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Abstract

Modern techniques for describing motion in videos are

centred around velocity descriptors based on optical flow.

Realizing that acceleration is as important as velocity for

describing motion information, in this paper first we pro-

pose two different algorithms to compute optical accelera-

tion. Delving deeper into the concept of optical accelera-

tion, we use two descriptors: histogram of optical acceler-

ation (HOA) and histogram of spatial gradient of accelera-

tion (HSGA), to effectively encode the motion information.

To assess the effectiveness of these descriptors for motion

encoding, we applied it for human action recognition and

abnormal event detection in videos. In fact, we used ac-

celeration descriptors in conjunction with velocity descrip-

tors to get a better description of motion in videos. Our

experiments reveal that acceleration descriptors could pro-

vide additional information that velocity descriptors missed

and hence combining them results in a superior motion de-

scriptor.

1. Introduction

Advent of cheaper video capture and storage devices re-

sulted in large volume of video data, making automated

video analysis a necessity. Estimating motion between

frames is the key to video analysis.

Researchers were always intrigued by the way human

brain perceives motion. It was this fascination that lead to

the introduction of the concept of optical flow by James J.

Gibson, a psychologist. He analysed the use of optical flow

by human brain to recognise motion[9]. Computer vision

researchers in an attempt to mimic the working of a human

brain, introduced a motion vector called optical flow; to rep-

resent the velocity distribution of moving objects in an im-

age sequence[10]. Researchers across the globe are still try-

ing to improve motion estimation using optical flow, among

which computation of optical flow using semantic segmen-

tation [23], convolutional neural networks [6] etc. are some

recent examples.

Techniques involving optical flow are used in diverse ar-

eas of computer vision. Motion estimation using optical

flow is used to detect moving objects in video [3]. Mo-

tion analysis techniques are used to remove temporal re-

dundancy in videos [24] for video coding. Automated video

surveillance uses motion information obtained from optical

flow for anomaly detection [29], video summarization [16]

and action recognition [25]. Motion vectors obtained using

optical flow finds application in medical imaging, to esti-

mate blood flow from MRI image sequences [20]. These

researches depict the importance of optical flow and mo-

tion estimation in computer vision. Any attempt to improve

motion estimation by optical flow will benefit the aforemen-

tioned areas significantly.

In this paper we present two new methods for computing

‘optical acceleration’ to supplement the motion information

provided by optical flow. We derive two motion descriptors,

histogram of acceleration (HOA) and histogram of spatial

gradient of acceleration (HSGA), from it for video analy-

sis. We propose an alternative approach that uses acceler-

ation descriptors along with velocity descriptors to give a

better description of motion in videos. We evaluate this ap-

proach in the context of action recognition and abnormal

event detection. Our action recognition system uses HSGA

in conjunction with velocity descriptor - motion boundary

histogram (MBH), to train a classifier that can recognize ac-

tions performed in challenging environments. We have used

a concatenated feature set consisting HOF, MBH, HOA and

HSGA descriptors in a sparse reconstruction framework for

anomaly detection. Experiments performed on standard

datasets show that the descriptor combination significantly

improves the recognition rate when compared to using ei-

ther of them alone.

Rest of the paper is organised as follows. Section 2 re-

views some common motion descriptors. In section 3 we

derive two different algorithms for the computation of op-

tical acceleration. Section 4 details the descriptors derived

from optical acceleration. Use of optical acceleration for

action recognition is described in section 5 and for anomaly

detection in section 6. Section 8 concludes the paper.
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2. Motion Descriptors

This section reviews some of the prominent feature de-

scriptors used for describing motion in videos for various

computer vision applications.

Success of histogram of oriented gradients (HOG) for

object detection in static images, urged Klaser et al. to build

on it and extend the descriptor to time domain to form his-

togram of oriented 3D spatio-temporal gradients (HOG3D)

[12]. SURF and SIFT descriptors where also extended to

time domain to obtain extended speeded up robust feature

(Extended SURF) [26] and 3-Dimensional SIFT respec-

tively. A spatio-temporal gradient was used for anomaly

detection in extremely crowded scenes by Kratz et al. [13].

This kind of extensions of spatial features to time domain

have the disadvantage of treating the space and time do-

mains equally and therefore is not very apt representation.

Laptev et al. used a combination of histogram of opti-

cal flow (HOF) and histogram of oriented gradients (HOG)

to describe scene and motion respectively, for action recog-

nition [14]. Dalal et al. introduced motion boundary his-

togram (MBH) which encodes the velocity in object bound-

aries for human detection in videos, and it was adopted by

Wang et al. [25] for action recognition. Dense trajectories

obtained by tracking sample points taken on a regular grid

were used for video analysis [25]. A multi-scale histogram

of optical flow (MHOF) which consist of histogram of op-

tical flow quantised to 16 bins which include two scales

of 8 bins each was successfully used for abnormal event

detection[4]. Histogram of maximal optical flow projec-

tions (HMOFP) is another variation of HOF which was used

for anomaly detection in crowded scene [15]. HMOFP as

the name suggest is obtained by projecting the optical flow

vectors in each bin to angle bisector of that bin and choos-

ing the magnitude of maximal projection as descriptor cor-

responding to each bin. All these descriptors are derived

from optical flow and encode velocity information.

3. Optical Acceleration

When an object moves with varying velocity there will

be change in optical flow. Optical acceleration is defined

as the rate of change of optical flow and it gives apparent

acceleration of each pixel in a frame. We speculate that

optical acceleration helps in motion description based on

the fact that physical acceleration can differentiate motion

as uniform, accelerated and decelerated motion.

Acceleration component of motion was first used for

anomaly detection by Nallaivarothayan et al.[19]. They

used it effectively to detect non pedestrian entities in walk-

ways, but this may not be the case with many other scenar-

ios like action recognition. The reason being they neglect

the direction of velocity change and so their descriptor is

not fully suitable to represent motion. Another interesting

work in this regard used a second order differential of orig-

inal image, called acceleration stream, as an input to multi

stream CNN for action recognition[11].

We develop two approaches for computation of opti-

cal acceleration and derive descriptors from it giving due

consideration to the direction of change in velocity. We

have named them Horn- Schunck optical acceleration and

Farneback optical acceleration, after optical flows on which

we based the derivations of acceleration.

3.1. Horn­Schunck Optical Acceleration

It is derived by applying brightness and smoothness con-

straint similar to the case of optical flow[10].

For an image with brightness E(x, y) at point (x, y), the

optical flow constraint equation (equation 1) can be differ-

entiated in time to obtain what we call the ‘optical accelera-

tion constraint’(equation 2). (Abbreviations Ex, Ey and Et

stands for partial derivatives of E(x,y) with respect to x, y

and t respectively, (u, v) is optical flow vector and (a, g) the

acceleration vector)

uEx + vEy + Et = 0 (1)

aEx + gEy + [u
∂Ex

∂t
+ v

∂Ey

∂t
+

∂Et

∂t
] = 0 (2)

An additional constraint that the neighbouring pixels will

have same rate of change of velocity gives the smoothness

constraint:

min a2x + a2y and min g2x + g2y (3)

ax, ay, gx, gy are the derivatives of a and g with respect to

x and y. The problem of computing optical acceleration

becomes the one of minimising error in optical accelera-

tion constraint equation (ξac) subjected to smoothness con-

straint equation (ξsc). Error minimization problem is for-

mulated as

min ξ2 =

∫∫

(ξ2sc + λ2ξ2ac)dxdy (4)

where

ξ2ac = [uEx + vEy + Et]
2 (5)

and

ξ2sc = a2x + a2y + g2x + g2y (6)

Solution for the minimisation problem in 4 is obtained as in

equation 7 and 8 using calculus of variation, where Ext =
∂Ex

∂t
, Eyt =

∂Ey

∂t
and Ett =

∂Et

∂t

▽2a = λ[aE2
x+gExEy+uExExt+vExEyt+ExEtt (7)

▽2g = λ[aExEy+gE2
y+uEyExt+vEyEyt+EyEtt (8)
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Figure 1. Optical acceleration for horizontal movement of a circular disc in Left: uniform motion, Middle: acceleration, Right: deceleration

Top: using Horn Schunck optical acceleration bottom: using Farneback optical acceleration.

Approximating the Laplacian of a and g for discrete domain

gives an iterative solution for acceleration shown in equa-

tion 9 and 10.

a
(n+1)
i,j = a

(n)
i,j −

λE(n)Ex

1 + λ(E2
x + E2

y)
(9)

g
(n+1)
i,j = g

(n)
i,j −

λE(n)Ey

1 + λ(E2
x + E2

y)
(10)

where

E(n) = [a
(n)
i,j Ex+g

(n)
i,j Ey+ui,jExt+vi,jEyt+Ett] (11)

and

a
(n)
i,j =

1

4
[a

(n)
i−1,j + a

(n)
i+1,j + a

(n)
i,j−1 + a

(n)
i,j+1] (12)

Acceleration computed using this method has the inherent

disadvantages of global optical flow methods, since accel-

eration will always be local and the assumptions used here

are global in nature.

3.2. Farneback Optical Acceleration

Farneback optical acceleration is estimated by expanding

each frame as a quadratic polynomial. Any local signal can

be expressed as a quadratic polynomial in equation 13[8].

f(x) = xT Ax + bT x + c (13)

where x is a local coordinate, A: a symmetric matrix, b: a

vector and c: a scalar. Image intensity around a N × N

neighbourhood of a point x = [x, y]T in a frame can be ex-

panded using polynomial basis set B = {1, x, y, x2, y2, xy}
as

E(x, y) = C1+C2x+C3y+C4x
2+C5y

2+C6xy (14)

Substituting x = [x, y]T in equation 13 and comparing it

with 14 gives

c = C1, b =

(

C2

C3

)

, A =

(

C4
C6

2
C6

2 C5

)

(15)

The set of coefficients, C = [C1, C2, C3, C4, C5, C6], can

be estimated by normalized convolution with the polyno-

mial basis B (equation 16 ). In the equation, f(x) is image

intensity, ∗ represents conjugate transpose and Wa and Wc

are diagonal matrices corresponding to certainty of signal

and applicability of basis respectively.

C = (B∗WaWcB)−1B∗WaWcf(x) (16)

If image intensity at neighbourhood of a pixel in two

consecutive frames in a video is approximated using a set

of coefficients A1, b1, c1 and A2, b2, c2, then the displace-

ment(d) of the pixel can be obtained using equation 17 [8]

d = −
1

2
A−1

1 (b2 − b1) (17)

Difference between two such displacements between three

adjacent frames gives optical acceleration (a, g).

To evaluate the two optical acceleration methods we have

conducted experiments on a synthetic video of a circular

disc moving horizontally to the right. For Horn Schunck

method the parameters λ and n were chosen as .01 and

100 respectively and a 3 × 3 neighbourhood was chosen

for Farneback optical acceleration. Figure 1 shows the opti-

cal acceleration between three consecutive frames. Top row

shows the Horn Schunck optical acceleration while the bot-

tom is the Farneback optical acceleration. Left, right and

middle are optical acceleration corresponding to uniform

motion, deceleration and acceleration respectively. It is ev-

ident from the figure that the second method can differenti-

ate uniform, accelerated and decelerated motion quite well.
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Visual evaluation proved Farneback method to be more ef-

fective than Horn Schunck for representing acceleration, so

we have used Farneback acceleration to extract acceleration

descriptor for encoding motion information.

4. Acceleration Descriptors

A descriptor based on optical acceleration was first used

by Nallaivarothayan et al. [19] to detect speed related

anomalies in surveillance videos. They have incorporated

acceleration information by taking time derivative of mag-

nitude image of optical flow for each frame. Their acceler-

ation descriptor neglects the direction of change in velocity

and hence is not perfectly suited for motion description. In

this section, we detail two descriptors histogram of optical

acceleration (HOA) and histogram of spatial gradient of ac-

celeration (HSGA) derived from optical acceleration. As in

the case of high speed anomalies, these descriptors which

encode acceleration can be used effectively to differentiate

motion with varying acceleration.

4.1. Histogram of Optical Acceleration

Histogram of Optical Acceleration (HOA) is derived

from Farneback optical acceleration. If the horizontal and

vertical components of acceleration of a point (x, y) in

frame t is given by a
(t)
(x,y) and g

(t)
(x,y) respectively, the mag-

nitude and orientation of acceleration of the point given by

equation 18 and 19 is calculated. This is computed for each

point in a frame to form acceleration magnitude and orien-

tation images.

θOA = tan−1





g
(t)
(x,y)

a
(t)
(x,y)



 (18)

|OA| =

√

∣

∣

∣
a
(t)
(x,y)

∣

∣

∣

2

+
∣

∣

∣
g
(t)
(x,y)

∣

∣

∣

2

(19)

Interest region in the video is divided into blocks of size

M×M×K which is further divided into nx×ny×nt cells.

For each cell, orientation of optical acceleration (θOA) is

quantized into 8 bins and a histogram weighted by its mag-

nitude (|OA|) is computed. Values are linearly interpolated

between two neighbouring bins using bilinear interpolation.

Histogram of cells in a particular block are concatenated

and normalised to form HOA. HOA has the advantage of

reduced descriptor size and this makes clustering easier for

bag of words encoding and reduces storage space.

4.2. Histogram of spatial gradient of acceleration

The descriptor HOA encodes the acceleration of the

whole frame, but the acceleration along object boundaries

is more important than acceleration component as such.

Descriptor histogram of spatial gradient of acceleration

(HSGA) is introduced to encode the acceleration along the

boundaries[7]. HSGA uses spatial derivative of horizontal

and vertical components of acceleration to capture accelera-

tion changes in the boundaries. For a point (x, y) in frame t,

spatial derivatives of horizontal component of acceleration

are computed using Sobel operator as in equation 20 and

21, where .∗ stands for element by element multiplication.

Ax =





atx−1,y−1 atx,y−1 atx+1,y−1

atx−1,y atx,y atx+1,y

atx−1,y+1 atx,y+1 atx+1,y+1



 . ∗





−1 0 1
−2 0 2
−1 0 1





(20)

Ay =





atx−1,y−1 atx,y−1 atx+1,y−1

atx−1,y atx,y atx+1,y

atx−1,y+1 atx,y+1 atx+1,y+1



 .∗





−1 −2 −1
0 0 0
1 2 1





(21)

Magnitude and orientation of spatial gradient of accelera-

tion for the point (x, y) is given by equation 22 and 23 and

this is computed for all points in a frame.

θA = tan−1

[

Ay

Ax

]

(22)

|A| =

√

|Ax|
2
+ |Ay|

2
(23)

As in case of HOA , the region around feature point, is

divide into space time volume of size M ×M ×K, which

is further divided into nx × ny × nt cells. The orientation

of the gradient (θA) in a cell is quantized into histogram of

8 bins weighted by magnitude (|A|). Histogram of cells in

a block are concatenated and normalized to form histogram

of spatial gradient of horizontal component of acceleration.

The descriptor is computed in a similar manner for vertical

component of acceleration.

5. Action recognition

An important application of motion estimation is in ac-

tion recognition and it has drawn a lot of attention in re-

cent years. This can be attributed to its variety of ap-

plications in automated video surveillance, human com-

puter interface, content based video indexing etc. Past

decade saw researchers use a wide variety of techniques

ranging from statistical models like Hidden Markov Mod-

els (HMM)[27] to deep learning networks like Convolu-

tional Neural Networks (CNN)[28] for action recognition.

Local feature based methods[12] and template matching

methods[2] which were used for object recognition, hand

writing recognition etc. were also extended for action

recognition. Of all action recognition techniques, local fea-

ture based methods are the most popular. An action recog-

nition system using local features consists of extracting fea-

tures from videos to train a classifier, which is then used
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Figure 2. Flow diagram of proposed action recognition system

to recognize action in a given video. Among existing mo-

tion descriptors for action recognition, motion boundary

histogram (MBH) computed around improved dense trajec-

tories (IDT) [25] performs the best. In this section we show-

case the use of acceleration descriptor HSGA to supplement

the performance of MBH for action recognition.

5.1. Optical acceleration for action recognition

Figure 2 shows the flow diagram of our proposed

approach where we fuse optical acceleration descriptor,

HSGA [7] with optical velocity descriptor MBH [25] for

action recognition. Optical flow and optical acceleration are

computed for the entire video. Spatial gradient of horizontal

and vertical components of acceleration and flow are used to

capture the acceleration and velocity information along the

boundaries. HSGA and MBH for each video is calculated

and they are encoded using bag of features encoding. En-

coded bag of features corresponding to the two descriptors

are used to train separate SVM classifiers. Most commonly

used descriptor fusion method is representation level fusion

in which different descriptors encoded using bag of features

are concatenated to form fused descriptor. But when the

descriptors have totally different characteristics concatenat-

ing them will not be much effective [7]. So we are in-

troducing SVM score level fusion which will be more ef-

fective in case of complementing descriptors. SVM score

level fusion consists of training two separate SVM classi-

fiers, one for MBH and other for HSGA, and fusing their

probability score to obtain proper recognition. Consider

training two different SVMs Sh and Sm using HSGA and

MBH respectively, and let the corresponding test probabil-

ity scores for n action categories be Ph = {p1h, p
2
h, ..., p

n
h}

and Pm = {p1m, p2m, ..., pnm}. According to the way, in

which the score are fused SVM score level fusion can be

classified into max fusion, mean fusion and hybrid max-

mean fusion. In max fusion, P = max(Ph, Pm) is obtained

and action corresponding to max(P ) is chosen as correct

action class. P = mean(Ph, Pm) is obtained in mean fu-

sion and n corresponding to max(P ) is the recognised ac-

tion class. Max fusion and mean fusion methods are com-

bined in hybrid max-mean fusion method. In hybrid fusion,

PT = {p1T , p
2
T , ..., p

n
T } = max(Ph, Pm) is calculated and

equation24 is used to find P. As in case of previous methods,

action corresponding to maximum P is chosen.

P =

{

max(Ph, Pm), piT > T ∀ i = 1, 2, ..., n
mean(Ph, Pm), otherwise

(24)

where T is an experimentally chosen threshold.

5.2. Experiments and Discussions

Three standard action recognition datasets namely, KTH,

YouTube and UCF50 action recognition datasets were used

to evaluate the performance of our fused descriptor. KTH

dataset [22] consists of a total of 599 videos of six hu-

man actions shot in lab. 50 videos from each action class

were used for training and remaining were used for testing.

YouTube [17] and UCF50 [21] datasets are more challeng-

ing datasets compared to KTH, since the videos have large

variations in scale and view point, background motion, and

camera motion, etc. YouTube action dataset contains 1168

videos divided into 11 action categories while UCF50 is

an extension of YouTube dataset with 6666 videos divided

into 50 action categories. Videos in each action class are

grouped into 25 groups and the evaluation set-up used is

‘leave one out cross validation’. Figure 3 shows some sam-

ple frames from the datasets.

To evaluate the performance of our motion descriptors,

we use the improved dense trajectories framework adopt-

ing parameters from [25]. Motion descriptors were com-

puted around trajectories for a spatio-temporal volume of

size 32 × 32 × 15 divided into 2 × 2 × 3 cells. Farneback

acceleration with a neighbourhood size of 7×7 was used to
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Figure 3. Sample frames from datasets

extract acceleration descriptors. Bag of features approach

with a dictionary size of 4000 was used for encoding and

support vector machine with χ squared kernel was used for

classification.

Dataset HOA HSGA

KTH 90.97 % 95.32 %

YouTube 72.38 % 76.51%

UCF50 62.23% 69.97 %

Table 1. Performance of acceleration descriptors

We first evaluate the performance of our acceleration

descriptor on the three datasets. It is evident from Table

1 that HSGA performs better than HOA on all datasets.

The results lead to the conclusion that acceleration informa-

tion along the object boundaries is more relevant for action

recognition, than the acceleration information as such. So

we propose to combine our acceleration descriptor HSGA

with its velocity counterpart MBH.

Dataset Representation Mean Max Hybrid

YouTube 82.68% 83.86% 83.46% 84.06%

UCF50 76.70% 78.25% 77.6% 78.21%

Table 2. Comparison of different fusion Schemes

We have experimented on different methods for fusing

HSGA with MBH and the results of fusion using repre-

sentation level fusion and SVM score level fusion methods

are presented in Table 2. SVM fusion methods give an in-

creased recognition accuracy, among which hybrid fusion

method performs the best with a recognition accuracy of

84.06% on YouTube dataset and 78.21% on UCF50 dataset.

Experiments were conducted to study the impact of thresh-

old on recognition accuracy of hybrid fusion method and

threshold was fixed at 0.55.

Dataset HSGA MBH Fused

KTH 94.65 % 95.32 % 96.32 %

YouTube 76.51 % 82.88 % 84.06 %

UCF50 69.97 % 77.33 % 78.21 %

Table 3. Comparison of individual & fused descriptors

Table 3 shows the comparison of recognition accuracy of

individual descriptors, HSGA and MBH, with the descriptor

fused using hybrid method. Since HSGA and MBH have to-

tally different properties, HSGA could recognize some ac-

tions that MBH could not and vice versa. Hence fusing the

descriptors improved the recognition accuracy of the action

recognition system. Figure 4 shows the confusion tables

of YouTube dataset for individual descriptors and fused de-

scriptor. Fusion of descriptors improved recognition rate of

basketball shooting, diving, golf swinging, soccer juggling,

swinging, tennis swinging and volleyball spiking compared

to using either of the descriptors alone. Actions from UCF-

50 dataset with increased recognition accuracy due to fusion

is presented in table 4. For all other actions in the dataset,

recognition accuracy of the fused descriptor is either same

Action HSGA MBH Fused

Baseball Pitch 76.67% 75.33% 79.33%

Basketball 61.31% 60.58% 64.23%

Bench Press 85.63% 89.38% 91.88%

Golf Swing 82.73% 84.17% 87.77%

High Jump 71.54% 77.24% 78.05%

Hula Hoop 71.2% 69.6% 77.6%

Javelin Throw 44.44% 51.28% 52.14%

Jumping Jack 91.06% 90.24% 91.87%

Jump Rope 79.86% 85.42% 86.81%

Kayaking 73.25% 82.17% 84.08%

Military Parade 75.59% 78.74% 83.46%

Nunchucks 31.82% 50% 53.03%

Pizza Tossing 46.49% 55.26% 58.77%

Playing Guitar 68.13% 60.63% 76.25%

Playing Piano 70.48% 80% 82.86%

Playing Violin 71% 86% 87%

Pommel Horse 88.62% 93.5% 94.31%

Rock Climbing 72.22% 64.58% 75%

Rope Climbing 48.46% 58.46% 59.23%

Skate Boarding 70% 75.83% 76.67%

Skiing 58.33% 64.58% 65.97%

Skijet 61% 71% 75%

Swing 78.1% 88.32% 89.05%

Walking 56.1% 65.85% 67.48%

YoYo 64.57% 80.31% 81.1%

Table 4. Comparison of recognition accuracy for UCF 50 dataset
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Figure 4. Comparison of recognition rate of individual and fused descriptors on YouTube dataset: confusion matrix for HSGA (left), MBH

(middle) and fused MBH/HSGA(right). Labels denote: Bb: basketball shooting, B: biking/cycling, D: diving, G: golf swinging, H: horse

back riding, SJ : soccer juggling, S: swinging, TS : tennis swinging, TJ : trampoline jumping, V : volleyball spiking, and W : walking

or comparable with that of MBH. HSGA performs better

than MBH for actions like baseball pitch, basketball, hula

hoop, jumping jack, playing guitar, rock climbing etc and

hence fusion of velocity and acceleration descriptors im-

proves the recognition rate. Both figure 4 and table 4 show

that there is a considerable increase in recognition accu-

racy for actions with significant acceleration information

like golf swing, tennis swing and soccer juggling etc. From

the above discussion it is evident that acceleration is as im-

portant as velocity to represent motion in videos and fusing

acceleration and velocity descriptors compliment each other

and improve representation further. Strength of HSGA lies

in the fact that it could recognize some actions that MBH

missed. A particular action is not always performed at the

same speed, MBH tries to differentiate same actions with

varying speed, since it is completely dependent on veloc-

ity. But HSGA can recognize two videos of same action

correctly, even if they are performed at different speeds. It

was experimentally verified that MBH fails terribly in case

of camera shakes, but HSGA is more robust to it.

Now we compare our descriptor combination with other

descriptor combinations in the literature. Comparison of

the recognition accuracy of the descriptor combinations

MBH/HOF[25] and HOG/HOF[14] with our proposed de-

scriptor combination is shown in Table 5. All descrip-

tors were computed around improved dense trajectories and

were fused using hybrid fusion method. MBH/ HSGA out-

performs all other descriptors since the combination en-

codes the most relevant motion information, viz. velocity

and acceleration.

Dataset MBH/HSGA HOF/HOG[14] MBH/HOF[25]

YouTube 84.06% 82.17% 83.30%

UCF50 78.21% 77.74% 77.85%

Table 5. Comparison of different descriptor combinations

Further experiments to evaluate the performance of his-

togram of optical acceleration (HOA) for action recognition

were conducted, but the results did not match up to that of

HSGA. Fusing HOA with its velocity counterpart HOF gave

a recognition accuracy of 78.87% on YouTube dataset and

71.5% on UCF50 dataset and hence proved to be less effec-

tive compared to MBH/ HSGA combination.

6. Abnormal Event Detection

The increase in the volume of surveillance footages has

made automated abnormal event detection a greater neces-

sity than before. Anomaly detection aims to find any event

deviating from the normal pattern and this section briefs

the use of optical acceleration in this scenario. Problem of

anomaly detection is not a typical classification problem,

since it is not possible to train using all negative samples.

Common trend is to learn the normal patterns from training

videos and identify any event deviating from normal ones

as abnormal. A wide variety of training or learning frame-

work ranging from statistical models like Hidden Markov

Models (HMM)[13] to binary classifiers like support vec-

tor machines (SVM) [5] were used to detect unusual ac-

tivities in surveillance videos. Some of the recent works

perform abnormal event detection in a sparse reconstruction

framework which consist of learning sparse dictionary from

normal training data and thresholding sparse reconstruction

error to detect anomaly. An important one in this cate-

gory learns a dictionary from multi level histogram of opti-

cal flow features extracted from normal training videos [4].

A number works that concentrated on enhancing the dic-

tionary learning by using sparse combination learning[18],

computing similarity measure between neighbouring blocks

[1] and learning an additional abnormal dictionary while

testing is on the go [29].
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Figure 5. Proposed anomaly detection system

6.1. Optical Acceleration for Anomaly Detection

Figure 5 shows our proposed abnormal event detection

which uses a combination of velocity and acceleration de-

scriptors in a sparse reconstruction framework. Each video

in the training set is divided into 10 × 10 × 5 patches

and for each patch, velocity (HOF and MBH) and accel-

eration (HOA and HSGA) descriptors are computed and

concatenated to form the feature vector. Let the concate-

nated training feature set extracted from the normal training

videos be X = [f1, f2, f3, ..., fm, ] , where m is the to-

tal number of 10 × 10 × 5 patches in the training video.

From this feature set, a normal sparse dictionary set D =
[D1, D2, D3, ..., Dk] is learned using sparse combination

learning[18]. A normal data can be represented using one

of the dictionary vectors from D, but the reconstruction er-

ror while representing an abnormal data will be high. A test

video is divided into 10×10×5 patches and for each patch

the feature vector f is extracted. We check for the dictio-

nary element that can represent f with minimum error and

this error is thresholded to classify the test video as normal

or abnormal.

6.2. Experiments and Discussions

We have experimented our method on Avenue

dataset[18]. It contains 16 normal videos for training

and 21 testing video clips with some abnormal activity

captured in Chinese University of Hong Kong (CUHK)

campus. A pixel level binary mask is provided as ground

truth and hence evaluation is possible in frame level as well

as in pixel level. Recognition accuracy is the suggested

performance measure for this dataset.

Descriptor Accuracy

Velocity 64.3%

Acceleration 64.2%

Combined 68.6%

Table 6. Recognition accuracy of velocity, acceleration and com-

bined descriptors

Table 6 shows the pixel level recognition accuracy of

abnormal event detection using velocity descriptors (HOA

and MBH), acceleration descriptors(HOA and HSGA) and

the combination of the four. As in case of action recogni-

tion, the combination of velocity and acceleration descrip-

tors shows a superior performance.

Performance comparison of our descriptor combination

with multilevel HOF (mHOF) and spatio-temporal gradi-

ent is presented in table 7. Multilevel HOF is derived from

optical flow and encodes only velocity information, while

spatio-temporal gradient does not differentiate space and

time properties. Our descriptor combination encodes both

acceleration velocity, shows an improved performance.

Feature Avenue dataset

Multilevel HOF[4] 67.1%

3D time gradient[18] 67.3%

Our feature 68.6%

Table 7. Comparison with existing descriptors

7. Conclusion

In this paper, we developed algorithms to compute op-

tical acceleration for encoding acceleration of each pixel

in a video. Extending this concept we use two accelera-

tion descriptors histogram of optical acceleration (HOA)

and histogram of spatial gradient of acceleration (HSGA)

for motion description. We have demonstrated the use of

acceleration descriptors for efficient recognition of human

actions and detection of anomalies in videos. Experimen-

tal results show that acceleration is as important as velocity

to represent motion information contained in videos. Ac-

celeration descriptors could provide some information that

velocity descriptors missed and hence combining them im-

proved motion description, when compared to using either

of them alone. The motion descriptors introduced as part of

this paper may pave way for more interesting applications

in computer vision.
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