose their weight. Consequently, mean shift can

accurately estimate 3D position of left elbow as shown in

right side of Fig. 4.

In the result of mean error, the mean error of RF is in-

creased in the entire cases. We believe that the result shows

a side effect of just excluding the votes not in foreground.

Specifically, the fundamental assumption of RA is that a

position of joints can be estimated by clustering the entire

votes even if each of the votes has an error. However, the re-

sult becomes biased when we exclude the only votes out of

foreground while the entire votes in foreground are consid-

ered whatever errors they have. On the other hand, proposed

RFV eliminates all invalid votes even if the votes stay on

foreground, and therefore RFV solves the bias which RF

has. As a result, RFV has lower error compared to that of

RA and RF .

5.3. Computation time

Employing the verification do not always guarantee en-

hancement in efficiency because the verification could re-

quire more time than what we earn by the verification. In

order to elucidate the effect of the verification, we separate

the algorithms in parts; random regression forest(RF), ran-

dom verification forest(VF), and mean shift(MS), and mea-

sure the spent time of each sub-algorithms.

Fig. 5 shows the number of votes considered in estima-

tion and computation times of each sub-algorithms. For the

number of votes, we arrange them as ratio of the number of

votes for each algorithm to that of RA. RF just decrease

only 10% of the votes. The result indicates the number of

votes not in foreground is 10% in the entire votes. On the

other hand, about 28% of the votes are excluded in RFV ;

consequently, for mean shift, RFV spends less than half

time that RA spends while adding only 4.66ms for the veri-

fication. As a result, RFV spends only 59.97% of the time

RA spent.

The result of the experiment shows that RFV can effi-

ciently and effectively optimize the votes by utilizing veri-

fication forests and improve efficiency of human pose esti-

mation algorithm. When we also consider the improvement

in accuracy discussed in section 5.2, we conclude that the
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Figure 5. Comparisons of computation time for each sub-

algorithms and the ratio of the number of considered votes to lo-

calize the joints between the human pose estimation algorithms.

verification scheme applied to RFV improves accuracy and

efficiency of the human pose estimation algorithm.

6. Prototype system for pose analysis in golf:

SWAN

We perform a field study to investigate feasibility of the

proposed algorithm for pose analysis in golf. We develop a

prototype system called “SWAN” which is abbreviation of

“SWing ANalyzer”. As Fig. 6 shows, SWAN consists of a

display to visualize evaluation results, a depth camera, and

a beam projector to show system states.

With the estimated human pose, we implement a swing

detection algorithm to automatically notice user’s swing

and allow the system to proceed evaluations of the swing.

When a swing is detected, we extract various information

of the swing such as color images at each frame, 3D posi-

tion of 14 joints1 at each frame(head, neck, shoulder L/R,

elbow L/R, wrist L/R, hip L/R, knee L/R, and ankle L/R),

and frame indices of the seven important stages in golf

swing(address, take-back, back swing top, down swing, im-

pact, release, and finish).

Fig. 7 shows series of analysis by using estimated pose

data. Fig. 7-(a) describes a page to compare the swing of

the user to the reference swing performed by a professional

golfer. With the extracted frame index for impact, we syn-

chronize both video of the user’s swing and the reference

swing. The user can examine his/her head movement, knee

alignment, swing rhythm, and balance of golf swing in this

page. Fig. 7-(b) presents the results of a side view analysis.

To acquire the side view of a user, traditional approaches

use multiple cameras surrounding the user. Considering the

1Although the proposed algorithm can localize 18 joints, only 14 joints

are utilized by the functions of SWAN. Four excluded joints are hand L/R

and foot L/R.
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depth information from the depth camera, we can acquire

half of side view of the user, and visualize it as 3D point

cloud. Head movement in depth, backbone alignment, and

trajectory of wrist in up-swing and down-swing are visual-

ized in this page. Fig. 7-(c) shows the user’s pose and its

evaluation result at the seven important stages compared to

the reference swing. The page shows head movement, arm

angle, weight balance, and structures of all 14 joints of a

user. We evaluate the pose by comparing it to the reference

swing, and visualize evaluation result with color. If serious

error a swing has, the color of visualization gradually turns

to green, yellow, and red.

We perform a field study by installing SWAN in a golf

academy. Test users can conveniently utilize SWAN and

check evaluation results of their swing. Among the func-

tions provided by SWAN, the users are especially impressed

by functions of visualizing side view for 3D analysis and

automatically extracting and evaluating pose at the seven

important stages of swing. However, upon taking a swing

with a driver club fastest swing in golf, SWAN often misses

to detect the impact time because the swing is too fast to be

captured by the depth camera which operates in 30 fps.

7. Conclusion and future work

In this paper, we propose an accurate and efficient human

pose estimation algorithm that has shown to be effective for

pose analysis in sports. The algorithm utilizes a set of ran-

dom verification forests to verify votes cast by an initial ran-

dom regression forest for localizing joints. The enhanced

conciseness of the votes improves overall performance of

localizing joints in terms of accuracy and efficiency. 18 ma-

jor anatomical joints including occluded ones are localized

within 22.61ms with less than 30mm error. Furthermore,

we expect the algorithm can be applied to the pose analy-

sis in various applications, because the algorithm does not

employs any constraint only for poses in golf.

Field study to demonstrate the feasibility and effective-

ness of SWAN were conducted where the system was in-

stalled in local golf academy and utilized by golf enthu-

siasts. Without any additional device but depth camera,

SWAN can estimate 3D pose information such as move-

ment of head, trajectory of swing, arm angle, and so on.

Moreover, the functions in SWAN is not restricted by the

examples we introduced. They can be numerous since raw

data of 3D pose is provided by the proposed algorithm.

In order to implement further improved application, we

have a plan to merge the algorithm with an existing in-

door golf system that accurately analyzes shot information

such as shot direction, launching speed, and spin. We ex-

pect that the converged system can comprehensively ana-

lyze golf swing from the causes (pose) to the consequences

(shot result).

Depth Camera
-RGB camera is also implemented
-Be set in portrait view

Beam Projector 
-Shows state of the system
-Marks where a user need to 
stand

Display
-Shows the evaluation results

Figure 6. A prototype of SWAN. A user can do swing and evaluate

his/her swing by following visualized instructions from SWAN.

(a) (b)

(c)
Figure 7. Three pages of SWAN. (a) analysis of front view with

synchronized video, (b) analysis of side view with visualization of

point cloud, and (c) Pose analysis at the seven important stages.
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