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Abstract

Estimating action quality, the process of assigning a
”score” to the execution of an action, is crucial in areas
such as sports and health care.Unlike action recognition,
which has millions of examples to learn from, the action
quality datasets that are currently available are small — typ-
ically comprised of only a few hundred samples. This work
presents three frameworks for evaluating Olympic sports
which utilize spatiotemporal features learned using 3D con-
volutional neural networks (C3D) and perform score re-
gression with i) SVR, ii) LSTM, and iii) LSTM followed by
SVR. An efficient training mechanism for the limited data
scenarios is presented for clip-based training with LSTM.
The proposed systems show significant improvement over
existing quality assessment approaches on the task of pre-
dicting scores of Olympic events {diving, vault, figure skat-
ing}.While the SVR-based frameworks yield better results,
LSTM-based frameworks are more natural for describing
an action and can be used for improvement feedback.

1. Introduction

Action quality assessment refers to how well a person
performed an action. Automatic action quality assessment
has applications in many fields like sports and health care.
For example, an injured player or someone with mobility
impairments could perform exercise therapy on their own
without the cost and inconvenience of a physical therapist
while still getting feedback on performance and suggestions
on how to improve. On the other hand, automated scoring
systems could be used as a trusted impartial second opin-
ion to avoid scoring scandals where the partiality of judges
was questioned [1, 13]; notably the 2002 pairs and 2014
women’s Figure Skating (Winter Olympics) results.

Compared to action recognition, action quality assess-
ment has received little attention. There are some key dif-
ferences between action recognition and action quality mea-
surement. Firstly, typically for an action recognition task,
there is a significant amount of difference between two dif-
ferent classes of actions. In the case of action quality mea-
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Figure 1. Overview of proposed approaches.

surement, the difference between actions could be subtle
similar to fine-grained classification. Secondly, while it has
been shown that an action class can be recognized by “see-
ing” only a part of the action [3], it is not meaningful to
measure the quality of an action by seeing only a small part
of the whole action. It is not meaningful because, there is
a possibility that the performer will make an error at any
given segment of the action. As an example, a diver may be
perfect through the air but fail to enter the water vertically
and make a large splash which is reflected as a poor over-
all dive score. Therefore, if the dive was judged just by a
short clip while the diver was in the air, the resulting perfect
score would poorly correlate with the actual action quality.
However, if the whole action clip were taken into account,
the diver would have had been penalized for erroneous entry
into the water.

20



Convolutional neural networks, in particular the recently
proposed 3D neural network (C3D) [9] which learns spa-
tiotemporal features, are increasingly being used for action
recognition [9, 3, 10, 16, 15, 12]. Further, recurrent neu-
ral networks are used to capture the temporal evolution of
a video [16, 15]. To train deep networks, large datasets
are needed. For action recognition, many datasets such as
UCF-101 [8], HMDBSI1 [4] and Sports-1M [3] are avail-
able. Compared to action recognition, fewer action quality
datasets [7, 6] are available and, in addition, action recogni-
tion datasets have millions of samples while the MIT Div-
ing Quality dataset [7] contains just 159 samples. Action
recognition dataset can be increased in size by mining web-
sites like YouTube using a script, whereas, increasing ac-
tion quality dataset requires qualified human annotations to
score the action, which makes it more labor intensive.

When developing an action quality framework, it is criti-
cal to respect the constraint of small dataset size. In this pa-
per, we propose multiple frameworks that use visual infor-
mation for action quality assessment and evaluate on short-
time length action (diving and gym vault) and long-time
length action (figure skating). Results show significant im-
provements over state-of-the-art [7, 11] for predicting the
score of Olympic sports. The major contribution of this
work can be summarized as follows:

e Introduction of new datasets for sports score assess-
ment: The existing MIT diving dataset [7] is doubled
from 159 samples to 370 examples. A new gymnas-
tic vault dataset consisting of 176 samples (see Fig. 2)
has been collected. Datasets are available at http:
//rtis.oit.unlv.edu/datasets.html

e We propose multiple approaches for action quality as-
sessment which makes use of visual information di-
rectly unlike existing approaches which utilize noisy
human pose information [7, 1] which is difficult to
obtain in complicated athletic actions.

e An incremental LSTM training strategy is introduced
for effective training when samples are limited with
improved prediction quality and reduced training time
by about 70%.

e We demonstrate how our LSTM-based approaches can
be used to determine where action quality suffered
which can be used to provide error feedback.

2. Related Work

Only a handful of works directly address the problem
of action quality assessment [7, 6, 11, 17, 14]. Wnuk and
Soatto introduced the FINAQ9 diving dataset, perform a pi-
lot study, and conclude that, temporal information, which
is implicitly present in videos, is vital, and estimation of
human pose using HoG features is reliable [14]. Human
pose features have also been used in [7, | 1] to assess action
quality of Olympic sporting events. In [7], a pose estima-

tor is run on every relevant frame and concatenated to form
a large action descriptor. The descriptor is post-processed
(DCT, DFT) into features which are used for estimating the
parameters of a support vector regression (SVR) model to
predict the event scores (quality). Venkataraman et. al [11],
using the estimated pose for each frame, calculate the ap-
proximate entropy features and concatenate them to get a
high-dimensional feature vector. Their feature vector bet-
ter encodes dynamical information than DCT. One of the
drawbacks of using human poses as a feature is that the fi-
nal results are affected by incorrectly estimated poses.

Quality assessment has been performed in the health
field as well. Surgical skills were assessed using spatiotem-
poral interest points with frequency domain transformed
HoG-HoF descriptors. A final classifier is learned to iden-
tify a surgeon’s skill level [17]. Similarly, quality assess-
ment in physical therapy has been cast as a classification
problem [6]. In this work, 3D pose information from a
Kinect is used to determine if a exercise repetition was
”good” or “bad”.

Pose estimation has been shown to be challenging on
diving and figure skating datasets [7] due to atypical body
positions. Pose only descriptors neglect important cues
used in sport ’execution” scoring such as splash size in div-
ing. Relative pose also does not reflect absolute position-
ing information which may be important for score (e.g. en-
try position of a dive). Therefore, visual features such as
C3D are expected to perform better. Additionally, Olympic
sports have clear rules for scoring which can be exploited
to separate the type of dive from the execution quality of
the dive. These rules have not been addressed by current
literature.

3. Approach

Instead of using human pose information explicitly, the
proposed systems leverage visual activity information to as-
sess quality of actions (see Fig.1). Since quality of a sport
performance is dependent not only on appearance but evolu-
tion over time, the first stage of the proposed sports assess-
ment system extracts spatiotemporal features from video us-
ing the C3D network. C3D has been shown to be effective
at preserving temporal information in video and outperform
2D ConvNets [9]. The features tend to capture appearance
in the beginning of a clip and after the first few frames fo-
cuses on salient motion making them well suited for activ-
ity analysis. After feature extraction, three different frame-
works are proposed which differ in the way they aggregate
clip-level features to obtain a video-level (or equivalently,
sample-level) description. In one framework, SVR is built
directly on clip-averaged C3D features; the second frame-
work explicitly models the sequential nature of an action us-
ing an LSTM; and the final framework combines the LSTM
with SVR.
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Figure 2. Images from gymnastic vault, diving and figure skating datasets. For gymnastic vault, we illustrate the viewpoint variations; first
row shows the take-off, second row shows the flight while the third row shows the landing; images from different samples are shown in

different columns.

3.1. C3D-SVR

To classify a given instance of action, Tran et al [9] di-
vided the whole action video into clips of 16 frames and
extracted C3D features for every clip. A video-level action
descriptor was obtained by averaging the clip-level features
and used as input to a SVM to output predicted action class.
With this inspiration, the first variant on action quality as-
sessment follows the same pipeline but replaces the SVM
with a SVR (Fig. 1(top)). The clip-level features are ob-
tained from the FC6 layer of the C3D network. The fi-
nal feature vector is the normalized temporal clip average
which is used as input to a SVR trained using the action
score (quality value). Note that through clip-level aggrega-
tion, the temporal evolution and timing of an action is lost.

3.2. C3D-LSTM

In the C3D-LSTM approach, clip-level C3D features are
combined to model sequential (temporal) effects through
an LSTM layer to generate a video-level description. This
technique was inspired by Ng et. al [16] who used mul-
tilayer LSTM’s for sequential feature aggregation of up to
120 frames and Ye and Tian [15] who use LSTM to embed
sequential information between consecutive C3D clips and
dense trajectories [12] .

Specifically, the C3D FC-6 layer activations are used
as input to an LSTM (in this work, there are two paral-
lel LSTMs to encode the execution and difficulty scores
respectively). Each LSTM is followed by one fully con-
nected regression layer to map the clip-evolved LSTM fea-
tures to a score. Another advantage of C3D features, be-
yond spatiotemporal description, is that it provides a more
compact video representation than frame-level CNN result-
ing in fewer “steps” to process a video. Take an action
instance of 145 frames. Using C3D features, and a tem-
poral stride of 16 frames, we can represent the whole ac-
tion instance using just 145/16 = 9 time steps; whereas
if we had used frame-level description, our action instance

would have been a 145 time steps long. Generally, longer
sequences need multiple LSTM layers to model the tempo-
ral evolution, while shorter sequences can be modeled effi-
ciently using a single layer LSTM. Therefore C3D features
limits the number of LSTM parameters and hence the num-
ber of training samples required.

3.2.1 LSTM Final-Label Training

The problem of action quality assessment is at heart a many-
to-one mapping problem, because, given a stack of frames
(or equivalently clips), we want to predict a score (either
execution score or difficulty score). We refer to training
a LSTM on the single final label, i.e. score at the end
of an event, as final-label training. In final-label training,
all clips in a video are sequentially propagated through the
LSTM network and the error is computed upon completion
by comparison with the final video score sg (red in Fig. 3).

As the input for the LSTM, we use the FC-6 layer acti-
vations from C3D, and Euclidean distance as the loss func-
tion for training. A fixed learning rate policy of 0.0001 is
used, input video is randomly cropped to 112 x 112 pixels,
and input is randomly flipped as described in the C3D paper
[9]. There are two sets of unknowns that need to be deter-
mined during final-label training. The first set of unknowns
is the partial score attributed to different stages of an action.
The second unknown is the total score after seeing all input
clips. This will be a difficult task with limited size datasets
(<400 examples).

3.2.2 LSTM Incremental-Label Training

It is expected that as an action advances in time, the score
should build up (if the quality is good enough) or be penal-
ized (if the quality is sub par). For example, let’s consider
a two-somersault, one-and-half-twists dive. This dive can
crudely be divided into various stages like diver’s take-off,
completing first somersault through air, completing second

22



[}
o
=]
(S
%)
. [} . . . L] ] .
Clip Clip N
N-1 Final
Score

Figure 3. Difference between incremental-label training (blue) and final-label training (red). In final-label training, the LSTM network sees
all the clips in a video (accumulated observation from start to end of action) and the error with the final score is used for parameter updates
through back-propagation. With incremental-label training, back-propagation occurs after each clip through the use of an intermediate
score which accounts for all frames observed to the current clip. For simplicity, the intermediate score is a linear accumulation in time.

somersault through the air, completing all the twists, en-
tering the water, etc. Each of these stages should have a
small contribution in the final score. Following this intu-
ition, score should be accumulated through an action as a
non-decreasing function.

To improve the LSTM training with limited data, we pro-
pose a new training protocol called incremental-label train-
ing. In incremental-label training, unlike final-label train-
ing, we use intermediate labels when training LSTM’s in-
stead of using just the final label sp for the whole action
instance. The intermediate label s(c) for a given time step
is supposed to indicate the score accumulated up until the
end of clip c. The concept of incremental scores is depicted
in blue in Fig. 3.

The intermediate labels can be obtained in either super-
vised or unsupervised manner. In the supervised case, an
annotators must identify sub-actions (smaller segments of
an action) and the accumulated scores at each sub-action
time. Considering the previous diving example, sub-actions
like somersault and twists have standardized scoring from
the the FINA governing body, however, segmentation into
the sub-action units could be difficult. In practice it is not
feasible to use supervised scores since it would require an
expert judge to segment sub-actions, e.g. somersault and
twist, and assess their worth using official FINA rules. Ig-
noring effort, C3D clips are fixed frame length and these are
not expected to align perfectly with sub-actions.

In contrast, the unsupervised assignment can save time
and effort and provide a scalable solution. A video is di-
vided into clips and the total score is evenly divided into
each clip (each clip contributes the same amount of score).
The intermediate score for each clip is

s(c) = % X Sp (1)

where c is the clip number and N is the number of clips
in a video. Incremental-label training is used to guide the
LSTM during the training phase to the final score with in-
termediate outputs (i.e. back-propagation occurs after each
clip). Since the unsupervised assignment does not strictly
respect the sub-action scores, in practice, we utilize a two
step training process. The LSTM is first trained for a few
thousand iterations using incremental-label training. The
model is then fine-tuned by using final-label training at a
lower learning rate.The final-label fine-tuning works well in
practice to relax the constant score growth restrictions from
the incremental-labels.

3.3. C3D-LSTM-SVR

In C3D-LSTM-SVR, the same C3D-LSTM network as
discussed previously is employed. The final fully connected
regression layer after the LSTM is removed and we train a
SVR, on LSTM layer activations, to predict action quality
score (Fig. 1 bottom). This architecture provides explicit
sequence and temporal modeling of an action through the
LSTM while taking advantage of the shallow discriminative
SVR for generalization in the face of limited data.

3.4. Error detection

Intuitive and understandable spatiotemporal output is de-
sirable in action quality assessment scenarios since this in-
formation could be presented to the human subject as a
means to improve performance. Pirsiavash et al. [7] gener-
ate a feedback proposal by first differentiating their scoring
function with respect to joint locations, and then, by com-
puting the maximum gradient, can find the joint and direc-
tion the subject must move to bring the most improvement
in the score. In our case, we are not using human pose fea-
tures, so we can not directly use such a feedback system.
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Dataset Diving Skating | Vault
Samples 100/59 | 300/70 | 100/70 | 120/56
Pose+DCT [7] | 0.41 0.53 0.35 0.10
ConvISA [5] 0.19 - 0.45 -
ApEnFT [11] 0.45 - - -
C-S 0.74 0.78 0.53 0.66
C-L (F) 0.05 0.01 - -0.01
C-L (I) 0.36 0.27 - 0.05
C-L-S (F) 0.56 0.66 - 0.33
C-L-S (I) 0.57 0.66 - 0.37

Table 1. Olympic score prediction comparison with literature. (C =
C3D, S =SVR, L = LSTM, F = Final, I = Incremental). ConvISA
results published in [7].

Instead, the temporal score evolution as it changes through
the LSTM structure is utilized to identify both ”good” and
”poor” components of an action. The assumption is that
a perfectly executed action would have a non-decreasing
accumulation of score while errors will result in a loss of
score. Error detection is illustrated in Fig. 4. It should be
noted though that the LSTM-feedback mechanism identifies
the clip-level gain/loss but does not provide true explanation
of why.

4. Experiments & Results

We evaluate the action quality assessment frameworks
on three Olympic sports which are scored by judges, i) fig-
ure skating, ii) diving and iii) gymnastic vault. A full sum-
mary of all results can be found in Table. 1.

Performance Metrics: Action quality assessment is
posed as a regression problem to predict the quality “score”,
as such, Spearman rank correlation p is used to measure
performance [7, 11]. Higher p signifies better rank corre-
lation between the true and predicted scores. This metric
allows for non-linear relationship, however, it does not ex-
plicitly emphasizes the true score value but relative ranking
(i.e. lower scores for poor examples and higher scores for
better quality examples).

Initial investigation: An initial investigation was per-
formed on a small diving dataset with 110 training and 82
validation samples. Using 50-fold cross validation, it was
found that FC6 of the full C3D architecture (pre-trained on
Sports-1M) was the best layer for SVR regression (see Table
2) and the smaller C3D architecture (UCF-101) proposed
by Tran et al. [9] outperformed the full C3D. Addition-
ally, the C3D FC-6 features were sparse with 85% zeros
for small-C3D compared with 79% with full-C3D. Given
improved sparsity and rank correlation, spatiotemporal fea-
tures were extracted for video using the FC-6 activations
from the small-C3D network in the following evaluations.

Feature Correlation
conv5b (full architecture) 0.45
pool5 (full architecture) 0.50
fc6 (full architecture) 0.55
fc7 (full architecture) 0.46
fc6 (small architecture) 0.63

Table 2. Layer-wise correlation results.

4.1. Diving Dataset

The original 10m platform diving dataset introduced in
[7] (MIT-Dive) consisted of 159 samples which have been
extend to a total of 370 samples by including dives from
semi-final and final rounds of the 2012 Olympics (UNLV-
Dive). A dive score is determined by the product of “ex-
ecution”, judged quality of a dive, multiplied by the dive
“difficulty”, fixed agreed-upon value based on dive type.
The execution score is in the range of [0, 30] in 0.5 incre-
ments whereas the difficulty has no explicit cap. The dive
samples are recorded from a consistent side-view with little
view variation.

The C3D features are obtained from training on UCF-
101. Evaluation utilizes two datasplits: i) 100 train / 59
test as in MIT Diving [7] for direct comparison to published
results and ii) the extended 300/70 split to study dataset size
effects.

41.1 C3D-SVR

The C3D-SVR framework outperforms published results,
Table 1. Rank correlation is 80% more than for Pose+DCT
[7] and 65% better than the only other published results
which used approximate entropy-based features (ApEnFT)
[11] on the original MIT dive data. In [7], dive difficulty
was unknown during evaluation, however, judges are pro-
vided this information for official scoring. Table 3 high-
lights improved performance when C3D features are aug-
mented with dive difficulty using the expanded UNLV-Dive
dataset. It was found that the optimal temporal stride
was four and there was a 0.08 correlation improvement.
Pose+DCT features were also augmented with difficulty but
there was no improvement. Further results will not utilize
known difficulty to more closely approximate the MIT eval-
uation protocol.

412 C3D-LSTM

We implement our framework using Caffe [2]. All dive
clips are padded with zero frames to length 151 to be the
same length as the longest sample and split into 9 clips of
16 frames. Two parallel LSTMs are implemented to predict
the execution score separately from the difficulty score.
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Figure 4. Error detection: (a) Top row: diver managing a ’ripping’ — one with almost no splash — which resulted in normalized score
increase from 0.64 to 0.96. Bottom row: a dive with larger splash where score decreased. (b) Top row: dive with non-vertical entry with
corresponding score decrease. Bottom row: despite poor entry, only a small splash appears and is rewarded with increased score. (c) Score
evolution by clip: the diver has a strong take-off from the platform followed by legs split at ankles during the somersault in pike position
which results in reduction from 0.85—0.42—0.34. In the last clips there is a strong entry and little splash resulting in increasing score.

Stride | - Difficulty | + Difficulty
1 0.77 0.86
2 0.77 0.86
4 0.78 0.86
8 0.75 0.81
16 0.74 0.80

Table 3. Result of varying ConvNet stride and inclusion of diffi-
culty score on UNLV-Dive.

Augmenting UCF-101: We found that C3D-LSTM
didn’t work well with C3D network trained on the origi-
nal UCF-101 dataset. UCF-101 contains diving as one of
the 101 action classes. Upon visual inspection, the diving
samples from UCF-101 are visually quite different from our
diving samples. We believe that because of this difference,
the C3D network is not able to give out very expressive de-
scription. To get better description from the C3D network,
UCF-101 was augmented with our diving samples added
to their diving class. Additionally, during training, input
videos were randomly flipped for improved performance.

Evaluation: On the MIT-Dive data, training only re-
quired 1000 iterations for incremental-label training as

compared with 10000 for final-label training. Similarly,
training was 5k and 18k for incremental- and final-label
training on the UNLV-Dive data. Note after incremental-
label training, 2000 extra iterations of final-label train-
ing were performed to relax scoring constraints introduced
through the linear incremental-score approximation. Per-
formance comparison between the two training methods is
provided for both the execution-LSTM and the difficulty-
LSTM on MIT-Dive on six different random train/test splits
in Table 4. Incremental-training results much higher aver-
age p = 0.44 versus final-label p = 0.14 for execution
score. However, difficulty score was better with final-label
training — although, neither method worked well. The over-
all score p = 0.36 is less than Pose+DCT (Table 1).

Analysis: The LSTM implementation used 256 hidden
nodes but did not find varying the number of nodes resulted
in much improvement. Adding a second LSTM layer did
improve performance either, likely due to the added num-
ber of parameters to estimate on limited data. Unlike with
C3D-SVM above, using a denser sampling with stride of 8
instead of 16 reduced performance due to longer sequence
dependency in a video (more clips). Finally, the training
data was augmented through temporal shifting. With the
151 frames per dive, 7 end frames were not utilized when
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Incremental-label training (1K iterations) Final-label training (10K iterations)

C3D-LSTM C3D-LSTM-SVR C3D-LSTM C3D-LSTM-SVR

Split | Exe | Diff | Overall | Exe | Diff | Overall | Exe | Diff | Overall | Exe | Diff | Overall
1 0.43 | -0.11 0.44 0.72 | 0.35 0.71 0.06 | 0.02 0.04 0.76 | 0.13 0.71
2 0.38 | -0.18 0.37 0.56 | 0.02 0.48 0.18 | 0.04 0.29 0.64 | 0.26 0.44
3 0.38 | -0.25 0.26 0.59 | 0.33 0.52 0.09 | 0.02 -0.03 0.72 | -0.03 0.57
4 0.52 | -0.07 0.52 0.63 | 0.19 0.60 0.15 | -0.10 0.00 0.71 | 0.07 0.64
5 0.56 | -0.13 0.41 0.65 | 0.18 0.49 0.19 | 0.01 0.13 0.67 | 0.22 0.49
6 0.39 | -0.38 0.18 0.74 | 0.26 0.62 0.18 | -0.04 -0.16 0.76 | -0.08 0.54
AVG | 0.44 | -0.18 0.36 0.65 | 0.22 0.57 0.14 | -0.01 0.05 0.71 | 0.09 0.56
STD | 0.07 | 0.11 0.12 0.07 | 0.12 0.09 0.05 | 0.05 0.15 0.05 | 0.13 0.10

Table 4. Rank Correlation on MIT-Dive Dataset performed over six random datasplits with results shown for Execution score, Difficulty

score, and Overall Score. Note incremental-training only required 1K iterations versus 10k for final-label.
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Figure 5. Qualitative comparison among incremental-label training (red), final-label training (yellow) and Pose+DCT [7] (purple) and
ground truth score (blue). Orange box: dive where all methods have similar output. Green box: C3D-LSTM-inc has much better prediction
since it can recognize the splash whereas the pose only recognizes the clean entry body positioning and over-predicts. Red box: Pose+DCT
was better since it did not let the small splash outweigh the poor body position upon non-vertical entry into the water.

building 9 clips of length 16 frames. Duplicate dives were
created by shifting the start frame between frame 1 and 6
to augment UNLV-Dive from 300 to 1800 training samples.
Unexpectedly, the results were actually worse with more
training data.

4.1.3 C3D-LSTM-SVR

Instead of averaging the clip-level C3D features, as we
did in C3D-SVR, to get a video-level description, in C3D-
LSTM-SVR, we use LSTM to model the temporal evolu-
tion. However, we take LSTM layer activations directly,
without passing them through a fully-connected layer. The
SVR is used on top of the LSTM layer activations (as

trained above). The results in Table 1 clearly show improve-
ments over the original C3D-LSTM. Both incremental- and
final-label training have similar results in this case at ap-
proximate gain of 40% and 24% on MIT- and UNLV-Dive
respectively. The SVR stage helps performance approach
the C3D-SVM result with the added benefit of being able to
due error detection (Fig. 4) which could be used for feed-
back to the athlete for training or to explain judges scoring.

4.1.4 Qualitative Comparison

Score prediction results are shown qualitatively and com-
pared against Pirsiavash et. al’s approach in Fig. 5. The plot
gives the true score (blue), final-label (yellow), incremental-
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Method Correlation
Pose+DCT [7] 0.35
Hierarchical ConvISA [5] 0.45
C3D-SVR (- Deductions) 0.50
C3D-SVR (+ Deductions) 0.53

Table 5. Figure skating dataset comparison. ConvISA results pub-
lished in [7].

label (red), and Pose+DCT (purple) for the 59 test dives in
MIT-Dive. The orange box highlights dive 32 where all pre-
diction methods obtained similar results which are close to
the true score. In the green box highlights dive 40 where
Pose+DCT drastically over estimates the score since it only
utilizes pose and does not recognize the large splash which
the C3D-LSTM-incremental system is able track. In the red
box, Pose+DCT performs better since is explicitly accounts
for the poor form while the C3D method seems to heavily
weight the small splash.

4.2. Figure Skating

The figure skating annotations (MIT-Skate) include the
“presentation”, “technical”, and final scores. The scoring is
points-based where a fixed technical base value is assigned
to each element of a performance. The presentation score
evaluates the quality of an executed element based on an
integer [-3, 3] scale. The final score is a sum of technical
and presentation scores. On an average, figure skating sam-
ples are 2.5 minutes (4500 frames) long and with continu-
ous view variation during a performance. Due to the long
length of the event videos, only C3D-SVR was evaluated.

C3D-SVR: We applied the same approach as diving to
figure skating dataset. We used 100 samples for training,
and the remaining 71 samples for testing. We repeat the
experiments 200 times with different random datasplits, as
done by authors in [7], and then average the results. Re-
sults were poor with p = 0.22. Since UCF-101 does not
have figure skating examples, the “Yo-Yo’ action samples
were replaced with skating samples. C3D was trained on
the augmented UCF-101 with much better results. Table 5
compares the performance with published results and shows
the use of C3D features gives 0.05 improvement in correla-
tion. Like in dive, explicit information on deductions (e.g.
modified jumps) improved performance.

4.3. Gymnastic Vault

The UNLV-Vault dataset is a new activity quality dataset
which consists of 176 samples. In the new Olympic vault-
ing scoring system, the final score is the sum of a 10-point
execution value plus a difficulty value. Sequences are short
with an average length of about 75 frames. Although se-
quence lengths are comparable with that diving dataset,
view variation is quite large among the vault samples (at

different events) due to broadcast configurations (see Fig.
2) making it a more difficult dataset to score.

Since the UCF-101 dataset does not contain vault as one
of its classes, again, ‘Yo-Yo’ action samples were replaced
with vault training samples for training the C3D network.
The vault evaluation only uses a single defined datasplit of
120 train and 56 test sample and are compiled in Table 1.
This dataset turned out to be challenging due to systematic
view variation.

Similar to dive results, the C3D-SVR variant had the best
performance. The Pose+DCT system did not work at all
since pose consistency was poor. The training and testing
protocol was the same for vault except that the number of
frames was fixed to 100, resulting in LSTM sequence length
of 6 (6 clips in a video). Training required 1k and 10k iter-
ations for incremental- and final-label training respectively.
C3D-LSTM performed very poorly with only p = 0.05 for
incremental-label. However, the SVR addition was still able
to improve performance by almost quadruple of Pose+DCT.

Table 1 makes the case for the use of C3D features for
action quality assessment. While he LSTM formulation has
lower rank correlation, the ability to interpret the results is
beneficial. Future work will need to provide more insight
spatially (what body parts are in error) as well as temporally.

5. Conclusion

We introduce a new Olympic vault dataset and present
three frameworks for action quality assessment which im-
prove upon published results: C3D-SVR, C3D-LSTM and
C3D-LSTM-SVR. The frameworks mainly differ in the way
they aggregate clip-level C3D features to get a video-level
description. This video-level description is expressive about
the quality of the action. We found that C3D-SVR gave best
results, but was not able to detect errors made in the course
of performing an action. We improve the performance of
C3D-LSTM by using a SVR on top of it and although the
performance of C3D-LSTM-SVR is lower than C3D-SVR,
it has an advantage of being able to spot the erroneous seg-
ments of an action.
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