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Abstract

Machine Learning based model building and classifica-

tion has proved to be extremely effective for the camera

source identification problem. In this paper, we have pro-

posed a camera source identification methodology, based

on extraction of the Discrete Cosine Transform Residual

features, and subsequent Random Forest based ensemble

classification with AdaBoost. We improve the classifica-

tion accuracy by incorporating dimensionality reduction by

Principal Component Analysis. Our experimental results on

10,507 images captured by ten cameras from the Dresden

Image Database gives an average classification accuracy of

99.1%, and also show low overfitting trends when the con-

structed classifier is applied on a different image database.

1. Introduction

Blind detection of camera source of an image is used to

verify its origin and authenticity, and is considered a clas-

sic problem in digital forensics [1]. Most techniques for

camera source identification aim to detect traces or arti-

facts that the source camera imparts onto the images, such

as those resulting from the camera’s demosaicing algo-

rithms [2, 3], imaging sensor noise [4], lens-induced chro-

matic aberration [5], proprietary implementations of JPEG

compression [6], etc. There are several quality metric,

co-occurrence matrix and different feature based camera

source identification schemes. Kharrazi et al. [1] used sev-

eral Image Quality Metric (IQM) and Non-Image Quality

Metric (Non-IQM) feature based classification technique

for source camera identification. Choi et al. [7] proposed

to use the lens radial distortion as a fingerprint to identify

the source camera model. Efficient device identification

from sensor dust patterns was proposed by Dirik et al. [8].

Bayram et al. [9] exploited the Color Filter Array (CFA)

filter pattern for source camera identification. Local binary

pattern based texture features have also been used for cam-

era source identification [10].

Chen et al. [11] recently used co-occurrence matrix

based features utilizing the rich model of the camera’s de-

mosaicing algorithm for efficient source camera identifica-

tion, inspired by Fridrich et al.’s [12] work on rich mod-

els for steganalysis. Co-occurrence matrix based local fea-

tures have been used by Marra et al. [13] for efficient cam-

era model identification. Recently, in [14] Tuama et al.

extracted higher order statistics from contaminated sensor

noise by computing co-occurrence matrix based features for

source camera identification, and further improved the per-

formance by additionally incorporating color dependencies

and conditional probability based features [15].

In this paper, we leverage certain camera-dependent ar-

tifacts introduced by JPEG compression in modern digital

cameras to develop a classification based camera source

detection methodology. Currently, JPEG is the most pop-

ular compression technique which uses Discrete Cosine

Transform (DCT) based image compression with quanti-

zation [16]. Recently, Fridrich et al. [17] proposed a Dis-

crete Cosine Transform Residual (DCTR) feature set utiliz-

ing first order statistics of the quantization noise residual

obtained from the decompressed JPEG image, and applied
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it for JPEG image steganalysis. The main observation on

which our technique is based is that the quantization ta-

bles used for the JPEG compression varies in different

camera models, and hence can be considered an intrinsic

property of different camera models. Therefore, JPEG

compression incurs camera model dependent quanti-

zation noise in the image, and DCTR features can be

used to identify the source camera through capturing

the compression artifacts imposed by the camera model

dependent quantization tables, as these features capture

the first order statistics of quantization noise residu-

als. We found classification based on models built using

these features to be highly accurate. The following are

our major contributions in the paper:

• To the best of our knowledge, this work reports the

first application of DCTR features for high accuracy

camera source identification.

• We explored several features and classification op-

tions, and based on our obtained experimental results,

we have used a combination of Principal Component

Analysis (PCA) based dimensionality reduction, and

AdaBoost based ensemble classification with Random

Forest (itself an ensemble classification technique) as

the weak learner to achieve high accuracy levels. This

combination of techniques was established to be the

most suitable among other classification techniques

through detailed experimentation (details in Section 3).

• Our proposed technique exhibits low overfitting trends,

when the constructed classifier is applied on a different

image database.

The rest of the paper is organized as follows. In Section 2,

our proposed source camera identification framework is dis-

cussed in detail. Experimental results are given in Section 3,

and finally conclusions are drawn in Section 4.

2. Source Camera Identification Framework

In this section, we present details of feature extraction,

feature transformation and dimensionality reduction, and

classification techniques based on the transformed features.

2.1. DCTR Feature Extraction

The steps for DCTR feature extraction from an image are

as follows [17, 18]:

• The JPEG image is decompressed to spatial domain

without quantizing the pixel values to {0, · · · , 255} to

avoid any loss of information.

• The DCT basis patterns of size 8 × 8 are generated as

Figure 1. Subsampling procedure.
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2

, wi = 1 for i > 0.

• The decompressed JPEG image X is convolved with

each of the 64 DCT basis patterns B
(k,l), to generate

a set of 64 undecimated DCT planes, each of which is

denoted by U
(k,l) for (k, l)-th DCT basis pattern as:

U
(k,l) = X ∗B(k,l), 0 ≤ k, l ≤ 7 (2)

• According to the 64 DCT modes (a, b), 0 ≤ a, b ≤
7, corresponding to each DCT basis pattern in each

8 × 8 DCT block, the filtered undecimated DCT im-

age U
(k,l) is sub-sampled by a step-size of 8 to get 64

sub-images U
(k,l)
a,b , as shown in Fig. 1. The subsam-

pling process enhances the diversity and effectiveness

of the features, by accentuating the impact of the local

features.

• For each sub-image U
(k,l)
(a,b), the histogram feature is ex-

tracted as:

h
(k,l)
a,b (x) =

1

|U
(k,l)
a,b |

∑

u∈U
(k,l)
a,b

[QT (|u|/q) = x] , (3)

where QT is a quantizer with integer centroids

{0, 1, · · · , T}, q denotes the quantization step, and [P ]
is the Iverson Bracket, which is equal to ‘0’ when the

statement P is false, and ‘1’ when P is true. Here, the

value of q is dependent on the JPEG quality factor [17],

and the step size x for computing the histogram is 1.

• All the histogram features of the 64 sub-images U
(k,l)
a,b

are merged and combined to obtain the histogram fea-

ture h
(k,l) of the filtered undecimated DCT image

U
(k,l). This merging operation aids in dimensional-

ity reduction because of statistical correlation between
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Figure 2. Flow chart of proposed Ensemble Classifier based training process. The blocks marked “Bootstrap” performs random sampling

with replacement.

the histogram features of the sub-images, since images

have similar statistical characteristics in symmetrical

orientation. For example, since U
(k,l) = X ∗ B

(k,l),

and the sum of the elements of B(k,l) is zero (these are

DCT modes), for natural images X, the distribution of

u ∈ U
(k,l)
(a,b) will be approximately symmetrical, and

centered at zero for all a, b.

• For each filtered image, sixty-four separate (T + 1)-
dimensional histogram feature sets could be obtained

when the threshold for histogram is set to T . Then,

these histogram features can be merged to form one

histogram feature set with dimension 25×(T+1) using

symmetry properties [17]. Finally, for all the 64 sub-

images total feature dimension would be 64×25×(T+
1). Authors in [17] used DCTR feature dimension to

be 8000 as a good compromise between performance

and detectability for efficient steganalysis taking T =
4.

2.2. Feature Transformation and Dimensionality
Reduction

Dimensionality reduction generally transforms high di-

mensional features (e.g., 8000 dimensional DCTR features)

to lower dimensional ones to avoid overfitting, and helps

to avoid various complications arising from the “curse of

dimensionality”, including overfitting. PCA is a linear

method of feature transformation as well as dimensional-

ity reduction, such that the variance of the lower dimen-

sional feature space is maximized [19]. We have incorpo-

rated PCA based feature transformation and dimensional-

ity reduction to make the DCTR feature datapoints decor-

related by maximizing the variance among them, thereby

enabling efficient machine learning based model building.

Selection of the number of principal components is an im-

portant optimization decision. For that purpose, we have

used the computationally efficient “Modified 95% Variance

Method” [20], as follows. A Singular Value Decomposi-

tion (SVD) of the covariance matrix of the datapoints is

performed, and the count “k” is determined such that the

largest k singular values s11, s22, · · · skk satisfy

k
∑

i=1

sii ≥

0.95
m
∑

i=1

sii, where m is the original dimension of the fea-

tures, and S = [sij ] denotes the singular value matrix after

singular value decomposition of the covariance matrix of

the feature set. This value of k denotes the number of prin-

cipal components to be selected such that among the dat-

apoints 95% variance is retained, Our experimental results

show that PCA significantly improves the classification ac-

curacy of our experiments by 4-5%.

2.3. Random Forest based Ensemble Classifier

After feature extraction, we used Random Forest based

multi-class ensemble classifier [21], with decision tree as

base learner. There are mainly two well-known techniques

for ensemble classification: (a) Bagging, and, (b) Boost-

ing. Random Forest classifier has several advantages [21],

some of which include computational efficiency, ability to

represent non-linear decision boundaries, integrated feature

selection and classification, and noise resilience. In Bag-

ging or Bootstrap Aggregating [22], the original training

data is first randomly sampled with replacement (i.e., boot-

strap sampling). Subsequently, each sample is used to fit a

separate base classifier, and finally the base classifiers are

combined by taking majority voting or aggregation of the

predictions from each base classifier. Bagging reduces vari-

ance and also avoids overfitting. Random Forest is an ex-

tension of Bagging [22], where the decision tree is taken as

base classifier, and the prediction of the ensemble classifier

is obtained by majority voting among the base classifiers.
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Table 1. Camera Models Used in Experiments

Camera ID
Number of

Image
Camera Model

1 979 Canon

2 1040 Olympus

3 1331 Samsung

4 1671 Sony

5 1000 Agfa

6 925 Casio

7 630 FujiFilm

8 1000 Kodak

9 1000 Nikon

10 931 Panasonic

Additionally, feature selection is carried out at each node

while constructing the decision tree.

Boosting is a weighted ensemble classifier, where each

base classifier is assigned a non-negative weight accord-

ing to its stand-alone classification accuracy [23]. This ap-

proach generates a strong classifier by combining several

weak base classifiers, termed as “weak learners”. The most

popular representation of boosting is AdaBoost [23]. Clas-

sically, AdaBoost was designed for binary classification;

however, it is generalized for multiclass classification as

AdaBoost.M1 [23]. We have used the AdaBoost ensemble

classifier with Random Forest (itself an ensemble classifier)

as the weak learner for training in our source identification

framework. Fig. 2 shows the flowchart of the overall frame-

work.

3. Experimental Results

3.1. Experimental Setup

We experimented with 10,507 images taken from 10

camera models as shown in Table 1 from the stan-

dard benchmark Dresden Image Database [24] (termed as

Dataset-1). Around 630-1671 images were taken from each

camera, aiming to make the experimental database large and

hopefully resistant to overfitting. Next, our goal is to iden-

tify the camera brand attribute of the images. The colored

JPEG images were converted into grayscale images, and

DCTR features are calculated with quality factor Q = 75.

The authors in [11] used their own image dataset for ex-

periments which is not available publicly. Hence, for fair

comparison with other state-of-the-art techniques, we eval-

uated the effectiveness of our approach using a reduced

subset of 100 images from each of the 10 camera models

from the Dresden Image Database (termed as Dataset-2).

Note that dataset-1 is used for camera brand attribute iden-

tification (i.e., in general camera brand identification) and

dataset-2 is used for camera model attribute identification

(i.e., specific camera model identification). Experimental

result shows that our technique is effective for both the cam-

era brand attribute identification as well as particular cam-

Table 2. Comparison of Accuracy for Various Classification

Schemes based on DCTR Features (dataset-1)

Experiment
Classification

Accuracy

SVM Classifier (RBF kernel) 81.1%

AdaBoost (100 decision trees as weak learner) 45.2%

Random Forest (RF) (100 decision trees as base learner) 93.8%

RF + PCA (168 dim. features) 98.9%

AdaBoost (RF as weak learner) + PCA (168 dim. features) 99.1%

era model attribute identification. We trained the random

forest (RF) classifier, with decision tree as base learner us-

ing the features and labels (camera model it originally be-

longs to) given for images in the training set. In our ex-

periments, we used 100 decision trees in the random forest

classifier. In this case for AdaBoost, the number of weak

learners was taken to be 50 and the learning rate is 1, i.e.,

the ensemble learns at the maximum possible rate. We have

divided the dataset randomly into approximately equal 10

parts, then 9 parts are used for training and the remaining

part is used for testing. This is repeated for the 10 differ-

ent parts individually, and the average accuracy is reported.

We also evaluated the classification accuracy for the com-

monly used Support Vector Machine (SVM) classification

technique, with Radial Basis Function (RBF) kernel.

We used MATLAB (v. R2015a) in our experiments, and

the experiments were run on an iMac workstation with a

3.2 GHz Intel CPU and 8 GB of main memory. The code

for feature extraction was adapted from [25]. The Weka

Machine Learning Toolbox [26] was used for the machine

learning based model building and validation experiments.

3.2. Classification Accuracy Improvement
(Dataset­1)

The classification accuracy results are summarized in Ta-

ble 2. We obtained the following classification accuracy

results for the DCTR feature sets extracted (we explicitly

mention whether dimensionality reduction was used):

• With SVM classification (using RBF kernel) and no di-

mensionality reduction, the classification accuracy was

81.1%.

Figure 3. Classification accuracy vs. PCA dimension plot. Accu-

racy is maximized when PCA dimension is 168.

39



Table 3. Confusion Matrix for Proposed Classification Scheme

Classification True Model

Accuracy 1 2 3 4 5 6 7 8 9 10

Id
en

ti
fi

ed
M

o
d

el

1 98.8 0 0.2 0 0.6 0.1 0 0 0.3 0

2 0 99.8 0 0 0.1 0 0 0 0.1 0

3 0.2 0.1 98.9 0 0.5 0 0 0 0.2 0.1

4 0 0 0 99.8 0.2 0 0 0 0 0

5 0.3 0 0.8 0.4 96.9 0.4 0 0.1 1.0 0.1

6 0.1 0 0 0.1 0.1 99.7 0 0 0 0

7 0.2 0 0 0 0.1 0 99.5 0 0.2 0

8 0.1 0 0 0 0.1 0 0 99.8 0 0

9 0.2 0 0 0 1.6 0 0 0.1 98.1 0

10 0 0 0.1 0 0.2 0 0 0 0.2 99.5

Table 4. Accuracy Comparison with State-of-the-art Techniques (Dataset-2)

Approach
Classification

Accuracy

Co-occurrence matrix feature [11] + RF 80.1%

Co-occurrence matrix feature [11] + RF + PCA (100 dim. features) 90.3%

Co-occurrence matrix feature [11] + RF + PCA (100 dim. features) + AdaBoost 91.4%

Co-occurrence matrix feature + FLD (approach of [11]) 95.8%

DCTR Feature + SFFS [27] 75.3%

DCTR Feature + RF 81.9%

DCTR Feature + RF + AdaBoost 83.4%

DCTR Feature + FLD 95.6%

DCTR Feature + PCA (130 dim. features) + FLD 96.2%

DCTR Feature + RF + PCA (130 dim. features) 96.3%

DCTR Feature + RF + PCA (130 dim. features) + AdaBoost 96.5%

• For AdaBoost based ensemble classifier with 100 de-

cision trees as weak learner, and no dimensionality re-

duction, we obtained only 45.2% accuracy.

• For Random Forest (RF) classification, with decision

tree as base learner and no dimensionality reduction,

we got an average classification accuracy of 93.8%.

• RF classifier, in conjunction with PCA based dimen-

sionality reduction, enables us to reach a classification

accuracy of 98.9%. The optimal dimensionality was

detecrmined by the “Modified 95% Variance” method

to be 168, as depicted in Fig. 3.

• Finally, when we use AdaBoost with RF as weak

learner, combined with PCA for dimensionality reduc-

tion, the classification accuracy improves to 99.1%.

The corresponding confusion matrix for the the 10-

class camera source classification problem is shown in

Table 3.

3.3. Comparison of Accuracy with State­of­the­Art
Techniques (Dataset­2)

We have compared our approach with different state-

of-the-art approach reported in [11] using co-occurrence

based Spatial and Color Rich Model with Fixed Quantiza-

tion q = 1 (SRMQ1) for Dataset-2. For both the cases,

the extracted features were used to train the same RF clas-

sifier (with number of trees being 100). The resulting clas-

sification accuracy figures have been presented in Table 4,

whereby we find that our proposed approach is more ef-

fective than the state-of-the-art co-occurrence matrix based

feature approach [11], with respect to the same RF based

classifier. The accuracy reached by our proposed DCTR

feature based approach (when both PCA and AdaBoost are

used) is still superior when we experimented with the multi-

class ensemble classifier using Fisher Linear Discriminant

(FLD) based binary classifiers proposed in [11]. Moreover,

as dataset-2 is to be considered for particular camera model

identification, we observe that our technique is also quite

efficient identifying particular camera models.

Along with the accuracy improvement with respect to

the choice of features, we also compared with other dimen-

sionality reduction techniques. When we applied the Subset

Size Feature Selection (SFFS) technique to select the fea-

tures [27], we found that it is not very effective, as shown

by the accuracy results in Table 4. This can be explained

to be happening probably because the feature dimensions

(8,000 for DCTR) are too large for SFFS to be effective.

However, PCA based dimensionality reduction (which re-

duces feature dimension from 8000 to 130 for Dataset-2)

improves the accuracy significantly as shown in Table 4, es-

pecially when AdaBoost is applied.
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3.4. Evaluation of Overfitting Trends

To evaluate the robustness to overfitting, we took the

classifier (DCTR + PCA (168) + RF (number of trees =

100) + AdaBoost) built using Dataset-1, and then evalu-

ated the accuracy for images from a completely different

Sensor Dust Image Dataset [28], for two camera models:

Kodak-M1063 and Canon-Ixus55. The average accuracy

obtained was 97.08%, which demonstrates that the classi-

fication model built has good generalization capability, and

is not prone to overfitting.

4. Conclusion

We have proposed and developed a DCTR feature based

source camera identification framework, with random forest

based ensemble classification fortified by AdaBoost. The

DCTR features effectively capture the JPEG compression

artifacts imposed on the image by the quantization table

used for JPEG compression by image camera source. PCA

based dimensionality reduction of the features prior to clas-

sification model building improves the classification accu-

racy. Our technique outperforms other state-of-the-art tech-

niques when applied on a large benchmark image dataset

from 10 different camera sources, and demonstrates low

overfitting trends.
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