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Abstract

Underwater vision is subject to effects of underwater

light propagation that act to absorb, scatter, and attenu-

ate light rays between the scene and the imaging platform.

Backscattering has been shown to have a strong impact on

underwater images. As light interacts with particulate mat-

ter in the water column, it is scattered back towards the

imaging sensor, resulting in a hazy effect across the im-

age. A similar effect occurs in terrestrial applications in im-

ages of foggy scenes due to interaction with the atmosphere.

Prior work on multi-image dehazing has relied on multiple

cameras, polarization filters, or moving light sources. Sin-

gle image dehazing is an ill-posed problem; proposed solu-

tions rely on strong priors of the scene. This paper presents

a novel method for underwater image dehazing using a light

field camera to capture both the spatial and angular distri-

bution of light across a scene. First, a 2D dehazing method

is applied to each sub-aperture image. These dehazed im-

ages are then combined to produce a smoothed central view.

Lastly, the smoothed central view is used as a reference to

perform guided image filtering, resulting in a 4D dehazed

underwater light field image. The developed method is val-

idated on real light field data collected in a controlled in-

lab water tank, with images taken in air for reference. This

dataset is made publicly available.

1. Introduction

Underwater image formation is a complex physical pro-

cess due to the effects of light propagation through an aque-

ous medium. As a photon of light travels between a camera

and the target scene, it interacts with particulate matter in

the water column and can be scattered or absorbed. This

results in images often blue-green in color as the red wave-

length is absorbed at the highest rate. Light that is scat-

tered back towards the camera – backscattering – adds a

hazy effect to underwater images (Fig. 1). These effects are

range-dependent and thus restrict image capture to a typical

range of 1 − 2m from the seafloor. This necessitates the

use of robotic platforms that can carefully follow the terrain

to keep within the focus range of imaging sensors. Since

ambient light is limited in the deep sea, artificial lighting is

relied on for these surveys. All of these characteristics of

underwater image formation and restrictions for data col-

lection pose unique challenges to the field of computer vi-

sion. Development of robust methods that compensate for

these effects enables success in a range of marine applica-

tions [13, 9].

Figure 1. Underwater image subject to effects of underwater light

propagation. Note the haze effect across the scene. This is due

to backscattering, which acts to add light back to the image sen-

sor [1].

Light field cameras offer solutions to many of these chal-

lenges. Light field cameras capture both the spatial and an-

gular distribution of light for a 4D parametrization of the

imaged light field. Since this is a single, passive optical

sensor, it can operate underwater at close range with arti-

ficial lighting. Multiple views are captured simultaneously

to enable computation of a depth map from a single frame.

Additionally, the 4D parametrization allows for refocusing

and extended depth-of-field, relaxing restrictions for un-

derwater vehicles attempting to closely follow the seafloor.

Still, challenges associated with underwater light propaga-

tion hinder the ability to use existing methods for light field

processing on underwater images due to degradation of im-

age appearance from backscattering and attenuation. There

is limited literature on compensating for effects of underwa-

ter image formation with a light field camera. Additionally,
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there is a lack of openly available datasets of underwater

light field imagery. Addressing these challenges would en-

able current methods of light field processing used in air to

be transferred to the underwater domain.

The main contributions of this paper are (i) to develop a

robust pipeline for dehazing underwater images by exploit-

ing the structure and information provided by a single light

field image, and (ii) to provide a comprehensive light field

dataset for underwater image dehazing, including light field

images of target objects taken in pure water, and in water

with different concentrations of particulate matter to pro-

duce varying degrees of haze. Images taken in air are also

provided for reference.

This paper is presented in the following sections: Sec-

tion 2 presents prior work, Section 3 details our technical

approach, and Section 4 describes the experimental setup

and our results. Finally, Sections 5 and 6 discuss these re-

sults and conclude with suggestions for future work.

2. Previous Work

Prior work on image dehazing can be separated into ei-

ther single or multi-image approaches. Methods for mul-

tiple views have relied on images taken in different condi-

tions, such as in different weather conditions [18], or using

polarization filters [22]. Single image dehazing is an ill-

posed problem. He et al. developed the Dark Channel Prior

(DCP) to estimate transmission maps of natural scenes for

dehazing in terrestrial applications [11]. Fattal leveraged a

statistical model of image formation, the color line model,

to compute transmission maps more consistent with phys-

ical expectation [8]. Several methods have also addressed

the issue of non-uniform illumination that arises in scenes

imaged at night [16, 2, 28].

Methods for both multi- and single image dehazing have

been extended to work in underwater environments. Multi-

image methods again rely on images taken under differ-

ent conditions, such as polarization [21], or under differ-

ent lighting, such as in photometric stereo [26, 20, 17].

Other methods take into account information available from

an underwater imaging survey, such as lighting configu-

ration and vehicle range from the seafloor [3]. For sin-

gle image dehazing underwater, Drews et al. extended the

DCP to the Underwater Dark Channel Prior (UDCP) [7].

Carlevaris et al. developed a novel prior exploiting the

difference between color channels of underwater images

due to attenuation [4]. Recently, several deep learning ap-

proaches have also been proposed for underwater image

restoration [23, 15].

Skinner and Johnson-Roberson have previously pro-

posed a method for 3D reconstruction of underwater scenes

with a light field camera, but this method was tested in pure

water and did not address compensation for scattering ap-

parent in environments with murky water [24]. Dansereau

et al. demonstrated the potential for using light field cam-

eras in underwater dehazing through work focused on the

design of a 4D hyperfan filter for volumetric focus of light

field images [6]. For dehazing, Dansereau et al. per-

formed gain-adjustment on input images, which does not

account for the range-dependent effects of underwater im-

age formation. Our proposed method directly accounts for

these effects using a physical model. A key advantage to

a physically-based approach is that structural information

is inherently embedded in the process of underwater im-

age formation. Thus, we not only recover a dehazed image

but also an estimate for transmission of the scene, which is

range-dependent.

3. Technical Approach

Throughout this section we use a two-plane parametriza-

tion of a light field image to provide the 4D structure

L(x, y, u, v), where (u, v) denotes angular coordinates and

(x, y) denotes spatial coordinates [25]. Sub-aperture im-

ages are obtained by holding angular coordinates constant

across the 4D light field such that the center sub-aperture

image is given by L(x, y, 0, 0). Algorithm 1 outlines our

proposed method for compensating for backscattering in

underwater light field images, which takes a hazy light field

image L(x, y, u, v) as input and produces the dehazed 4D

light field L̃(x, y, u, v) as output. The remainder of the sec-

tion provides further details for each step.

Algorithm 1 Proposed approach for dehazing an underwa-

ter light field image.

Input: L(x, y, u, v)

Output: L̃(x, y, u, v)
1: J(x, y, u, v)← InitialDehaze(L(x, y, u, v))

2: J̃ ← SynthesizeViews(J(x, y, u, v))

3: L̃(x, y, u, v)← GuidedImageFiltering(J̃ , J(x, y, u, v))

3.1. Dehazing Model

Figure 2. Abstraction of direct and scattered components of image

formation model for a terrestrial scene in daylight.

We will start with the base model for dehazing of single
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images in terrestrial applications and describe an extended

model applicable to underwater dehazing of single images.

The base model accounts for both direct transmission of

light from a target object and light that does not reach the

target object, but instead interacts with particulate matter in

the atmosphere and is scattered towards the camera to pro-

duce a fog or haze effect (Fig. 2). This model is given by:

I(x) = J(x)t(x) + (1− t(x))A, (1)

where x denotes spatial coordinates of a single image, J(x)
is the true irradiance of the scene, I(x) is the observed im-

age, A is environmental or ambient light, and t(x) is trans-

mission, which is related to range d between the camera and

the scene by

t(x) = e−ηd(x). (2)

Here η is a scalar attenuation coefficient. Note that when

considering the complete model of underwater image for-

mation, attenuation of light occurs due to compounding

effects of scattering and absorption, which is wavelength-

dependent. When discretized into red, green, and blue

color channels, the wavelength-dependent coefficient η(λ)
is highest for the red channel leading to disproportionate

attenuation of red compared to blue and green channels in

images. In this work, we focus on the problem of dehazing,

or correcting for the effects of backscattering only. Thus

we use a constant coefficient η across each wavelength as

modeled in prior work on underwater image dehazing [4].

One assumption this model makes is that environmental

light, A is constant across a scene. This is realistic for a

foggy terrestrial scene taken in daylight, where sunlight is

the main source of ambient lighting. This assumption does

not hold for typical configurations of underwater surveys,

especially in the deep ocean where ambient lighting is lim-

ited and artificial lighting is required. The artificial light

causes non-uniform illumination across the imaged scene,

often resulting in hotspots or glow where the light beam is

directly pointing (Fig. 3).

Figure 3. Abstraction of direct and scattered components of image

formation for an underwater scene with artificial lighting.

This scenario also occurs in images taken at night. Li et

al. proposed an extended model for nighttime haze removal

that corrects for glow and non-uniform illumination across

a scene imaged at night [16]:

I(x) = J(x)t(x) + (1− t(x))A(x) + La(x) ∗APSF,

(3)

where ∗ denotes a convolution. Now A(x) varies across the

image to account for non-uniform illumination across the

scene. APSF is the atmospheric point spread function used

to model glow in images [19]. La denotes an active light

source. Note that for nighttime dehazing, this model is used

to account for point source lights that appear within a scene.

In underwater image dehazing, glow more often occurs due

to the beam pattern of artificial lights used to illuminate the

scene at close range. This direct lighting results in a hotspot

in the image that produces the brightest illumination in the

center of the light beam with decreasing brightness spread

radially away from the center. However, this model is gen-

eralizable to other cases where lighting from a nearby vehi-

cle or diver also appears in the scene.

We employ this extended model across each sub-aperture

image to obtain an initial estimate of the dehazed light field

image J(x, y, u, v). For details of the solution, the reader is

referred to the original paper [16].

3.2. Synthesizing Views

After this step, we note that the individually dehazed

sub-aperture images still contain noise, which is not consis-

tent across sub-aperture images. By averaging across mul-

tiple images, much of this noise can be suppressed. We take

the mean of dehazed sub-aperture images to form an im-

proved estimate of the center sub-aperture image, J̃ . This

assumes that the depth variation across the scene is rea-

sonably small. The following subsection discusses our ap-

proach to extend denoising to the full 4D light field struc-

ture. Fig. 4 shows the center view sub-aperture image with

initial dehazing compared to the synthesized view.

3.3. Recovering Epipolar Images

Using the multiple views provided by the light field im-

age, we have recovered a dehazed image with improved

quality compared to the initial dehazing estimate. How-

ever, this dehazed image represents the center view only.

We wish to recover additional sub-aperture images with im-

proved quality while preserving the important details of J̃ .

To do this, we use a guided image filter [12]. The guided

image filter takes as input the image to be filtered and a ref-

erence or guidance image that contains desired details for

preservation. We smooth each dehazed sub-aperture image

based on the input guidance image, J̃ . To account for the

translational shift across sub-aperture images, we register J̃
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Figure 4. Comparison of initial dehazed center sub-aperture image

(left) and the synthesized view J̃ (right).

to each sub-aperture image prior to filtering. Fig. 5 shows

the final result of the center view with recovered epipolar

images.

Figure 5. Final result of the center view of the dehazed image with

recovered epipolar images.

4. Experiments & Results

4.1. Experimental Setup

We validated our proposed method in a controlled lab

setting (Fig. 6). Our setup features an acrylic water tank

with dimensions 18in. × 18in. × 36in. The tank is lined

with opaque black fabric to prevent reflection of light from

the tank walls. Total internal reflection at the water-air in-

terface is neglected. The tank is placed in a dark room to

limit global lighting effects. An underwater light is placed

in the tank to provide a single source of direct light, which

is a realistic scenario for a deep ocean imaging surveys. To

simulate conditions for backscattering encountered in open-

sea field experiments, milk was added to the tank to pro-

vide suspended particulate matter for increased scattering

Figure 6. Experimental setup with in-lab water tank in controlled

lighting environment with a single direct lighting source. The light

field camera is placed flush to the tank wall for imaging an artificial

scene a distance of approximately 1m from the camera. Milk is

added to the pure water tank to simulate effects of backscattering

present in field experiments.

effects. Target objects were placed at the end of the tank,

a maximum of 36in. from the camera, and imaged with a

Lytro First Generation camera fixed at the other end of the

tank, with the tank side acting as a flat viewport. To de-

code the raw image from the Lytro camera, we followed the

decoding process outlined in [5].

4.2. Results

Fig. 7 shows the results of our pipeline for five target ob-

jects. The left image shows a high-resolution image taken in

air for visual reference. Next is the raw underwater image

taken with a Lytro light field camera in murky water con-

ditions. This demonstrates the degradation typical of un-

derwater images taken in field tests, where the haze effect

dominates the image. The initial estimate of dehazing based

on (3) for single sub-aperture images is provided. This ini-

tial estimate shows color distribution closer to the expected

distribution in air, however a noise pattern is still visible in

the individual images. The final image is the result of our

proposed method after synthesizing views and performing

guided image filtering. The resulting images have reduced

noise and maintain the details of the imaged objects. Note

that these are the center images of each light field image and

the full 4D structure is preserved for the final result.

To validate our choice of dehazing model, we compare

our results for initial dehazing with another method that

uses a physical model for image formation to perform sin-

gle image dehazing underwater [7]. This method uses the

base model of single image dehazing in (1) with a statisti-

cal prior based on underwater images, the underwater dark

channel prior (UDCP). Fig. 8 shows this comparison with

the top images produced from single image dehazing using

our initial dehazing model and the bottom row showing sin-

gle images dehazed with UDCP. For UDCP we used a patch

size of 15 as recommended by the authors. Note that UDCP

does not account for non-uniform illumination across the
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Figure 7. From left to right: Ground truth target imaged in air, raw image underwater, initial estimate of dehazed image, result of dehazed

image with guided image filter using the registered synthesized view as a guidance image.
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scene or for glow patterns in the image. Instead this method

uses a global estimate for environmental light, A. Our ini-

tial dehazing step provides a consistent result across differ-

ent images, whereas results using UDCP can show a color

bias in regions of an image due to the assumption of uni-

form illumination and constant environmental light across a

scene.

Lastly, to evaluate the improvement from the hazy im-

age to the dehazed image, we show an estimation of dis-

parity for a light field image of the scene in pure water (no

milk added) for reference, the hazy light field imaged in

murky water, and the dehazed light field using our proposed

pipeline (Figs. 9 - 11, respectively). Sparse disparity maps

are estimated using the open-source light field suite soft-

ware, cocolib [10, 27]. These sparse disparity maps are then

interpolated using a matting Laplacian for a smoother esti-

mate [14]. Results are normalized between 0 and 1. These

results show that the degradation of raw underwater images

taken in murky water also causes degradation of disparity

estimation when compared to processing of light field im-

ages captured in pure water. Our proposed method recovers

enough information within the 4D light field structure to

improve disparity estimation.

5. Discussion

Overall, our results demonstrate the potential for using

light field cameras in underwater perception tasks. Dehaz-

ing of underwater images is a challenging computer vision

problem as information is lost about the scene due to degra-

dation of images and occlusion of image points by floating

particulate matter in the water column. However, the mul-

tiple views captured by a light field camera carry enough

information to recover much of the information that is lost

in a single image.

The dataset presented here is made publicly available. 1

The dataset contains underwater light field images in pure

water and hazy conditions, as well as images taken in air

for reference. Future work will extend this dataset to fea-

ture greater depth variation and varying levels of turbidity to

provide a stronger benchmark for testing developed meth-

ods.

Future work will also focus on further exploiting the

structure provided by light field cameras to overcome lim-

itations of our proposed approach. In particular, taking the

mean of sub-aperture images can introduce blur for scenes

with large depth variation. Incorporating all-in-focus filters

that overcome this issue and preserve the full depth-of-field

is a promising next step. Since our method is based on a

physical model of range-dependent lighting effects, we not

only recover a dehazed image but also an estimate for trans-

mission of the scene, which is dependent on range and a

1https://github.com/kskin/data

constant attenuation coefficient. Estimation of this coeffi-

cient would lead to an estimate for the depth map of the

scene. Incorporating the structural information inherently

embedded in the physical model of underwater lighting ef-

fects is another promising direction for future work.

6. Conclusion

This paper has presented a novel pipeline for dehazing

of underwater images taken with a light field camera based

on a physical model of underwater light propagation. We

also present a comprehensive dataset of murky underwater

images taken with a light field camera, including images

taken in pure water and in air for ground truth and visual

reference. Our results demonstrate improvement from the

raw underwater light field image to the final dehazed light

field image, and we show that this improvement enables the

application of light field processing methods developed for

in air applications to be used with images taken underwater.

Future work will focus on improving our model for under-

water dehazing to more accurately account for underwater

lighting effects including wavelength-dependent effects in

attenuation. Additionally, focus will be placed on recover-

ing metrically accurate depth maps of the scene. Lastly,

we wish to test these methods on more complex scenes

with greater depth variation and occlusions to work towards

achieving a robust method for light field processing in un-

derwater environments.
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