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Abstract

We present a hierarchical recurrent network for under-

standing team sports activity in image and location se-

quences. In the hierarchical model, we integrate proposed

multiple person-centered features over a temporal sequence

based on LSTM’s outputs. To achieve this scheme, we in-

troduce the Keeping state in LSTM as one of externally

controllable states, and extend the Hierarchical LSTMs to

include mechanism for the integration. Experimental re-

sults demonstrate effectiveness of the proposed framework

involving hierarchical LSTM and person-centered feature.

In this study, we demonstrate improvement over the ref-

erence model [4] in two-stream LSTM based approach.

Specifically, by incorporating the person-centered feature

with meta-information (e.g., location data) in our proposed

late fusion framework, we also demonstrate increased dis-

criminability of action categories and enhanced robustness

against fluctuation in the number of observed players.

1. Introduction

Activity recognition is a challenging task which has re-

ceived a significant amount of attention in the computer vi-

sion field. In this work, we focus on the team sports activity

involving multiple persons in team sports videos. Generally,

team sports videos are composed of person images that have

similar attributes, e.g., age, gender, clothes, etc.; the record-

ing scenes also don’t change much. Therefore, it is neces-

sary to purely understand activities rather than recognizing

activities by background clutters among many sports, such

like UCF101 [30].

In this work, we address the problem of play type recog-

nition of “soccer” games (e.g., futsal) in multi-view-videos

obtained from multiple camera system. We also address the

effective use of meta-information, the three dimensional lo-

cation of players and ball in the activity recognition. We
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Figure 1. Our model is composed of CNN and two-layer LSTMs

i.e. CNN+Lk, LSTM1 and LSTM2, where CNN+Lk denotes a

person-centered feature. The person-centered feature is a concate-

nated feature of the CNN feature and meta-information (e.g., per-

son location, ball location, etc). LSTM1 recurrently integrates a

variable number of person-centered features based on a distance

between a ball and each person, and LSTM2 integrates a tempo-

ral sequence of integrated multiple person features. Finally, our

model produces a futsal activity prediction.

prepared datasets of two games that consist of videos ob-

tained from the multiple cameras and ground truth data of

action categories (e.g., Pass, Shoot and Dribble). The multi-

view videos from a set of calibrated cameras can provide

the 3D information of a ball and players, and we exploit the

use of such meta-information to improve the recognition ac-

curacy. The action or play-type categories are exclusively

set in the given futsal games. It is sometimes difficult to

distinguish (long) Pass from Shoot for a limited number of

frames. In this study, we focus on such play type or actions
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that involve at least 2 players (e.g., kicker and receiver). As

each camera has a finite field-of-view (FoV), the number of

visible persons and the ball is variable at every moment (see

Figure 1).

In this paper, we propose a new method for recogniz-

ing futsal plays that exploits integrating multiple person-

centered features and temporal dynamics of features for

multiple persons in person image sequences based on the

hierarchical Long Short-Term Memories (LSTMs) [13, 8]

model (see Figure 1). Here, the person-centered feature is

composed of Convolutional neural network (CNN) [18, 23]

features and meta-information, e.g., person location, ball lo-

cation, etc. The proposed network as shown in Figure 1

has a hierarchical structure composed of CNN, LSTM1 and

LSTM2. The first LSTM (i.e. LSTM1) recurrently inte-

grates a variable number of person-centered features. The

second LSTM (i.e. LSTM2) integrates over a temporal se-

quence of integrated multiple person features. To achieve

this mechanism, we introduce Keeping state in LSTM,

which is an externally controllable state, and we actively

switch Keeping state as well as Reset state which is usually

used at only initial moment of sequences [37].

The main contribution of this paper is the proposal of

a novel deep hierarchical structure incorporating multiple

LSTMs and switching states. Moreover, we demonstrate

the effectiveness of location information of players to rec-

ognize the plays in team sports matches. We evaluate our

method using RGB image sequences of videos as well as

optical flow image sequences. We compare our method

with a previously proposed baseline method [4], and our

proposed model improves group activity recognition perfor-

mance compared to the baseline.

The rest of the paper is organized as follows. In Section

2, we review the related work on action recognition. In Sec-

tion 3, we introduce the proposed method. Implementation

details are given in Section 3.3 and the performance is eval-

uated and compared to the baseline method in Section 4. A

conclusion and future work are discussed in Section 5.

2. Related Work

Recently, a number of pattern recognition fields have

developed with a focus on deep learning techniques. Al-

though deep learning also plays a central role in activity

recognition, existing methods employing hand-crafted fea-

tures have much of a presence. H. Wang and C. Schmid

proposed improved Dense Trajectories [34] which is one of

the most widely used [7, 6] trajectory-based hand-crafted

representations. In this method, the representations of local

descriptors, HOG [3], HOF [19], and MBH [33], are ex-

tracted from dense trajectories computed using optical flow.

Furthermore, Fisher vector encoding [25] is applied to the

representations.

Two-steam approaches are one of the dominant deep

learning based action recognition frameworks using RGB

and optical flow. L. Simonyan and A. Zisserman [27]

achieve results comparable to [34]. J. Y-H. Ng et al. [24]

apply LSTM to the two stream approach to capture the tem-

poral structure of actions, B. Singh et al. [29] proposed

a multi-stream framework full-frame and person-centric of

RGB and flow, followed by bi-directional LSTM. C. Feicht-

enhofer et al. [7] proposed multiple fusion approaches for

RGB and flow stream on a middle level feature map using

several ways, e.g, 3 dimensional convolution, 1 × 1 convo-

lution, etc. C. Feichtenhofer et al. [6] also proposed another

fusion approach using inter-connection of 2 stream residual

networks [11]. B. Zhang et al. [39] overcome a bottleneck

of computational cost related to optical flow.

LSTM has various application fields, e.g., speech recog-

nition [9], machine translation [31], image description [32],

natural language retrieval [14]. J. Donahue et al. [4] demon-

strate availability of their monolithic network composed of

CNN and LSTM for multiple applications, i.e., image de-

scription, video description as well as activity recognition.

In this paper, we introduce an externally controllable state in

LSTM, called Keeping state. Our Keeping state operation is

similar to “inactivation” for the multi-timescale updates of

LSTM in Y. Wang et al., [35] and P. Liu et al., [21]. How-

ever, there has been no similar schemes like the proposed

integration of person-centered features with the LSTM rep-

resentation of temporal dynamics on top of the active con-

trol mechanism of LSTM’s state.

In the domain of activity recognition of sports, there are

a number of previous works to handle multiple objects (i.e.,

players) interacting with each other. S. Chen et al. [2] pro-

posed a play type recognition method for American football

games. A. Maksai et al. [22] realize a unified framework to

track a ball and to estimate the ball state, i.e., flying, hit

or possession by a graphical model. They demonstrate the

use of the framework on multiple public video datasets con-

taining basketball, volley ball and soccer. The most closely

related work to ours is M. S. Ibrahim et al. [15]. They pro-

posed a hierarchical model composed of a CNN and a two

layer LSTM, and recognize person-level activity and group

activity simultaneously. Their method integrates multiple

person-level activity with pooling, which is different from

our approach. T. Bagautdinov et al. [1] proposed an end-to-

end approach to perform person tracking and group activity

detection on volley ball video.

Recent surveys by S. Herath et al. [12] and S. M. Kang

et al. [17] cover vast literature in activity recognition. The

former introduces a number of learning methods in the ac-

tivity recognition, and the latter introduces the benchmark

datasets.
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3. Method

Our goal in this paper is to recognize futsal plays that

involve multiple players in futsal matches, using frame se-

quences as well as meta-information (3 dimensional loca-

tions of persons and a ball, a camera location and team ID,

automatically detected). Therefore, the input of our method

comprises two parts, (1) a temporal sequence of cropped

images extracted from a person’s bounding boxes and (2)

temporal meta-information (3 dimensional locations etc.)

sequences for each player (See Section 4 for details). In this

section, we will describe how to handle these two data parts

and recognize futsal plays in the following two aspects:

• Person-centered feature aggregating lower and

higher level CNN (Convolutional neural network) fea-

tures as well as meta-information.

• Hierarchical LSTMs based on person-centered fea-

tures and temporal dynamics integration.

Object locations are informative for understanding situ-

ations of team sports matches. The categories of group ac-

tivities of team sports, e.g., Pass, Shoot, etc. in futsal, have

a deep relationship with a player’s location especially when

in possession of the ball. Additionally, since in this case al-

most all appearances of a player’s cropped images are sim-

ilar in terms of foreground objects and background scene,

the lower level features are more important than higher level

features of CNN models pre-trained on the object detection

task. Therefore, we try to aggregate the meta-information

and multi-scale CNN features, including lower level fea-

tures, as an individual person’s feature.

Because each camera has a finite FoV and players con-

tinue to move at almost every moment, the total number of

players captured by each camera varies every moment. As

we mentioned above, the most important person is a player

who is in possession of the ball. Hence, we try to integrate

person-centered features centered upon the ball in a recur-

sive fashion.

Inspired by the success of deep learning based solu-

tions [18, 32, 31], in this paper, a novel hierarchical deep

learning based model is proposed that is potentially capable

of learning integration of multiple person-centered features

and temporal dynamics in a unified end-to-end framework.

Next, we describe the details of our network.

3.1. Personcentered feature

In the group activity recognition for team sports videos,

recognition targets have similar appearance because targets

are always human (and a ball), recording domains are nearly

unchanged and target attributes are similar, e.g., age, gen-

der, clothes, etc. Hence, the higher level features extracted

from CNN models pre-trained on the object detection task
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Figure 2. (a) LSTM, (b) LSTM of Keeping State

are not so informative for the current task. We think that

the pose or parts locations are more effective than the out-

put scores of pre-trained CNNs such as the 1000 category

scores in the ImageNet [26].

We have two options for this notion: first we directly es-

timate poses by recently developed methods [36], second

we extract information containing the parts’ locations from

a pre-trained model. It is a well-known fact that CNNs rep-

resent features from lower to higher level information in a

layer-wise fashion, e.g., blob, edge, pattern, shape, parts,

object, etc. in the pre-trained model of ImageNet [38, 40].

Therefore, we consider that extracting the location of parts

from the CNN lower layer is an effective approach. We ex-

tract the features of various layers (including the lower level

layer), and we adjust their dimensionality using 1 × 1 con-

volution and pooling. We concatenate them, and utilize it

as a CNN feature (See Section 3.3 for details). In addition,

we consider that the meta-information (player location, ball

location, team ID, etc.) is important to recognize the fut-

sal plays. For instance, there is a high possibility of Shoot

when a player close to the ball is located in the goal area.

We utilize 3 dimensional locations of players and a ball, and

a player’s team ID. Moreover, we calculate the distances be-

tween the player location and the ball location, and between

the player location and the camera location. We consider the

meta-information mentioned above as a feature vector, and

concatenate it with the CNN feature.

Finally, we employ this concatenated feature as the

person-centered feature.

3.2. Hierarchical LSTMs

Given an input sequence x = (x1, ..., xT ), a standard

recurrent neural network (RNN) computes the hidden vec-

tor sequence h = (h1, ..., hT ), and output vector sequence

y = (y1, ..., yT ) by iterating the following equations from

t = 1 to T :

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the

input-hidden weight matrix), the b terms denote bias vec-
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Figure 3. Illustrations for our method: Upper, An integration of appearance for two continuous frames, with three and four persons

respectively. A first LSTM (LSTM1) recurrently integrates multiple person-centered features for persons near the ball. A second LSTM

(LSTM2) integrates the integrated features from LSTM1. Lower, The switching aspect of the LSTM’s states corresponding to the upper

situation. Blue boxes denote the Keeping state and red boxes denote Reset state. We switch LSTM1 to Reset state on the initial moment

of person-centered feature sequences each frame, and LSTM2 to Reset state until the end moment of the first person-centered feature

sequence of the first frame. Subsequently, we switch LSTM2 to Keeping state during integration over the second person-centered feature

sequence. A top line (consisting of Ignore and Dribble) is the sequence of GT or prediction labels. The third and seventh positions of the

top line are the GT or the prediction label corresponding to each frame. Note, we ignore losses of an objective function and predictions

except the tail positions corresponding to person-centered feature sequences each frame.

tors (e.g.bh is hidden bias vector) and H is the hidden layer

function.

H is usually an element-wise application of a sigmoid

function. However, we found that the Long Short-Term

Memory (LSTM) architecture [13, 8], which uses purpose-

built memory cells to store information, is better at finding

and exploiting long range context. Figure. 2 illustrates a

single LSTM memory cell. For the version of LSTM used

in this paper [4], H is implemented by the following com-

posite function:

it = σ(Wxixt +Whiht−1 + bi) (3)

ft = σ(Wxfxt +Whfht−1 + bf ) (4)

ot = σ(Wxoxt +Whoht−1 + bo) (5)

gt = tanh(Wxcxt +Whcht−1 + bc) (6)

ct = ft ⊙ ct−1 + it ⊙ gt (7)

ht = ot ⊙ tanh(ct) (8)

where σ is the logistic sigmoid function, ⊙ represents the

element-wise product with a gate value, and i, f , o, g and

c are respectively the input gate, forget gate, output gate,

input modulation gate and cell activation vectors.

To achieve embedding of the person-centered feature

into the hierarchical LSTMs, we use the following two

states that are implemented by external control for the acti-

vations of the gates.

Keeping state: plugging ft = 1, it = 0 and ot = 1 into

Equations (7-8), they become:

ct = ct−1 (9)

ht = tanh(ct) (10)

This state realizes holding of the cell activity and the hidden

vector of the LSTM (see Figure 2 (b)).

Reset state: plugging ft = 0 into Equation (7), this state

realizes flushing of a previous memory of the LSTM. This

state is widely used when we initialize the hidden vector to

zero at the initial moment of sequences only [37].

For a unified framework of both person-centered feature

integration and activity recognition using a temporal fea-

ture sequence, we construct a hierarchical two-layer LSTM
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Figure 4. A detail of the proposed network structure.

structure. In this structure, the first layer LSTM (hereinafter

called LSTM1) plays the role of the person-centered fea-

ture integration and the second LSTM (hereinafter called

LSTM2) plays the role of activity recognition.

Suppose we got a sequence as a flattened nested array of

a person-centered feature sequence. We set Reset state to

LSTM1 on an initial moment of the person-centered feature

sequence of each frame, and we set Reset state to LSTM2

from the initial moment of the first frame to the end moment

of the first frame. We also set Keeping state to LSTM2

during integrating the person-centered features in LSTM1

except the first frame. In addition, we ignore predictions

and losses of an objective function except when the feature

integration is done. We illustrate this switching aspect in

Figure 3.

3.3. Implementation Details

The CNN used in our model is the Caffe reference model

[16] (a minor variant of AlexNet [18]). The input image to

the CNN is cropped from each player bounding box with a

4 meters × 4 meters region centered around the player on

the 3 dimensional space, and further resized it to 240×240.

To obtain the fixed-size 227 × 227 CNN input images [18]

(RGB as well as flow, as mentioned below), they are ran-

domly cropped from the resized player bounding box im-

ages in the training phase (one crop per image per SGD it-

eration), and centrally cropped in the test phase. We extract

lower features from a second pooling layer, a third convo-

lution layer and a forth convolution layer of the CNN, re-

spectively. These features are also processed by a pooling

and/or a 1× 1 convolution layer to reduce and homogenize

the dimension (i.e., height, width and channels) of each fea-

ture map, and the features from the second pooling layer,

the third convolution layer and the forth convolution layer

are 2704, 2304 and 2304 dimension, respectively. On the

other hand, the meta-information is a 9 dimensional vector

composed of 3 dimensional coordinates (X, Y and Z) nor-

malized to [0, 1] for (1-3) each player and (4-6) the ball, (7)

Table 1. Number of samples in the dataset for each play label.

Label Scene View Frame Training Test

Pass 334 1779 64959 1433 346

Dribble 177 1021 49509 865 156

Shoot 44 240 9573 205 35

Clearance 32 172 6159 - -

LooseBall 12 69 2403 - -

Total 599 3281 132603 2503 537

Note, Scene denotes number of occurrences about each label, View denotes

number of samples when counting each camera view individually, Frame

denotes number of frames about each label. We utilize View samples as

training and test data.

a team ID corresponding to each color of team bibs (0/1

binary), (8) a scaled distance between each player and the

ball and (9) a scaled distance between each player and the

camera. Both distances, (8) and (9), are calculated from

the player’s location, the ball location and the fixed-camera

location. We concatenate the features consisting of the loca-

tion data, the dimensionality reduction lower level features

of the CNN, as well as a first inner-product layer’s feature

of the CNN. We then get the 1024 dimensional feature by

an inner-product layer. Finally, we get the score through

the LSTM1, LSTM2, the final inner-product layer and the

softmax layer. Figure 4 shows the entire network structure.

We implement our model as a monolithic network using the

Caffe framework [16]. Consequently, it is possible to train

in an end-to-end fashion.

We consider both RGB image and optical flow as the

CNN input. Optical flow is computed with [5] from the

original (non-cropped) images and transformed into a “flow

image” by centering x and y flow values around 128 and

multiplying by a scaling factor such that flow values are

normalized to [0, 255]. A third channel for the flow im-

age is created by calculating the flow magnitude. We will

explore the late fusion of both the softmax scores with the

RGB image and the flow image by fusing the RGB and the

flow stream scores as weighted average [4]. Sub-optimal

weights are experimentally found as shown in Section 4.3.

4. Experimental Result

In this section, we first present the details of the dataset

and the evaluation protocol. Then, we describe the details of

the training procedure. Finally, we present the experimental

results with discussions.

4.1. Dataset

The evaluation is conducted on a multi-camera futsal

game dataset. This dataset consists of two 10 minutes

matches recorded by 14 cameras approximately synchro-
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Figure 5. Confusion matrix. (a) Proposed method using RGB image without location data (Accuracy: 0.671, F1 score: 0.587), (b) with

RGB and location data (Accuracy: 0.681, F1 score: 0.612), (c) with Optical flow and location data (Accuracy: 0.673, F1 score: 0.507), (d)

Late fusion of (b) and (c) (Accuracy: 0.702, F1 score: 0.634, fusion method is weighted averaging (RGB : Flow = 0.5 : 0.5)), (e) LRCN

[4] using RGB image only (Accuracy: 0.606, F1 score: 0.486), (f) LRCN [4] using Optical flow only (Accuracy: 0.646, F1 score: 0.462),

(g) Late fusion of (f) and (g) (Accuracy: 0.671, F1 score: 0.518, fusion method is weighted averaging (RGB : Flow = 0.4 : 0.6)). Note, the

weights for the late fusions, (d) and (g), are optimal values over various trials using the test dataset.

nized and calibrated. Therefore, each match has a set of 14

video streams, which are captured by 30-frame-per-second

Full HD (1920×1080) cameras which are placed around the

court. Additionally, a ball and a person tracker is applied

to each video [20], and 3 dimensional locations of each

object are obtained using triangulation under the epipo-

lar constraint [10]. Note, the 3 dimensional locations of

these objects contain mistakes; we didn’t manually correct.

We manually annotated ground truth, Pass, Dribble, Shoot,

Clearance and Loose ball, for every frame of two matches.

These labels are exclusive and occurred at least once during

the futsal match. And these annotated samples have various

durations.

Considering visibility of a ball, we remove following in-

appropriate samples using the 3 dimensional locations of

the ball detection result, (1) ‘far’ samples from a camera po-

sition (i.e. over 18 meters, approximately corresponds to the

distance from the center line to the goal line of the court),

and (2) ‘invisible’ samples in which the ball is not captured

from a camera FoV. We acquired samples as shown in Table

1, where Scene denotes number of occurrences about each

label, View denotes number of samples when counting each

camera view individually, Frame denotes number of frames

about each label. In this work, we utilize the View as train-

ing and test samples.

We did a 5-fold split of the samples along the timeline

of each match. We use a third for test data and the rest

for training data. The last two columns of Table 1 show

amounts of the training and the test samples. Here, we ig-

nore the Clearance and the Loose ball samples due to the

low number of samples for these labels. However, we did

incorporate the Shoot samples despite the low number of

samples, because generally Shoot is the most important ac-

tion in football.

4.2. Experimental setting

We compared our model with a baseline proposed pre-

viously (hereinafter, referred to as baseline or LRCN) [4].

Similar to other approaches [4, 15], we initialize the CNN

weights with the pre-trained models for an object classifi-

cation task ILSVRC-2012 [26] in the case of RGB image

input, and the ILSVRC-2012 as well as an action recog-

nition task UCF-101 [30] in the case of flow image input.

We fine-tune the whole network except the base CNN indi-

cated in orange blocks in Figure 4 (green blocks are fine-

tuned). The image pre-processing for our method have al-

ready mentioned in Section 3.3. In the case of the baseline,

the original images (RGB as well as flow image) are resized

from 1920 × 1080 to 320 × 240, and randomly cropped

from the resized images for the CNN input in the training

phase, and centrally cropped in the test phase. The network

training procedure generally follows [4]. Namely, the train-

ing is carried out by optimizing the softmax regression ob-

jective using mini-batch gradient descent with momentum.
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The batch sizes are set to 24 in the baseline and to 8 in our

method. We use a base learning rate of 0.001 and a mo-

mentum of 0.9. The learning rate is dropped in 30,000 steps

with γ = 0.1.

The time steps of the back-propagation through time

(BPTT) are 16 frames in the baseline model. Although

we also use 16 frames in a single sample in our model,

we simultaneously set the maximum number of the person-

centered features to five. Therefore, the time steps of BPTT

are 80 steps in our model. The maximum number of person-

centered features processed in one frame is a controllable

parameter. Although there are 10 players in futsal games,

as the time steps of one sample are excessively long, we set

the maximum number of players to five. We examine less

than five cases in the second experiment mentioned in the

next section. We train the baseline and our network with

continuous 16 frames randomly extracted from the play la-

bel samples. Because there is data imbalance in our dataset

as shown in Table 1, we oversampled to equalize occurrence

frequency of each label in the training phase. Both methods

predict the play label at each frame and we average these

predictions for final classification. At the test phase, we ex-

tract 16 frames with a stride of 8 frames from each play

label sample and average across duration of each sample.

4.3. Results

Here we show several comparative experiments: (1) a

comparison between several input conditions and the base-

line, (2) a comparison of several conditions related to the

maximum number of players features.

We first evaluate classification accuracy of the baseline

and the proposed method using various inputs conditions:

(i) RGB image only for the baseline and our method, (ii)

RGB image with meta-information for our method, (iii)

flow image with meta-information for our method, (iv) late

fusion of network scores of the RGB image with meta-

information and the flow image with meta-information for

our method, (v) flow image without meta-information for

the baseline and (vi) late fusion of network scores of the

RGB image without meta-information and the flow image

without meta-information for the baseline. The results are

shown in Figure 5. From the figure, we can make the fol-

lowing observations: The proposed method with RGB im-

age and meta-information inputs (Figure 5 (b)) outperforms

the proposed method without meta-information input (Fig-

ure 5 (a)), and meta-information helps decreasing confusion

of Dribble and Pass as well as Dribble and Shoot. The pro-

posed method of RGB without meta-information input (Fig-

ure 5 (a)) outperforms the baseline of RGB without meta-

information input (Figure 5 (e)). The late fusion of the pro-

posed model is the best score including the baseline, i.e.,

1 percentage point improvement from the baseline in Pass,

33 percentage points improvement in Shoot, 3 percentage

Table 2. Accuracy and F1 score for values of the maximum number

of persons.

Max num. Accuracy F1 score

1 person 0.689 0.580

2 persons 0.686 0.610

3 persons 0.680 0.604

4 persons 0.709 0.604

5 persons 0.702 0.634

points improvement in total. However, it remains difficult

to distinguish Dribble and Pass. Inspecting the actual test

samples provides a reason for this problem. Figure 6 shows

the test samples of the recognition results. Figure 6 (a) is

one of Pass samples recognized correctly on the late fu-

sion of the proposed model (iv): it has a long distance and

duration from a passer to a receiver. There are many cor-

rectly recognized samples having these properties. On the

other hand, Figure 6 (b) is one of the Pass samples recog-

nized incorrectly by the proposed method (iv). It has a short

distance and duration from a passer to a receiver. Because

there are many kick-actions like this during the Dribble ac-

tion, we think our late fusion method confuses Dribble and

Pass. Figure 6 (c) is one of the Pass samples whose recogni-

tion is significantly improved by the RGB image with meta-

information (ii) against the RGB without meta-information

(i). This is the Kick-in action when restarting the game from

off-play situations. Although a number of Kick-in samples

are misclassified by the RGB without meta-information (i),

they are correctly recognized by the RGB image with meta-

information (ii). We observed that the recognition of these

samples improved by utilizing the meta-information, espe-

cially the player coordinates on the court.

Secondly, we evaluate our approach under various con-

ditions of the maximum number of person-centered features

handled in one frame. Table 2 shows the experimental re-

sults that vary the maximum number from one to five per-

sons. The results show that accuracy is higher when the

maximum number is large. Note that, under the condition

handling only one person at one frame, the LSTM1 is func-

tionally equivalent to a feedforward network consisting of

some inner-products and activation functions. Therefore,

this result shows the evidence for the effectiveness of multi-

ple person-centered features integration. In other words, the

accuracy of integrating multiple person-centered features is

better than that of the case only focusing on single person

for play type recognition on team sports videos.

5. Conclusion and Future Work

In this paper, we propose a hierarchical model integrat-

ing multiple person-centered features and temporal dynam-
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Figure 6. Results: (a) Successfully classified Pass by the proposed model (late fusion). (b) Pass misclassified as Dribble by the proposed

model (late fusion). (c) One of the “Kick-in” (i.e. Pass) action samples. This is successfully classified Pass by the RGB image with meta-

information condition. A number of the “Kick-in” samples are successfully classified by same condition, although they are misclassified

by the RGB image without meta-information condition.

ics for group activity recognition. The experimental results

suggest that the proposed framework outperforms the two-

stream with LSTM approach using holistic images [4].

These results further support that (1) the object location

information for futsal activity recognition is effective and

(2) the approach of recurrently integrating multiple person-

centered features is more accurate than the approach of us-

ing a single person-centered feature only.

We utilized a relatively small scale CNN [18] in this pa-

per. Our approach is also available in the case of utilizing

another deep scale CNN, e.g., VGG [28] and residual net-

work [11]. We believe our method will effectively improve

the performance for team sports activity recognition.

Although our dataset was recorded by calibrated multi-

cameras, we did not utilize this valuable information in this

study. We will further investigate how to integrate features

from multiple cameras in near future.
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