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Abstract

This paper proposes a method for estimating the surface

of transparent objects based on light field convergency. The

light field convergency represents the degree of convergence

of the light field at each point. The proposed method utilizes

local photo consistency, which is one of characteristics of

the light field convergency. Around a boundary contour, a

point that is visible from viewpoints with a small conver-

gence angle is locally consistent. In other words, the local

photo consistency is implicitly maintained near the bound-

ary contour. We use a light field camera as a camera array

with small convergence angles to estimate the surface of the

transparent object. Experimental results have demonstrated

that the depth of the transparent object is estimated from the

captured image by the light field camera.

1. Introduction

Although several methods have been proposed for mea-

suring the shape of an object which has a non-Lambertian

surface, surface shape measurement of transparent objects

is still a difficult problem in the field of computer vision.

For measuring the surface shape of the transparent object,

several researchers have proposed methods including meth-

ods [16, 13] using polarized light and a method [7] by soak-

ing an object in the fluorescent emission solution. However,

the method using polarized light needs to surround the ob-

ject with light sources for the measurement. On the other

hand, the method using the fluorescent emission solution

is invasive because of the necessity of immersing the ob-

ject in the solution. Other approaches [22, 21] using light

field have been proposed for measuring the surface shape

of a thin transparent object. The approach aims at measur-

ing the surface shape of a thin transparent object, and the

approach is not applicable to measure the surface shape of

a solid transparent object. However, light field has many
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helpful information which can be acquired all at once.

We propose a method for estimating the surface of a

transparent object based on light field convergency. The

light field convergency is a feature representing a conver-

gence of the light field within the space. A transparent ob-

ject is captured by the light field camera [15, 2, 23], and

the depth and the normal direction are estimated simulta-

neously. The depth is estimated using local photo consis-

tency that is one of the characteristics of light field conver-

gency. The local photo consistency is a property which is

observable around boundary contours of a transparent ob-

ject. The point on the transparent object looks the same

from the viewpoints which have a small convergence angle.

The normal direction is estimated using a light field con-

vergency map that describes the distribution of light field

convergency. In this paper, the results show that the normal

direction of surface and the depth at the boundary contour

of the transparent object are estimated from the captured

image by the light field camera.

The proposed method several characteristics, as follows:

• Real-time oriented. The proposed method can estimate

the shape of a transparent object from image which

were captured in one shot. The proposed method can

measure the shape even if the objects deform.

• Real-world oriented. The proposed method does not

need particular light and calibration between camera

and measurement environment. Not only transparent

object but also opaque object are estimated by the same

framework. Specifically, it can be used as eye of work-

ing robot.

• IOR-free The calculation of the proposed method does

not include refractive index. Additionally, a transpar-

ent object may have distribution of the refractive index.

2. Related Works

Several methods including [17, 5] have been developed

to measure the three-dimensional shape of the object. Some

of them have also been commercialized including Microsoft
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Kinect [1]. In such methods, it is difficult to measure

the shape of the object in case that the surface is non-

Lambertian such as a specular reflection, a subsurface scat-

tering, or a transmission. Method [11] measures a three-

dimensional shape of the metallic surfaces by utilizing the

polarization. There are also methods [14, 10] for shape and

radiance of specular surfaces. Other methods [8, 9] uti-

lize a single scattered light to measure a translucent three-

dimensional object shape.

Some methods have focused to measure the three-

dimensional shape of transparent objects which cause re-

fraction and transmission. In methods [13, 16] using po-

larized light, a reflected light on the surface of transparent

objects is observed by a camera via a polarization plate. Po-

larization intensity of the reflected light varies according to

the angle of reflection. Angles at each point on the surface

of transparent objects are measured by observing while ro-

tating a polarizing plate passing the polarization of certain

angles. In this method, it is necessary to surround the trans-

parent object with light sources. In a method [7] using flu-

orescence liquid, the transparent object immersed in fluo-

rescence liquid is measured by irradiating a slit light. The

slit light causes the fluorescent emission in the fluorescent

solution.

Recently, many methods [3, 4, 20, 18, 19] employ a cam-

era capable of recording the light field. A method [12], us-

ing a camera capable of recording the light field, identifies

the transparent object from refraction of the light rays pass-

ing through the transparent object. This method identifies

the transparent object by pre-registering the light field of

transparent objects. However, this method is not intended

to measure the surface shape of the transparent object. To

measure the surface shape of the transparent object, meth-

ods [22, 21] that utilize light field have been proposed. In

this method, light of the background is coded in position

and angle. Position and angle of the light at background

are determined by observing the light passing through the

transparent object via a camera. The surface shape of the

transparent object is estimated from those information by

assuming the transparent object with a thin lens. Therefore,

this method can not measure the surface shape of the thick

transparent objects.

In this paper, we propose a novel approach for estimating

position and direction, on the surface of a transparent object

based on light field convergency. The acquired image by

light field camera is regarded as the images by an array of

virtual cameras. In the proposed method, it is easy to build

a system because the surface shape of the transparent object

is estimated using a single light field camera.

3. Local Photo Consistency

Photo-consistency is a property in which a point on

the object has the same appearance from arbitrary view-

points. For example, an observed color does not depend

on the viewpoint on Lambertian surface, because the ray

is diffused isotropically. On the Lambertian surface, the

corresponding points are identified based on the photo-

consistency, then the depth of the point can be measured

with the stereo matching-based method. On the other hand,

a transparent object, such as a glass product, has a prop-

erty in which rays from the outside penetrates the object.

Therefore, the color of the apparent varies depending on the

point of view, i.e. it is not photo-consistent. For this reason,

measuring the shape of the transparent object is relatively

difficult.

As shown in Figure 1 (a), let us consider the refraction

of ray at a transparent object.Since there is a difference be-

tween the refractive rates, a ray is refracted at a borderline

between an air and the inside of the object. In this paper,

it is assumed that the refractive rates of the transparent ob-

ject is homogenous, and the light is not scattered inside the

object. As shown in Fig. 1 (a), let θair be the inside angles,

θtra denotes the outside angles, nair is the refractive rates

of the air, ntra is the refractive rates of transparent object.

These relationships are as follows according to Snell’s law

[6]:

nair sin θair = ntra sin θtra, (1)

θtra = sin−1

(

sin θair

n

)

, (2)

where n = ntra/nair. This equation is differentiated by θair
as follows:

Ψ(θair) =
∂θtra

∂θair
=

cos θair
√

n2 − sin2 θair
. (3)

Therefore, ∆θtra is written the following equation:

∆θtra ≈ Ψ(θair)∆θair =
∂θtra

∂θair
∆θair

≈ cos θair
√

n2 − sin2 θair
∆θair. (4)

Therefore, when looking around center of the transparent

object (θair ≈ 0), ∆θtra = ∆θair/n. In the case of most

of the transparent object, θtra changes with θair because

1 ≤ n < 2.5. In this way, the photo-consistency is not

maintained.

On the other hand, as shown in Figure 1 (b), let us con-

sider the refraction of ray at the boundary contour of the

transparent object. In this study, a part of surface where

the line of sight and the normal to the surface around that

part are nearly perpendicular is regarded as boundary con-

tour. When θair = π/2, Ψ(θair) = 0 from the Equation (3),

so that ∆θtra = 0. Expressing Ψ(θair) by a second-order
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Figure 1. Refraction at an interface between a transparent object

and the air.
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Figure 2. Overview of the proposed method.

Taylor expansion around θair = π/2 gives us

Ψ(θair) =

π

2
− θair

√
n2 − 1

, (5)

because first and third term are zero. This equation show

that Ψ(θair) is a monotonic decrease to θair. The closer θair
get to π/2, the more |Ψ(θair)| is small, and ∆θtra is also

closer to zero. Besides, the higher n, the more |Ψ(θair)| is

small. In this way, at the boundary contour of transparent

object, because ∆θtra is small with respect to the change

of angle of the line of sight, photo-consistency around the

boundary contours is maintained. We call the property as lo-

cal photo consistency. In the proposed method, the bound-

ary contour of the transparent object is estimated by the lo-

cal photo consistency.

4. Depth Estimation based on

Light Field Convergency

The overview of the proposed method is shown in Fig-

ure 2. First, a transparent object is captured by a light field

camera. The acquired image by light field camera is re-

garded as the images taken by virtual camera array. Since

the spatial intervals between each pair of virtual cameras are

short, the convergence angles between the virtual cameras

are also small. Next, the corresponding points on the bound-

ary contour are identified from array based on local photo
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Figure 3. Camera array.
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Figure 4. Disparity on camera array images.

consistency. Then, the depth of the points on the boundary

contour from the light field camera is estimated. In addition,

the normal direction of surface at the boundary contour and

refraction influence are estimated using light field conver-

gency map. The surface shape of the transparent object is

updated by minimizing energy function which is composed

by the normal direction and refraction influence.

4.1. Estimation of Initial Depth

As shown in Figure 3, let us consider that an array of

cameras are aligned vertically and horizontally at regular

intervals. Array images taken by the camera array to a point

A on the optical axis at the camera in the center are shown

in Figure 4. The point A is shifted from the center according

to the position of the camera. Let su be u direction compo-

nent of the disparity, sv denotes v direction component of

the disparity. The line of sight from the camera is converged

one point when su and sv are same value. By changing the

disparity su and sv that are same, the line of sight from

the camera is converged at an arbitrary depth. Let u and

v be the indices corresponding to the position of the cam-

era, I(u,v)(x, y) denotes the acquired image by the camera

(u, v), I
(u,v)
sh (x, y, su, sv) denotes the image that has moved

in parallel an image I(u,v)(x, y) in the direction of returning

the shift depending on (u, v) and su and sv , Nuv is the total

number of camera. In this study, we define the following

equation as an error function of the pixel (x, y) expressing
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Figure 5. Relationship between parallax and depth.

the light field convergency.

E(x, y, su, sv) =
∑

x′,y′

∑

u,v

{I(u,v)sh (x′, y′, su, sv)− Ia(x
′, y′, su, sv)}2, (6)

Ia(x, y, su, sv) =

∑

u,v

I
(u,v)
sh (x, y, su, sv)

Nuv
. (7)

The boundary contour of the transparent object and the

background of the corresponding points are searched by ob-

taining s = su = sv as the error function E is minimized.

The parallax image ŝ0 is obtained by determining s when

the error function E is minimized as follows:

ŝ0(x, y) = arg min
s

E(x, y, s, s). (8)

As shown in Figure 5, let us consider a case where three

cameras oriented in the same direction look at any one

point. Let w be the pixel width of acquired image by the

camera, ϕ is the angle of view of the camera, l is the dis-

tance between cameras. Relationship between the disparity

s and the depth d is as follows:

d =
wl

2s tan (ϕ/2)
. (9)

Therefore, initial depth d0 is estimated substituting ŝ0 to s
in this equation.

4.2. Estimation of Normal Direction

As shown in Figure 6, when looking at the boundary con-

tour which direction of surface is v direction, an image of E
with respect to su and sv becomes light field convergency

map such as that shown in Figure 7. In this case, as ex-

plained in Section 3, even if a viewpoint changes to v direc-

tion, color of apparent does not change. Therefore, when

the value of sv corresponds to the correct depth, E is rela-

tively small. Then, E is relatively large when sv has other

value. On the other hand, when a viewpoint changes to u
direction, the photo consistency is not maintained, color of

apparent changes. Therefore, the difference between E of

Transparent 
Object

Eye

≶

u

Figure 6. In case of looking at the boundary contour that direction

of surface is v direction.
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Figure 7. Light field convergency map. (a): Normal direction of

the surface is v direction. (b): Normal direction of the surface is u

direction. (c): Normal direction of the surface is slant direction.

when su is value corresponding to the correct depth and E
at other is relatively small. As a result, as shown in Fig-

ure 7 (a), the distribution of the light field convergency map

is composed of a long elliptical shape in su direction. In

contrast, the distribution of the light field convergency map

is composed of a long elliptical shape in sv direction when

looking at the boundary contour that faces u direction (Fig-

ure 7 (b)). Then, Figure 7 (c) shows the distribution of the

light field convergency map when looking at the boundary

contour that faces slant direction. Hence, by examining the

direction of the elliptical shape of the distribution of the

light field convergency map, it is possible to estimate the

normal direction of the surface at the boundary contour.

Furthermore, as shown in Figure 8, we consider rotation

of disparity. Disparity su and sv are rotated by θs, and so

su and sv are replaced by s′
u

, s′
v

and θs as follows:

su = |s′
u
cos θs + s′

v
sin θs|, (10)

sv = |s′
v
cos θs − s′

u
sin θs|. (11)

Figure 9 shows that light field convergency map depends on

θs, for example. Let θ̂s be angle θs of when the ellipticity of

the elliptical shape is maximum. We estimate the direction

of the surface by the following equation.

θest =







θ̂s E′′

u0 ≤ E′′

v0

θ̂s +
π

2
E′′

u0 > E′′

v0

, (12)

where E′′

u0 = ∂2E/∂s2
u
|su=ŝ0

and E′′

v0 = ∂2E/∂s2
v
|sv=ŝ0

.

4.3. Estimation of Presence Region
of Transparent Object

Figures 10 (a), (b) and (c) show light field convergency

maps of when rays converge at a background, a boundary
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Figure 8. Rotation and shift of point on camera array images.
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Figure 9. Angular dependence of light field convergency map.

(a): θs = 0
◦. (b): θs = 30

◦. (c): θs = 45
◦. (d): θs = 60

◦.

(a) (b) (c)

Figure 10. Influence of refraction to light field convergency map.

(a): Boundary contour. (b): Center of sphere shaped transparent

object. (c): Background image.

contour and a center of sphere shaped transparent object,

respectively. Gradient of distribution of light field conver-

gency map without refraction is steeper than it with refrac-

tion. Therefore, we can estimate whether rays were re-

fracted. Let Emin(x, y) be minimum value in light field

convergency map. We estimate refraction influence R(x, y)
by the following equation as follows:

R(x, y) =
∇2

su,sv
E(x, y, su, sv, 0)|su=ŝ0,sv=ŝ0

Emin(x, y)
, (13)

∇2
su,sv

=
∂2

∂s2
u

+
∂2

∂s2
v

. (14)

4.4. Update of Disparity Map

Disparity at points which are not classified as the bound-

ary contour is updated by utilizing an energy function. We

define the energy function as follows:

Es,n(x, y, s) =

kAFave(x, y, s) + kBFg(x, y, s) + kCFg0(x, y, s), (15)

Light Field Camera

Background Image

120mm

80mm

Transparent Object

Estimation Area

Figure 11. Experimental environment.

where kA,kB and kC are coefficients, Fave(x, y, s) is

moving average including weight and Fg(x, y, s) is mov-

ing average of gradient including weight, respectively.

Fg0(x, y, s) holds gradient at the contour. The more sim-

ilar θest and the calculated normal direction from the gra-

dient of ŝ0 are, the more influence increases. The contour

is obtained by binarizing R and extracting contour. The sil-

houette is obtained by covering the most outer contour. The

weight is set as; 0 at outer of silhouette, (rmax− r)/rmax at

others, where r is distance from most outer contour, rmax is

maximum value of r. We calculate ŝn+1 when Es,n(x, y, s)
is minimum as follows:

ŝn+1(x, y) =

ŝn(x, y)−
ks

∑

x,y
Es,n(x, y, s)

∂Es,n(x, y, s)

∂s
, (16)

where ks is a coefficient for updating. This calculation is

applied in silhouette excluding the area around most outer

contour. This calculation is iterated until the value of second

term is below a threshold.

5. Experimental Results

To confirm that the normal direction of surface and the

depth at the boundary contour of the transparent object can

be estimated with the proposed method, we conducted ex-

periments with the captured image.

5.1. Simulation

As shown in Figure 11, a light field camera was placed

120 mm from the background plane, the transparent object

was placed within the distance of 80 mm to 120 mm from

the light field camera. An acquired image by a light field

camera is created as a acquired image by a camera array.

The array image consists of 6× 6 images. Imaginary base-

line between cameras is 0.3 mm. Resolution of each array

image is 1078×748 pixels. A captured image is made using

Blender which is a rendering software. We assume that typ-

ical soda-lime glass, the refractive rates of the transparent

object is 1.51.
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Figure 12. Part of camera array images of Sphere.
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Figure 13. Result of Sphere. (a) Actual depth. (b) Initial depth. (c)

Estimated depth. (d) Normal direction. colors show direction of

normal. (e) Refraction influence.

Figure 12 shows a part of the acquired array images with

Sphere shaped transparent object and Figure 13 shows the

estimated depth. Figures 14 - 15, 16 - 17 and 18 - 19 show

the case of Torus, Torus-fill and Bunny, respectively. Torus-

fill is an object which inside of torus shaped object is filled.

Table 1 shows average errors;
∑ |dact − dinitordest|/N ,

where dact is actual depth, dinit is initial depth, dest is es-

timated depth, and N is the number of pixels. Figure 20

shows depth at middle height which is height of center of

Sphere.

Table 1. Average error (mm)

Object init est

Sphere 1.86 0.456

Torus 0.96 1.51

Torus-fill 5.16 1.06

Bunny 1.33 1.16

5.2. Experiment

To confirm that the normal direction of surface and the

depth of the transparent object can be estimated with the

proposed method, we conducted experiments with the cap-

Figure 14. Part of camera array images of Torus.
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(f) (g) (h)

Figure 15. Result of Torus. (a) Actual depth. (b) Initial depth. (c)

Estimated depth. (d) Normal direction. (e) Refraction influence.

(f) White shows calculation area. (g) White shows contour. (h)

Brightness shos weight, white is heavy.

tured image. As shown in Figure 11, the situation is same

as the simulation. Lytro Illum was used as a light field cam-

era. Array image of Lytro Illum consists of 12×12 images,

6× 6 images of them are used to estimate. Two types of the

transparent object, Apple and Tiger were employed for the

experiment.

Figure 21 shows a part of the acquired array images with

Apple and Figure 22 shows the estimated depth. Figure 23

shows a part of the acquired array images with Dragon. Fig-

ure 24 shows the estimated depth.

5.3. Discussion

Fig. 13 (b) shows that the depth of only boundary con-

tour have been measured correctly. On the other hand, the

depth around the center in Fig. 13 (c) has been improved
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Figure 16. Part of camera array images of Torus-fill.

(a) (b) (c)

120 mm

80 mm

　

(d)

　

(e)

R
e
fra

ctio
n

 In
flu

e
n

ce

　

(f) (g) (h)

Figure 17. Result of Torus-fill. (a) Actual depth. (b) Initial depth.

(c) Estimated depth. (d) Normal direction. (e) Refraction influ-

ence. (f) White shows calculation area. (g) White shows contour.

(h) Brightness shos weight, white is heavy.

by introducing the update process. Fig. 15 shows that the

depth of most of the areas in (b) were almost correctly esti-

mated. The depth in (c) were rather worse than it in (b). In

case of Torus, the initial depth were almost correct because

most of the areas were regarded as boundary contour. How-

ever, because the calculation areas shown in (f) included

the area of the inside of Torus, the depth in (c) become lit-

tle worse. Fig. 17 shows that the depth of boundary con-

tour in (b) were almost correctly estimated, but the depth

of around the center in (b) were not estimated. In spite of

the fact that (e)～(h) in Figs. 15 and 17 were similar, the

depth of around the center in (c) were improved by updat-

ing disparity, like Sphere. Fg0 effectively worked because

(d) in Figs. 15 and 17 are different, that is why this happen.

Then, (b) in Figs. 15 and 17 were not able even to be distin-

Figure 18. Part of camera array images of Bunny.
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Figure 19. Result of Bunny. (a) Actual depth. (b) Initial depth. (c)

Estimated depth. (d) Normal direction. (e) Refraction influence.
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Figure 20. Comparision of depth at middle height. (a): Sphere.

(b): Torus. (c): Torus-fill. (d): Bunny.

guished. On the other hand, difference of (c) in Figs. 15 and

17 were obvious. Fig. 19 shows that (c) was initial depth

such as correct areas and incorrect areas were mixed. Then,

it is seem that the depth in (c) were a little improved by up-

dating disparity. Tab. 1 numerically shows that the depth of
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Figure 21. Part of camera array images of Apple.
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Figure 22. Result of Apple. (a) Initial depth. (b) Estimated depth.

(c) Normal direction. (d) Refraction influence.

overall object were improved by updating disparity, except

for result of Torus. From these results, it was confirmed that

the depth were almost correctly estimated by the proposed

method. Fig. 20 also clearly shows that estimated results

excepting (b) were improved by updating disparity. More-

over, it is seen that even initial depth of boundary contour

were correctly estimated. From Fig. 22, it is seen that the

depth of around the center in (a) were not correct. It is seem

that the depth of around the center in (b) were improved by

updating disparity. From Fig. 24, it is seem that the depth

of some areas in (b) were improved by updating disparity.

From these results, it was confirmed that these results be-

haved in the same way as in case of simulation. Therefore,

It was shown that proposed method is practical.

5.4. Limitation

It is needed by the proposed method that the whole of

transparent object is captured by light field camera. Pro-

posed method probably cannot estimate shape of transpar-

ent object that causes strong specular reflection, because in-

tensity from background became relatively weak. Proposed

method usually does not work in case of a background im-

age which passive stereo method causes mismatch. Estima-

tion accuracy depends on the aperture size of a light field

Figure 23. Part of camera array images of Tiger.
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Figure 24. Result of Tiger. (a) Initial depth. (b) Estimated depth.

(c) Normal direction. (d) Refraction influence.

camera and the distance from a light field camera to a trans-

parent object. Therefore, estimation accuracy is down when

large transparent object is estimated.

6. Conclusion

In this study, we have proposed a method for estimating

the surface of transparent object based on light field conver-

gency. In proposed method, a transparent object which is

placed in front of a background was captured by the light

field camera. The initial depth is estimated using local

photo consistency that is occured in a special case of light

field convergency. The normal direction and the refraction

influence are estimated using light field convergency map

which is a distribution of light field convergency. The es-

timated depth is updated by minimizing energy function

which is composed by the normal direction and the refrac-

tion influence. In this paper, the results showed that the

estimated result were improved by updating disparity. The

proposed method can measure the depth around the bound-

ary of the transparent object, which cannot be measured ac-

curately with conventional methods. The proposed method

in combination with other complimentary methods may im-

prove the accuracy.
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