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Abstract

Group activity recognition in sports is often challeng-

ing due to the complex dynamics and interaction among the

players. In this paper, we propose a recurrent neural net-

work to classify puck possession events in ice hockey. Our

method extracts features from the whole frame and appear-

ances of the players using a pre-trained convolutional neu-

ral network. In this way, our model captures the context in-

formation, individual attributes and interaction among the

players. Our model requires only the player positions on

the image and does not need any explicit annotations for

the individual actions or player trajectories, greatly simpli-

fying the input of the system. We evaluate our model on a

new Ice Hockey Dataset. Experimental results show that

our model produces competitive results on this challenging

dataset with much simpler inputs compared with the previ-

ous work.

1. Introduction

Computer vision has been widely used in many sports

applications [22]. The applications are expanded from in-

formation extraction such as player detection/tracking [20]

to new visual information generation such as free-viewpoint

video generation [11], and further to prediction of shot lo-

cation [32] and broadcast camera angle planning [5].

Among various applications, group activity recognition

is an active research area. Group activity recognition refers

to determining what a group of people are doing, providing

semantic and abstract descriptions for a sequence of images.

Sports activity recognition is challenging due to the rapid

transition between the events, occlusions and fast move-

ments of the players, varied camera viewpoints, and cam-

era motions. Moreover, spatiotemporal structures of events

vary greatly in different sports. For example, the locations

of the players in volleyball is relatively static compared to

players in ice hockey. All these factors make the recognition

problem complex and hard to generalize across different

sports. Previous work have tried to address these issues to
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Figure 1. Our method can classify puck possession events for ice

hockey games from a sequence of images. We first extract fea-

tures from a whole frame and individual players. Then we train an

LSTM model using a sequence of temporal features.

some extent but most group activity classification problems

have targeted non-sports applications [2, 7, 19, 6]. Conse-

quently, studying a particular sport with domain knowledge

is valuable and complementary to general activity recogni-

tion.

We are interested in puck possession events classification

in ice hockey games. The classification results may enable

coaches and analysts to determine both strategic concepts

and support evaluation of individual players. Unlike other

ball sports such as basketball and soccer, the puck in hockey

can be in the possession of neither team for extended time

periods, for example, when the puck moves out from the

defensive zone or into the offensive zone (‘dump out’ and

‘dump in’).

The playing surface (rink) is large and enclosed by the

boards. Play-by-play commentary, provided in real-time

during a broadcast, annotates shooting, scoring and hit

events at time intervals of 3 to 15 seconds, typically, while

the intervals between our annotated events range from 3 to

200 frames (30 FPS). The output of our system can greatly

benefit the manual events annotation with some tolerance of

error.

Our proposed model aims to classify five puck posses-
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(a) Dump in (b) Dump out (c) LPR

(d) Pass (e) Shot

Figure 2. Example images of puck-possession events. In each image, the dashed red line is the potential trajectory of the puck except for

LPR in which the red lines are the trajectories of potential player movements.

sion events which are dump in, dump out, pass, shot and

loose puck recovery (LPR). The descriptions of these events

are in Table 1. Figure 2 shows example images of these

events. In the images, the dashed red lines show the move-

ments of pucks or players. They also show the importance

of temporal information in events classification. Figure 3

shows the schematics of these events on the ice hockey strat-

egy board.

Our model uses a deep architecture which only requires

detected bounding boxes of the players and corresponding

frames during test, simplifying the input of the system. Fig-

ure 1 shows the pipeline of our method. The input of our

method is a sequence of images with player detection re-

sults (bounding boxes in the image). Our method first ex-

tracts context features from a whole image, and individual

features from player image patches. Because the number of

detected players changes over frames, we use a max pool-

ing layer to aggregate the individual features. Then, we use

an LSTM model to train an event classification model using

features from the sequence of given images.

The main contribution of our work is two-fold. First,

we propose a benchmark for event classification on a new

challenging ice hockey dataset. Second, we extensively

study the features from whole frames, individual players

and temporal information. We provide solid evidence that

our model works best when individual’s information is com-

bined with the context of the events in ice hockey games.

2. Related work

Group activity classification Group activity classifica-

tion has been an active area of research over the years. Most

previous work has relied on hand-crafted features. For ex-

ample, Amer et al. [2] proposed a Hierarchical Random

Field (HiRF) model that captures long range temporal de-

pendencies between latent sub-activities and infers the ac-

tivity class at the root node of the graphical model. Choi and

Savarese [7] proposed a unified framework to track multiple

individuals, identify individual actions, understand the in-

teractions and identify the collective action. Lan et al. [18]

proposed a hierarchical model that represents low-level ac-

tions, social roles and scene-level events. Lan et al. [19]

proposed a latent variable framework to capture individual

actions, interactions among the individuals and group activ-

ities. Ramanathan et al. [24] focused on identifying social

role of individuals in a weakly supervised approach where

the inter-role interactions are modeled using a Conditional

Random Field (CRF). Recently, Shu et al. [27] uses a spa-

tiotemporal AND-OR graph to jointly infer groups, events

and human roles in aerial videos.

Deep learning and sports video analysis As more data

became available, the success of Convolutional Neural Net-

works (CNN) has been proved in numerous applications

over the last decade on computer vision tasks such as im-

age recognition [17] and video analysis [15, 28]. Recur-

rent Neural Networks (RNN) particularly Long Short-term

Memory (LSTM) [12] are widely popular models that are

well suited for variable length sequence inputs. LSTM has

been successfully applied to speech and handwriting recog-

nition [10], human action recognition [9, 3] and image cap-

tion generation [31, 14].

On the other hand, the domain of sports analysis is vast

because each sport has its unique characteristics. As a re-

sult, a model from a particular sport is unable to achieve

reasonable performance on other sports dataset. However,
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researchers have narrowed down the domain into specific

sports particularly the most challenging ones and have tried

to solve different aspects over the years. For example, Yue-

Hei Ng et al. [33] proposed and evaluated different deep

neural network architectures to classify longer sequence of

sports videos. Meanwhile, various approaches have been

proposed for different types of sports analysis [4, 21, 26].

Researchers have shown different ways to combine

LSTMs with CNNs or graphical models for group activ-

ity recognition. For example, Deng et al. [8] integrated

a graphical model into a deep neural network. The net-

work learns structural relations by representing individuals

and the scene as nodes passing messages among them and

imposing a gating mechanism to determine the meaningful

edges. But the method is not designed for sports activities

where interactions between individuals are generally more

complicated. Ibrahim et al. [13] built a hierarchical deep

network to learn the individual actions using one LSTM

which is then combined with features extracted from CNNs

to pass into another LSTM to predict the group actions.

However, their method has difficulties on events which are

very similar to each other. Moreover, their model needs ex-

plicit labels for individual actions which are expensive and

hard to label for sports like ice hockey. In [23], Ramanathan

et al. argued that in many group activities redundant infor-

mation can be ignored by concentrating on a subset of peo-

ple who contribute to the group activity. Thus, they first

extracted features from individuals who are ‘attending’ to

the event as well as global context features representing the

entire scene and then solved the problem of event classifi-

cation using a deep network.

Building upon the existing work, our model takes advan-

tage of the discriminative power of deep learning and cap-

tures the structural and spatiotemporal information in group

activities. Moreover, it shows how combining contextual

information and person level features can improve accuracy

for events that are very similar to each other.

3. Our method

Visual cues The most descriptive cue for possession

events classification is the location of the puck and the lo-

cation of players in playing ground coordinates. However,

it is extremely hard to track the puck in images as the puck

is very small and moves very fast. Due to motion blur, the

puck’s color and texture can be merged into backgrounds.

Without the puck information,the event classification prob-

lem is even more difficult. Estimating player locations in

the playing ground coordinates requires the camera param-

eters, which is also challenging for fast moving cameras.

Alternative cues for puck possession events classification

are player locations in the image and their spatiotemporal

information. Players are coached to keep the team shape

and move to offense/defense together. But looking only at

individual players can be ambiguous in some events. For

example, the player appearance and action might be very

similar in the two events ‘pass’ and ‘shot’. In this case,

additional cues such as context information are necessary

to distinguish these two events.

Method overview The input to our model is a sequence of

images as well as the player bounding boxes in each image.

The bounding boxes of players can be in any order as our

method does not require player trajectories. The output of

the model is a group activity label for the entire sequence.

Our method has two parts: feature representation and

events prediction. In the feature representation, we aggre-

gate different types of features that are extracted from a pre-

trained convolutional network. In the events prediction, we

use a single layer LSTM model. Our main efforts are on

integrating different types of features to improve classifica-

tion accuracy.

3.1. Individual and context information

We use appearance features to model individual play-

ers. The appearance feature is extracted by the fc7 layer of

AlexNet [17] using the sub-image of a player. We choose

to use the pre-trained AlexNet (on ImageNet object recog-

nition task) because it has been successfully used in vari-

ous computer vision tasks [9, 13] and we only have a small

number of training/testing data. The output of the CNN rep-

resents the appearance information of an individual player.

Interaction among the individuals is essential to deter-

mine group activities. However, it is difficult to incorpo-

rate the exact location of individuals into deep features as a

cue, which requires player locations in playing ground co-

ordinates. To solve this problem, we use max pooling the

features of individual players in a particular frame to incor-

porate player interactions.

We use deep features from a whole image to model the

context information. In each frame, we use the fc7 acti-

vation in AlexNet as the representation of the context. The

intuition for adding this context is that some events can only

be determined if we know the scene information. For exam-

ple, if we consider the events ‘dump in’ and ‘dump out’ in

ice hockey, they are almost the same except the fact that

they occur at different zones.

3.2. Temporal model

We use a Long Short Term Memory (LSTM) network

[12] to model the temporal information of the images. In

every timestep t, the LSTM includes a hidden unit ht, an

input gate it, forget gate ft, output gate ot, input modulation

gate gt and memory cell ct. The LSTM formulation can be

represented as the following equations:

93



Figure 3. Schematics of puck possession events. This figure shows schematics of five puck possession events that our system aims to

classify. In some events, individual players appearances/motions could be very similar such as ‘dump in’ and ‘dump out’.

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = φ(Wxcxt +Whcht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ φ(ct)

(1)

where W terms denote weight matrices (e.g. Wxi is the ma-

trix of weights from the input to the input gate), b terms are

bias vectors. σ is the logistic sigmoid function, φ is the

tanh function, ⊙ is the element-wise product. We have

also tried more advanced LSTMs such as the LSTM with

peephole connections [25]. There is no performance gain

compared with the basic LSTM model.

In this representation, the group dynamics is evolving

over time and the event at a given time instance can be de-

termined based on the hidden state computation from the

preceding states and current input xt.

4. Experiments

We conducted experiments on an ice hockey dataset. In

this dataset, an example contains a target frame which is as-

sociated with an event label. The target frame is generally

a frame that marks the beginning of an event. The length of

the sequence is varying from 2 to 24 frames. For the feature

extraction, we use the AlextNet pre-trained from ImageNet

for object detection if not specified otherwise. For the pre-

diction model, we use SoftMax classification and LSTMs.

4.1. Baselines

We considered the following baseline models for the

evaluation:

1. Frame-level Classification with CNN (M1): This base-

line extracts frame level features from target frames

and classifies the event for the target frames using Soft-

max.

2. Person-level Classification with CNN (M2): This

baseline first extracts player level features from tar-

get frames. Then it max pools across players and then

classifies event for target frames using Softmax.

3. Frame-level Temporal Model 1 (M3): This is an ex-

tension of the first baseline (M1). Instead of using the

target frames and Softmax classification, this method

feeds the frame level features from the whole sequence

into an LSTM to classify events for the whole se-

quence.

4. Person-level Temporal Model (M4): This is an exten-

sion of the second baseline (M2). It feeds the player
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Event Description # Examples

Loose puck recovery

(LPR)

The player recovered the puck as it was out of

possession of any player
1,071

Pass The player attempts a pass to a teammate 1,057

Shot A player shoots on goal 145

Dump in When a player sends the puck into the offensive zone 95

Dump out
When a defending player dumps the puck up the boards

without targeting a teammate for a pass
139

Table 1. Event descriptions and corresponding number of training examples in the ice hockey dataset.

Method Fine-tuning Accuracy (%)

M1 w/o 31.7

M2 w/o 39.7

M3 w/o 39.6

M4 w/o 42.4

M5 w 42.1

M6 w 46.8

C3D [30] w 44.0

Our method w/o 49.2

Table 2. Performance of our model on Ice Hockey compared to the

baselines. In the fine-tuning column, w/o and w represent without

and with fine-tuning, respectively.

level features from a sequence of images to an LSTM

to classify events for the whole sequence.

5. Frame-level Classification with fine-tuned CNN (M5):

This baseline is similar to M1 but we fine-tuned the

AlexNet using the target frame events.

6. Frame-level Temporal Model 2 (M6): This baseline

is same as M3 but it uses fine-tuned Alexnet features

rather than pre-trained features.

We also compare our method with the C3D [30] net-

work. The C3D network is pre-trained on the UCF101 ac-

tion recognition dataset [29] then fine-tuned in our dataset.

4.2. Ice hockey dataset

This dataset consists of National Hockey League(NHL)

videos and was obtained from SportLogiq. We used part of

this dataset and considered five puck possession events. Ta-

ble 1 shows the descriptions of the events and correspond-

ing number of instances in the dataset. It clearly shows that

some of the events occur very rarely such as ‘dump in’. We

randomly used 2, 507 events for training and 250 events for

testing. The dataset has the annotated frame numbers where

an event occurred and we used the preceding frames for our

temporal classification. All the events are considered to be

independent of each other and were trained as individual

Figure 4. Confusion matrix of event prediction of our method on

the ice hockey dataset.

short clips of events, which is a standard protocol used for

activity recognition tasks [13][30] .

4.3. Quantitative Results

Table 2 shows the classification accuracy of our model

and the seven baselines. Our method outperforms all the

baselines by a distinct margin. Among the baselines, the

player level features work better than the frame-level fea-

tures when we use pre-trained model and the LSTM model

performs better than the SoftMax. For example, M2 per-

forms slightly better than M1 because some of the back-

ground features in M1 may be uninformative in regions such

as the unused portion of the rink or the crowd. Moreover,

the AlexNet is pre-trained from image recognition task in

which sample images usually have an object in the mid-

dle of the frame. When we apply this pre-trained model to

our problem, it is more suitable for extracting player level

features as players are in the middle of the frame. On the

other hand, a whole frame has multiple players and large

areas of background, thus the pre-trained AlexNet becomes

less suitable. That is why we have fine-tuned AlexNet for

frame-level classification using the target frame events. M5

and M6 show that the fine-tuned frame features outperform

95



Figure 5. Qualitative results. The first and second rows show the examples that are correctly recognized by our model. The bottom row

shows the mistakenly predicted examples.

both M1 and M3. However, we had challenges to fine-tune

our final model because we do not have person-level anno-

tations that could be used to fine-tune player level features.

Our method is also better than the C3D network, like [23]

for activity recognition in basketball games.

The results also indicate that capturing spatial features

of individual players is necessary as they represent differ-

ent actions of the players. For example, a player having the

puck acts differently from a player who is far away from

it. It is also seen that adding temporal information to both

M1 and M2 improves the performance. This indicates that

the spatial features evolve over the time as they approach

the target events. All the baseline models show that adding

either the frame level features or the player level features

do quite well in predicting the events. Adding frame level

features is important because events such as ‘dump in’ and

‘dump out’ can possibly be distinguished only by zone in-

formation.

Figure 4 shows the confusion matrix of the events. The

model performs well on ‘dump out’ and ‘pass’. On the other

hand, the model has lower accuracy on ‘dump in’ and ‘shot’.

Moreover in many cases it confuses ‘LPR’ with the ‘pass’

event. One explanation is that players appearances are sim-

ilar in the image for these three events and our method does

not encode player location information in the feature. Over-

all, the less frequent events perform poorly compared to the

dominant events because the training dataset is highly im-

balanced. One way to fix this problem is to collect more

training instances for these events.

4.4. Qualitative results

Figure 5 shows qualitative results of event prediction.

Our method successfully recognized some challenging ex-

amples of ‘pass’ and ‘LPR’ events. However, our method

had difficulties in some cases. For example, it has failed

to distinguish some ‘dump in’ and ‘shot’ events from ‘pass’

events. The reason is ‘LPR’ and ‘pass’ are the most frequent

events whereas ‘dumps’ and ‘shots’ occur very rarely.

4.5. Implementation details

We extract deep features in Matlab using an AlextNet

pre-trained on the ImageNet for object recognition task.

The classification models are trained using the Tensorflow

[1] framework. Our LSTM network consists of 1,000 hid-

den nodes, 500 input features and optimizes softmax cross

entropy loss function. We used decreasing learning rate,

dropout for regularization, batch-normalization and Adam

optimizer [16].
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5. Conclusion

In this paper, we proposed a deep learning model to clas-

sify group activity in ice hockey. We have shown that fea-

ture aggregation is essential in determining events. The five

puck possession events can be classified without the need

of explicit labeling for individual actions or puck informa-

tion. Future work will focus on incorporating player mo-

tions, an attention mechanism and 3D pose information into

this model. Another important extension would be finding

motion and position of hockey sticks with respect to the

players as well as taking advantage of gaze information of

the players.
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