This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Full BRDF Reconstruction Using CNNs from
Partial Photometric Stereo-Light Field Data

Doris Antensteiner and Svorad Stolc
Austrian Institute of Technology
2444 Seibersdorf, Austria

{doris.antensteiner, svorad.stolc}Qait.ac.at

Abstract

The acquisition of partial BRDF measurements using
light field cameras and several illumination directions
raises critical questions regarding the accuracy of infer-
ences based on that data. Therefore, we attempt to verify
the quality of the reconstruction of a full BRDF using par-
tial input data. A dataset that provides a densely sampled
BRDF was used, both in viewing and illumination direc-
tions. We show the reconstruction of dense BRDF's when the
viewing angles are limited to top central regions, while the
illumination angles are not reduced and are positioned in
the shape of a half sphere around the material object, these
properties are characteristic of data provided by plenoptic
cameras paired with a photometric light dome. The partial
reconstruction of the dense BRDF out of data is achieved by
utilizing convolutional neural networks. We obtain a com-
petitive full reconstruction when up to 2/3 of the BRDF is
unknown.

1. Introduction

Material appearances of structured materials such as
metal, wood, or plastic can be uniquely characterized by
the bidirectional reflectance distribution function (BRDF),
as described by Nicodemus et al. [I]. The BRDF consists
of four independent variables (6;, ¢;; 0., ¢, ), which denote
the angles of the incident and reflected radiant flux. It maps
the irradiance incident from a specific direction to its in-
fluence towards the reflected radiance of another direction.
The bidirectional texture distribution function (BTF) was
later introduced by Dana et al. [2], which describes a tex-
ture image parametrized by the viewing and illumination
angle and therefore a spatially varying BRDF.

The acquisition of BRDFs can be tedious. Several
databases were constructed for research and academic use,
such as the CUReT BRDF database which provides
sparse samples with 200 measurements. The MERL BRDF
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Figure 1: Input data stack: (a) Ground truth BRDF, (b) re-
construction with input data dimensions 48 x 48 x v without
the transposed channels with an SSIM=0.73 of the estima-
tion (for the shown BRDF sample), (c) reconstruction with
additional transposed input data added to the original input
channels, which leads to input data dimensions 48 x 48 x 2u
with an SSIM=0.88.

Database [4] was obtained with a light source moving in a
circle at the same level as the camera, in respect to the sur-
face normal. Since both illumination and camera position
are restricted to a defined circle, it neither allows the sim-
ulation of viewing angles similar to plenotpic cameras nor
the positioning of the illuminations in the shape of a half
sphere. The BRDFs from BTFs Dataset from UTIA [3] pro-
vides densely sampled high precision BRDF measurements
with independent camera and illumination positions, which
allow both capturing anisotropic material behaviour as well
as reducing the dimensionality for both, illumination and
camera separately.

Using a very sparse BRDF for the task of image classifi-
cation was discussed by Wang et al. [6], where a fixed tra-
ditional camera was placed at the top center of a light dome
in order to acquire images. Each pixel observation is fit to
a 2nd order hemispherical harmonic model. By Wang et
al. convolutional neural networks (CNNs) [8] were used
to classify materials from plenoptic acquisitions without il-
lumination variations. It was shown that material recogni-
tion can be improved through light field data, compared to
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single image acquisitions. A compressive sensing approach
was implemented by Zupanic and Soler [9]], in order to re-
construct BRDFs from a single image with known normals
and illumination directions for isotropic and spatially con-
stant materials. Reconstructing the BRDF from a limited set
of samples was addressed previously by Nielsen er al. [[10],
where the MERL database was used. The dimensionality
was reduced based on a principal component analysis in or-
der to retrieve the most influential regions.

This paper demonstrates the ability to reconstruct dense
BRDFs for restricted observation angles on the scene, as oc-
curring in plenoptic cameras, while the illumination sources
can be triggered from a wide range of positions around
the object. The goal is to reconstruct dense BRDFs out
of sparse data, with restricted viewing angles concentrated
around the top down view.

This paper is organized as follows. In Sec. 2] we dis-
cuss the connection of light fields with BRDFs. The used
BRDF dataset is described in Sec.[3} Our chosen regression
CNN structure is introduced and discussed in Sec.dl What
follows clearly stated is the behaviour of the reconstruction
from 1/6 to 5/6 of the dense known BRDF using CNNs in
Sec.[5] There, we show quantitative and qualitative evalu-
ations of our dense BRDF reconstruction experiments. A
summary of the paper and our key results as well as an out-
look to our further work is given in Sec. [6]

2. Light Field and BRDF

In order to measure BRDFs, usually gonioreflectometers
are utilized, where the word gonio is derived from the greek
gonia which means angle and refers to the multiple direc-
tion capability of the device. Varying viewing and illumi-
nation angles allow the measurement of various incoming
and outgoing light rays. For the measurement of anisotropic
BRDFs all four dimensions have to be sequentially sam-
pled [LL1].

Plenoptic cameras capture light fields by acquiring irra-
diance values from different viewing directions on scenes,
using a lenslet array in front of the image sensor, as de-
scribed in [[12]. These light fields can be represented by two
directional and two spatial dimensions. Thereby they pro-
vide 4D information of the flow of light through space in
a static scene. Using multiple illumination sources allows
both the estimation of local surface orientations (photomet-
ric stereo) as well as capturing additional reflectance prop-
erties.

Previously, a setup combining plenoptic acquisitions
with photometric stereo, where the illumination sources
were placed on a half sphere around the scene, was used
in [13]] in order to achieve an improved depth reconstruc-
tions of scene. Utilizing such a setup, comprising plenoptic
cameras with several illumination sources, shows an ideal
tool for measuring sparse BRDFs. Since the viewing direc-

tions are restricted by the cameras sensor size and position,
one must address the question of the estimation of a dense
BRDF from the data acquired from light field cameras.

For evaluating our reconstruction, a dense BRDF dataset
is utilized which was captured with a gonioreflectometer.
We simulate the reduction of viewing angles by reducing the
data accordingly. This dataset is described in the following
section.

3. BRDF Dataset

The BRDFs from UTIA’s BTF Dataset [5] were used,
which were measured with a high precision gonioreflec-
tometer [[15]], with an angular precision of 0.03 degrees and
a spatial resolution of 1000 DPI. Data is then sampled at
fixed azimuth and elevation angles for both the illumina-
tion directions and the camera position [16]. The dataset
consists of 150 samples, comprising the materials of wood,
fabric, scotchlite, car paint, carpet, corduroy, glitter, leather,
paper, plaster, plastic, stone, wallpaper and plastic tape, as
demonstrated in Fig.[2]

The data acquisition framework and data arrangement is
shown in Fig. |3 The BRDF is described as a 4D function
of (0;, ¢i; 0y, py), Where 6 denotes the elevation- and ¢ the
azimuth angle. These angles are defined for both the illumi-
nation direction I and the camera direction V' in respect to
the object normal N. The object normal points towards the
top center of the acquisition device. The data contained in
the dataset was interpolated in order to propagate informa-
tion to missing parts of the BRDF subspace by an adapted
swept surface technique (see [16]).

Limiting the cameras elevation angles towards the top
center approximates capturing the scene with a plenoptic
camera. Though it is obvious, that plenoptic cameras pro-
vide a more dense representation in a narrow angle range,
we will be able to infer strong indications regarding the re-
construction abilities of BRDF data which is limited in its
observation angles. Reducing the cameras elevation angles
affect the material representation, as certain reflectance be-
haviour is unknown, as well as some of the representation
of specular peaks and of anisotropic behaviour. Anisotropic
patterns and specular peaks are visible in axial and diagonal
slopes respectively, in a square 8; x 6, of the BRDF.

Each input feature stack for our CNN contains all
azimuth variations (y;,,), Wwhere @; = (0...27) and
vy = (0...27), which each cover 48 pixels at defined ele-
vation angles (6;,0,).

A description follows how the described dataset is used
to approximate a dense BRDF from sparse samples.

4. BRDF Estimation

This section introduces our regression neural network
and discusses the depth of the network structure. Using re-
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Figure 2: Examples of measured BRDFs of materials as contained in the UTIA dataset [14].

457, ¢ € (0,27), 9, € {0, 27)

Figure 3: Acquisition setup and data arrangement
from [[14]]. This illustration is courtesy of UTIA.

gression, one can estimate those parts of the BRDF which
are unknown due to a restricted elevation viewing angle on
the scene.

4.1. Network Structure

We consider the problem of estimating a full BRDF con-
sisting of all measured views and illumination angles, which
will further be referred to as a dense BRDF. This estimation
is inferred from BRDF slices that are limited in their view-
ing directions. More specifically, we reduce the dimension
0, from 15° to 75°, in step sizes of 15°. In the representa-
tion in Fig. [3this is equal to removing 1 to 5 columns with
each a width of 48 pixels, starting from the right side of the
image. These unknown parts are estimated from the resid-
ual known data. For this regression problem, we make use
of a CNN. The network can be represented as a function
f(z,w) that transforms the input data into a stack of output
feature maps:

Fa,w) = fun (frs( fes( (S (frr (fer (2, 0e1)),w2) ) wies) ) ,wc4>
(1

with a function relation

£ RIBX48X(2u) |, RABX48X(36-u) )

The input data x of the dimension 48 x 48 x (2u) leads
to a number of 2u input maps, where the number of input
channels 2u contains u = {6, 12, 18,24, 30} BRDF slices
of defined elevation angles (0;,6,) as well as their trans-
posed counterparts. The benefit of that input data structure
is depicted in Fig. [T} which shows an improved reconstruc-
tion when using enriched input data. Transposing the input
channels supports the convolutional neural network to fol-
low the Helmholtz reciprocity, which improves the recon-
struction qualitatively and quantitatively (see Fig.[3)), espe-
cially of the top right regions. This is described in more
detail in Sec.

The input data is then mapped to n = 36 — u out-
put channels, using convolutional layers f.., followed by
rectified linear units (ReLUs) f,.. The convolutional lay-
ers feo, fes and foq are 1 x 1 convolutional layers. The
networks weight parameters w = (We1, Wea, We3, Weyq) are
initialized with normally distributed random numbers and
learned from the input data in order to solve the problem
of reconstructing the unknown BRDF regions. The 1 x 1
convolutional layers followed by ReLLUs benefit the recon-
struction of the BRDF. We train the model to minimize a
quadratic loss function Ziv(ll — f(xi,w))?, where [ is the
ground truth BRDF value and f(z;,w) the estimation for
the input z;.

A network architecture is used as shown in Fig. ] the in-
put consists of the known BRDF parts and their transposed
versions.

4.2. Deep Neural Networks

For the regression task, we tested deeper convolutional
network architectures, where we used the structure of the
first 3 x 3 convolutional layer f.; up to a number of 5 times.
Multiple insertions of f.1, each followed by the ReLU f,1,
are used to gain a deeper network structure. The network is
depicted in Fig.[d] The depicted structure contains one 3 x 3
convolutional layer f.;, while more insertions of that layer
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Figure 4: CNN network structure.

= = e =
o o ~ @

SSIM evaluation set
= =
@ &

=]
o

=]

=]

Tﬂm/\
not transposed
0 15

5 1 20 25 30

Figure 5: Comparison of the SSIM performance of our pro-
posed network with transposed input data added to the orig-
inal and the original input data (not transposed), both eval-
uated at epoch e = 1300.

demonstrate the performance of deeper networks. While
the first convolutional layer is sensitive to local features as
e.g. edge structures, deeper layers represent more complex
combinations of lower level local features. For each net-
work of increased depth, we observed the accuracy on the
evaluation set. In Fig.[6] the performances of the networks
are compared at several epochs e up to e = 3000. A perfor-
mance drop is visible with each additional 3 x 3 convolu-
tional layer, with a structural similarity (SSIM, described in
detail in Sec.[5.1)). Therefore, a deeper network of that type
would not support us with our current reconstruction task.
We chose a network with one 3 x 3 convolutional layer, as
depicted in Fig. ] as it shows superior performance com-
pared to deeper network structures for the used dataset and
architecture type.

Other kernel sizes were tested during our experiments.
Where sizes up to 7 x 7 didn’t improve the result in any
significant way, a fully connected network showed to be in-
feasible due to memory limitations. The latter was adressed
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Figure 6: Evaluation of deep CNN structures up to epoch
3000 on the evaluation set, with « = 30, where the structure
of the first 3 x 3 convolutional layer is used up to 5 times by
additional insertions. The training set behaves in a similar
way. The network was trained twice up to e = 3000, the
second result showed the same tendency. Additionally we
tested the mean absolute error (MAE) performance, which
showed a comparable behaviour. Therefore the second re-
sult and the MAE are not displayed.

by enriching the input by the transposed data.

4.3. Enriched Input Data

The input data is enriched to help the network with
the reconstruction task. In order to provide a higher
variaty in the input data, each BRDF slice is trans-
posed and added to the original BRDF data.  This
is reasonable since the Helmholtz reciprocity holds for
BRDFs of most realistic materials [17]. The princi-
ple describes that the BRDF value would be unmodi-
fied, when swapping the camera and illumination positions:
BRDF (0;,¢:; 0y, pu) = BRDF (0, ©v; 0i, i)

The results for both enriched and non-enriched in-
put data are illustrated in Fig. 5] with output channels
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n = {6,12,18,24,30}. Using a transposed input addition-
ally to the original input channels allows a more realistic
reconstruction, especially in regions where the camera and
illumination positions are swapped and either of both is rep-
resented in the input data stack.

4.4. Training

The CNN architecture, which we described in Sec. 4,
was trained by learning its weights using back propagation
with the 150 BRDF examples from the dataset described
in Sec[3] which was randomly divided into a training and
an evaluation set. The probability of a sample to belong to
the training set is 80%. The input data was enriched as de-
scribed in Sec. 3] Data augmentation, which is frequently
used in CNNs, was not implemented because of the strict
reflectance behaviour of BRDFs.

5. Experimental Results

In this section the qualitative and quantitative evaluation
performances of the results of our dense BRDF reconstruc-
tion are demonstrated.

5.1. Quantitative Evaluation

Performance evaluations are pursued for defined num-
bers of known elevation angles in the following order of
u = {30,24,18,12,6}, which corresponds to maximum
viewing elevation angles 6, = {60°,45°,30°,15°,0°}.
Fig. [7] shows the the reconstruction using three differ-
ent evaluation methods, namely the structural similarity
(SSIM), the mean absolute error (MAE), and a percentage
of correct reconstruction compared to the total range of the
ground truth square. In our evaluation representation, the x-
axis denotes the number of unknown estimated BRDF data
n = 36 — u and the y-axis shows the performance measure-
ments.

The SSIM is shown in Fig.[7a|and Fig. 7] for the evalua-
tion and training set respectively. We compute the SSIM as
suggested by Wang et al. [[18]], while taking the mean value
over our N estimated slices for all pixel values, as follows:

(Zi(p)* - (ci(p)” - (si(p))", (3)

N
=1

1 P
SSIM:WZV

p=11

with the pixel position p := (z,y) and a maximum pixel
index P. While I is denoting the luminance, c the contrast
and s a structural term, where weights «, 3,y are set to 1.
The SSIM covers values from —1 to 1, while a value of 1
describes two identical images.

The MAE is computed by the mean absolute differences
between our estimation f(p) and the ground truth value [

for each slice 7 and pixel position p:

P
MAE = 5 S - A0l @
p=1i=1
MAE evaluation results are shown in Fig. Here, a higher
value represents a less accurate matching result.
The percentage rate PR of correct classification is de-
fined by the distance from our estimation to the ground truth
value in relation to the full value range of a specific slice:

_ 1 |li(p) — fi(p)]
PR =100- (1-N~PZ. z-z) ®)

tmax tmin

where the maximum value over each slice is de-
fined by [;,,,. = max,cp l;(p) and the minimum value by
lini,, = minge p l;(p) for each slice i € N. The PR evalu-
ation results are shown in Fig. A value of 100% corre-
sponds to a perfect match, while a value of 0% would mean
that each pixel in our estimation is on average wrong by the
full value range of that slice.

Deep convolutional layers were evaluated, where we
used the structure of the first 3 x 3 convolutional layer f.;
up to 5 times. We observed the network for each increased
depth up to epoch e = 3000 (see Fig.[6). Using our spe-
cific network type and input data, deeper structures showed
a drop in performance with a range from the best result
(e = 3000) of SSIM = 0.737 (one 3 x 3 convolutional
layer) to SSTM = 0.707 (five 3 x 3 convolutional layers).
The steepest drop was observed between the use of two and
three of these layers. Therefore, a deeper network of that
type would not support us with our current reconstruction
task. Therefore, we chose a network with one 3 x 3 convo-
lutional layer.

We tested the reconstruction with our trained networks
for u = 6,12,18,24,30 at several iterations, up to the
epoch e = 2000. The used dataset consists of 150 sam-
ples and was split in a training and evaluation set by ran-
dom choice with a probability of 80% for a sample to be-
long to the training set. We show the performance on our
evaluation set at several iterations as well as the SSIM on
the training set (see Fig. [7). Notably, a higher number of
iterations shows better performance, which indicates, that
our network didn’t overfit on the training data. The per-
formance at iteration e = 2000 is numerically displayed in
Tab. [T} using the SSIM, MAE and PR performance mea-
surements. Competitive reconstruction results are shown
when 1/6 (n = 6) to 3/6 (n = 18) of the BRDF is esti-
mated, with an SSIM performance on the evaluation set of
0.742, 0.699 and 0.730 respectively. These results are rep-
resented in column 2 and 3 in Fig. [§] where even complex
structures at a high angle ; and 6,,, shown at the bottom
right of the BRDF structures, are well reconstructed.
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Figure 7: Performance evaluation from epoch e = 10 to 2000. The SSIM rate on the evaluation set is shown in (a), (b) depicts
the SSIM training error. The MAE is shown in (c), and (d) demonstrates the correct classification in % compared to the full

range in each BRDF slice.
type set n=6 n=12 n=18 n=24 =30
SSIM eval | 0.742 0.699 0.730 0.596 0.227
MAE eval | 0.034 0.039 0.047 0.047 0.079
PR [%] | eval | 99.28 98.90 98.89 98.60 97.94
SSIM train | 0.919 0917 0917 0.870 0.762
MAE train | 0.024 0.028 0.030 0.037 0.067
PR [%] | train | 99.26 99.11 99.05 98.88 98.09

Table 1: Error evalutaion at epoch 2000 of the evaluation set, for n = {6, 12, 18,24, 30}.

5.2. Qualitative Evaluation

In order to evaluate the qualitative performance of
our reconstruction, we show results from the introduced
CNN structure, trained with input channels of the size
48 x 48 x (2u) (see Fig.[§). In terms of qualitative vi-
sual similarity, the second column (u = 30) with n = 6
unknown slices up to the the fourth column (u = 18) with
n = 18 unknown slices, are very close to the ground truth.
The last column (u = 6) with n = 30 unknown slices only a
general tendency was learned with difficulties to reconstruct
detailed structures. A major improvement was achieved by

adding transposed image data to the input channels from the
used dataset (see Fig.[I).

6. Summary and Outlook

We introduced the reconstruction of dense BRDFs from
limited observation angles, as characteristic for plenoptic
image acquisitions. Using light field cameras, the scene is
captured from different viewing angles, which are concen-
trated around a main viewing direction. Using a half sphere
structure, various illumination sources can be placed around
the scene at several illumination angles. The ability to infer
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Figure 8: BRDF reconstructions where 5/6 to 1/6 of the dense BRDF are known. Columns from left to right: ground truth,
n = {6,12,18, 24,30} unknown elements. The estimated parts of the BRDF data are framed with a red colour.




from thereby acquired sparse BRDF data to a more dense
representation is of high interest.

In this work we showed the performance evaluation
of several convolutional neural networks on BRDF data
as well as the reconstruction ability and limitations. We
showed the estimation of dense BRDF structures at five dif-
ferent sparsity levels on the UTIA dataset, where up to 5/6
of the BRDF structure was unknown.

Most notably, we gained an improved reconstruction of
dense BRDF values from sparse BRDF data of low angles
6; and high angles 6,,, which are represented towards the top
right edge in Fig.[8] by using transposed images additionally
in the input data. This means that the propagation of the
Helmholtz reciprocity from the input layers to the output
was supported.

This type of CNN architecture has strong local connec-
tions and therefore cannot capture complex behaviours such
as the transpose, which is used to follow the Helmholtz reci-
procity. We believe that other types of networks can im-
prove the results in regions where the locality relation is
weakened. Additional refinements can be achieved by fur-
ther enriching the input data by useful structural informa-
tion.

Future work will cover more sophisticated network
structures for the reconstruction of the dense BRDF as well
as partly reusing pre-learned networks of different topolo-
gies. U-Shaped networks were previously utilized for the
depth estimation from light field data by Heber e al. [19],
we will work on an adapted version of such a network struc-
ture with a weakened local orientation dependency. Our ex-
periments will be additionally extended to more real-world
objects for two different setups, namely a plenoptic camera
with a light dome and an industrial acquisition setup with
a multi-line-scan camera. For ground truth evaluations we
will render BRDFs with our camera setups and reconstruct
more complete BRDF data additionally.
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