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Abstract

Multispectral images that combine visual-optical (VIS)

and infrared (IR) image information are a promising source

of data for automatic person detection. Especially in auto-

motive or surveillance applications, challenging conditions

such as insufficient illumination or large distances between

camera and object occur regularly and can affect image

quality. This leads to weak image contrast or low object

resolution. In order to detect persons under such condi-

tions, we apply deep learning for effectively fusing the VIS

and IR information in multispectral images. We present a

novel multispectral Region Proposal Network (RPN) that is

built up on the pre-trained very deep convolutional network

VGG-16. The proposals of this network are further evalu-

ated using a Boosted Decision Trees classifier in order to re-

duce potential false positive detections. With a log-average

miss rate of 29.83% on the reasonable test set of the KAIST

Multispectral Pedestrian Detection Benchmark, we improve

the current state-of-the-art by about 18 %.

1. Introduction

The detection of pedestrians and persons in general is

a crucial task in many applications that rely on visual per-

ception such as surveillance, autonomous driving, or search

and rescue. Despite the fact that significant progress was

made in developing computer vision algorithms for auto-

matic person detection in recent years [1, 11, 13, 15, 19], the

problem is still far from being solved [41] especially under

challenging conditions such as partial occlusions, nighttime

without sufficient illumination, or large distance between

camera and persons resulting in weak contrast or low reso-

lution. Such conditions, however, are highly relevant for the

already mentioned applications and thus it becomes appar-

ent that even after many years of research there is still both

potential and need for improvement.

Unlike human eyes, cameras are not limited to the visual-

optical (VIS) spectrum. Especially in absence of natural

light, infrared (IR) cameras are able to reach higher detec-

tion performance compared to VIS [16, 24, 28, 34]. Since

we want to avoid active illumination that is necessary for

near infrared (NIR) cameras, we focus on video data ac-

quired by purely passive sensors such as VIS and long-wave

thermal infrared (LWIR) cameras in the remainder of this

paper. By combining VIS and LWIR image information,

even more improvement in person detection performance

can be achieved [20, 25].

In this paper, we aim at detecting persons in multispec-

tral videos that consist of three VIS channels (RGB) and one

thermal IR channel. Inspired by the success of deep learn-

ing based proposal generation for object detection in the

Faster Region-based Convolutional Neural Network (Faster

R-CNN) architecture [30], we propose a novel fusion Re-

gion Proposal Network (RPN) that is built up on the pre-

trained very deep Convolutional Neural Network (CNN)

VGG-16 [32]. Starting with individual CNNs for VIS and

IR, we fuse these CNNs halfway [27] in order to generate

multispectral deep features for the RPN. Figure 1 shows

that the multispectral fusion RPN is able to provide more

promising proposals compared to single VIS and IR RPNs

especially in the challenging conditions mentioned before.

In contrast to [27], we omit the classification network of the

Faster R-CNN architecture and demonstrate that the RPN

alone already outperforms Faster R-CNN for the special

task of person detection. This was initially discovered by

Zhang et al. [39]. They further proposed to use a Boosted

Decision Trees (BDT) classifier (in their paper they call it

Boosted Forest) to verify the proposals achieving state-of-

the-art results on several public datasets such as the Caltech
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Figure 1. Best 10 proposals generated by a VIS RPN (cyan boxes),

an IR RPN (magenta boxes), and the proposed fusion RPN (green

boxes). Compared to the ground truth (red boxes), we see less

false positives and better localization by the fusion RPN.

Pedestrian Detection Benchmark [13]. We not only con-

firm their conclusions on the KAIST Multispectral Pedes-

trian Detection Benchmark [20] but also improve the cur-

rent state-of-the-art on this dataset by about 18 % using our

multispectral fusion RPN and BDT.

This paper is organized as follows: related work is dis-

cussed in Section 2, the person detection approach is de-

scribed in Section 3, experimental results are presented in

Section 4, and concluding remarks are given in Section 5.

2. Related Work

Person detection is a combination of localization and

classification. In many previous approaches, the lo-

calization problem was solved using exhaustive search

based methods such as sliding windows at different image

scales [7, 11, 12, 38]. At each window position, features

are calculated and evaluated using a pre-trained classifier.

Among the most popular methods are Histograms of Ori-

ented Gradients (HOG) related features in combination with

a Support Vector Machine (SVM) [7, 38] or feature pools

consisting of either Haar features [35] or different kinds of

channel features [12, 11, 42, 5] evaluated by BDT. In order

to accelerate the exhaustive search, proposal generators [18]

were introduced that apply fast screening with sliding win-

dows using simple features and objectness measures that are

prone to produce many false positives. However, in this way

much less proposals have to be evaluated compared to ex-

haustive search and thus more sophisticated machine learn-

ing approaches such as CNNs can be applied. With the in-

troduction of deep learning for proposal generation [29, 30],

it was discovered that for the rather simple classification

problem in person detection with only two classes (person

and non-person), it can be more beneficial to use CNNs to

solve the localization problem [39] rather than the classifi-

cation problem [19].

Since most of the thermal IR datasets are acquired by

stationary cameras, background subtraction is a popular ap-

proach for generating proposals [2, 6, 8, 9, 14, 37]. Other

methods that are applicable with moving cameras are based

on keypoint detection [22], sliding windows [28, 40], or

hot spot detection using thresholding techniques [34]. The

methods that are applied to evaluate these proposals are

mainly based on gradient related features and classifiers

such as SVM and BDT. Hence, they are comparable to the

ones used in the visible spectrum.

An early work in multispectral person detection is

given by Leykin et al. [25]: on the OSU Color-Thermal

Database [9], proposals are generated using background

subtraction and evaluated using periodic gait analysis. With

the introduction of the KAIST Multispectral Pedestrian De-

tection Benchmark [20], research on multispectral person

detection was revived. In order to detect pedestrians, Ag-

gregated Channel Features (ACF) [11] are used in combina-

tion with BDT. Wagner et al. [36] apply ACF and BDT just

for proposal generation and classify these proposals with

a CNN, which fuses the VIS and IR information. Liu et

al. [27] use the Faster R-CNN architecture and analyze dif-

ferent stages of fusing the VIS and IR information inside

the CNN. Finally, Choi et al. [4] use separate individual

RPNs for both VIS and IR images and evaluate the propos-

als generated by both networks with Support Vector Regres-

sion (SVR) on fused deep features.

3. Multispectral Person Detection

In this section, we first present the architecture of the

RPN that is used to fuse the VIS and IR image information

and to generate proposals. Then, we describe the BDT clas-

sifier and how we extract the deep features that are utilized

for person classification.
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3.1. Region Proposal Network

Ren et al. [30] introduced RPNs within their Faster

R-CNN architecture for object detection in general. The

idea is to train a fully convolutional network to perform

bounding box regression and to determine objectness scores

simultaneously. This RPN shares its convolutional layers

with a second CNN which is used for classification on the

proposed regions. The RPN starts with proposals of dif-

ferent scales at anchor locations on a regular grid in the

image. Each initial proposal is then regressed to the most

likely object position in a limited image region surrounding

the anchor location. In this way, a fixed number of propos-

als is generated that can be ranked using their scores. This

approach was adopted by Liu et al. [27] and tailored to the

task of multispectral person detection: the width to height

ratio of the proposed bounding boxes is fixed to 0.5 and the

convolutional layers of two separately pre-trained VIS and

IR CNNs are connected at a certain layer to generate fused

deep features. These features are then evaluated by both the

RPN and the classification network of the Faster R-CNN.

Our approach is inspired by the just mentioned Faster

R-CNN but deviates in several aspects: (1) we experimen-

tally identify the best convolutional layer to fuse the VIS

and IR CNNs, which gives us the most accurate proposals

and provides deep features of higher resolution for the BDT

classifier, (2) we use different training data, which slightly

improves the quality of the proposals, (3) motivated by [39],

we do not use a classification network but show that the

RPN alone achieves higher detection performance already.

We start with two separate CNNs that are based on the

VGG-16 architecture [32]. The fully connected layers are

removed and the convolutional layers are initialized with

the weights pre-trained on the ImageNet dataset [31]. These

two networks are the foundation to individually train a VIS

RPN and an IR RPN tailored to person detection. Each RPN

is built on top of the conv5 3 layer of the VGG-16 network

followed by an intermediate 3 × 3 convolutional layer and

two sibling 1 × 1 convolutional layers for bounding box

regression and classification [30, 39]. Hence, the RPN is a

fully convolutional network. While the regression layer pro-

vides the positions of the proposals, the classification layer

gives us the score. Each input image is resized to 960×768

pixels and 60×48 output feature maps of the conv5 3 layer

represent anchor positions for bounding box regression with

a 16 pixel stride inside the resized original image. At each

anchor position we consider 9 different scales. Hence, each

RPN generates 25,920 proposals per image. We perform the

fine-tuning (training) of the two individual networks in two

stages: the VIS RPN is first fine-tuned using the Caltech

training dataset and then the KAIST VIS training dataset.

For the IR RPN we first use the CVC-09 dataset [33] and

then the KAIST IR training dataset. The two-stage fine-

tuning is inspired by [36]. In that work is has been rec-

Table 1. Datasets and number of GT labels for RPN fine-tuning.

dataset Caltech [13] CVC-09 [33] KAIST [20]

GT labels 16,376 15,058 13,853

images 42,782 8,418 50,172

ommend to use the red channel of the Caltech dataset for

fine-tuning the IR CNN. Here, we achieved slightly better

results using the CVC-09 dataset, which is a real IR dataset.

An overview of the number of positive training samples is

given in Table 1. We only use reasonable training samples,

i.e. non-occluded samples with a bounding box height of

50 pixels or larger. The standard Caltech training dataset

only contains about 2,000 positive ground truth (GT) labels

that are sampled from every 30th training image. However,

the performance of CNNs is usually dependent on the vol-

ume of the training data. In order to generate a ten times

larger training dataset, it is recommended to sample GT la-

bels from every 3rd image instead [19, 39]. Since we want

to have a similar number of positive training samples for the

KAIST and the CVC-09 dataset, too, we collect them from

every 2nd image on both datasets.

Having those two separately fine-tuned RPNs available

for a fusion architecture, we analyze five options where this

fusion can take place, namely after each max pooling sub-

layer of the conv1, conv2, conv3, conv4, or conv5 layer. An

early fusion at the input level by stacking the VIS and IR

images and a late fusion at the score level is possible, too,

but does not perform promising enough [27, 36] to be con-

sidered here. The resulting architectures for each of these

five options are shown in Fig. 2. The convolutional lay-

ers are depicted in red color and the RPN layers in yel-

low color. The ticks inside each convolutional layer visu-

alize the number of convolutional sublayers, i.e. conv1 con-

sists of the sublayers conv1 1, relu1 1, conv1 2, relu1 2 and

pool1. conv-prop represents the intermediate 3 × 3 convo-

lutional layer and cls-score and bbox-pred the two sibling

layers for classification and bounding box regression. Ac-

cording to [27], the fusion of VIS and IR is done by concate-

nating the feature maps (blue layer) of the previous convo-

lutional layer. This leads to doubling the number of fea-

ture maps. However, since we want to use the pre-trained

VGG-16 weights for the convolutional layers after the fu-

sion, we need to reduce this number to the original number

of feature maps. Therefore, an additional 1 × 1 convolu-

tional layer called Network-in-Network (NIN) [26] is intro-

duced (green color) and used for dimension reduction. For

the fusion after conv5, the NIN can be omitted since we do

not reuse VGG-16 layers here and train the RPN layers from

scratch with random initialization. Compared to the fusion

approaches described in [27], the architecture in Fig. 2 (a)

corresponds to the Early Fusion, Fig. 2 (d) corresponds to

the Halfway Fusion, and Fig. 2 (e) corresponds to the Late

Fusion.
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Figure 2. In order to find the best convolutional layer in our RPN for fusing VIS and IR deep features, we identify and analyze five options.

The fusion itself uses feature map concatenation and Network-in-Network (NIN) based feature map reduction as proposed in [27]. Please

refer to the text for more details.

3.2. Classification using Boosted Decision Trees

For the binary classification problem in person detection,

Zhang et al. [39] have not only shown that the RPN alone

already reaches similar performance compared to the en-

tire Faster R-CNN architecture. They have also shown that

reusing the deep features with a smaller classifier model

such as BDT can improve detection performance signifi-

cantly by reducing the number of false positives. This mo-

tivates us to apply a similar BDT classifier to our proposals.

Figure 3 demonstrates how we extract our deep features

from the proposals (ROIs) provided by the RPN. The RPN

architecture here is taken from Fig. 2 (c), which gave us

the best results for proposal generation (see Section 4).

In this way, we can take features not only from the sep-

arate layers conv3 VIS and conv3 3 IR but also from the

fused layer conv4 3. This is different compared to [30],

where features are picked after the conv5 3 layer. However,

Zhang et al. [39] experimentally demonstrated that conv3 3

and conv4 3 are the most promising sources of deep fea-

tures for the BDT. Following [39], we extract the features

right before max pooling and apply the à trous trick [3]

to layer conv4 3 to generate features of higher density and

higher resolution. For each ROI, ROI pooling [17] is ap-
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Figure 3. Instead of the Faster R-CNN classification network [30],

we use BDT [39]. Deep features are extracted at two different

convolutional layers right before max pooling. ROI pooling is used

to get a fixed number of features independent of the ROI scale.

plied in order to get a fixed number of features that is in-

dependent of the ROI scale. The resolution of features in-

side each ROI is fixed to 7 × 7. Our feature pool then con-

sists of 12,544 (conv3 VIS) + 12,544 (conv3 IR) + 25,088

(conv4 Fusion) = 50,176 features compared to 19,350 that

are generated by ACF-T-THOG [20]. The training samples

for the training of the BDT are taken directly from the 1,000

top-ranked proposals of the RPN per image on the KAIST

training dataset. The training is bootstrapped six times with

an increasing level of hard negative sample mining. 20,594

positive and between 30,000 and 50,000 negative samples

are used. Further information on the BDT classifier itself

and its training can be found in [39].

3.3. Implementation Details

Our implementation is based on the MATLAB code pro-

vided by Zhang et al. [39]. We re-trained their models for

RPN and BDT and applied them to the Caltech test dataset

achieving similar results compared to the ones presented in

their paper. CNN architecture design and training are per-

formed using the Caffe framework [21]. As the VGG-16

network expects three planes per input image (RGB), we

simply clone the single plane of the thermal IR images and

thus generate three plane IR images for the IR RPN. The

anchor aspect ratio between bounding box width and height

within the RPN is fixed to 0.41. For proposals with an

overlap of 0.7 or more w.r.t. the Intersection over Union

(IoU) criterion, only the one with the highest score is kept

(non-maximum suppression). The BDT classifier model is

trained with the Real AdaBoost algorithm taken from the

Piotr Toolbox [10]. More details about the training proce-

dure of RPN and BDT can be found in [23].

4. Experimental Results

Our experiments are conducted using the publicly avail-

able KAIST Multispectral Pedestrian Detection Bench-

mark [20]. As already mentioned, we use every second

image of the training images subset to generate a training

dataset consisting of 50,172 images with 13,853 annotated

persons. The reasonable test subset contains 2,252 images

(every 20th test image) with 1,356 annotated persons. Fur-

thermore, we use standard evaluation measures such as log-

average miss rate, proposals vs. recall, and IoU vs. recall.

In the first experiment, we analyze the influence of the

training data to the log-average miss rate of the different fu-

sion RPN architectures shown in Fig. 2 (a-e). We focus on

the separate fine-tuning of the VIS RPN and the IR RPN

before the actual fusion is performed. As shown in Table 2,

three different options are explored: (1) fine-tuning using

the KAIST VIS dataset for the VIS RPN and the KAIST IR

dataset for the IR RPN [27], (2) using the Caltech dataset

and KAIST VIS for the VIS RPN and the Caltech red chan-

nel and KAIST IR for the IR RPN [36], and (3) using Cal-

tech and KAIST VIS for the VIS RPN and the CVC-09

dataset and KAIST IR for the IR RPN. The fusion training

data only consists of the KAIST multispectral (= VIS + IR)

dataset since there is no other multispectral person detec-

tion dataset available at this time. As test data, we use the

reasonable subset of the KAIST test dataset that consists of

GT labels that are both not heavily occluded and not smaller

than 50 pixels in height. All other labels are declared as

ignore regions, i.e. any detections in these regions are not

considered for the quantitative evaluation at all.

We see that an early fusion after the first and second

convolutional layer conv1 and conv2 is not recommendable

independent of the training data. For the other three fu-

sion approaches there is no significant difference in perfor-

mance. The best result, however, is achieved with a fusion

after the conv3 layer and by using the CVC-09 dataset for

training the IR RPN. Hence, we use this RPN for the follow-

up experiments. With a log-average miss rate of 35.50 %,

this RPN outperforms the Faster R-CNN approach proposed

by Liu et al. [27] with a reported log-average miss rate of

36.99 %. This confirms the conclusions of Zhang et al. [39]

that the classification network does not improve the perfor-

mance of Faster R-CNN for person detection.

In the second experiment, we evaluate the RPN’s region

proposal performance by plotting the number of proposals
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Table 2. Influence of the training data to the log-average miss rate of the five different fusion RPN architectures (see Fig. 2 (a-e)): The third

training data option combined with a fusion after the third convolutional layer conv3 achieves the best result (underlined).

training separate training data
fusion training data

fusion after layer

option VIS RPN IR RPN conv1 conv2 conv3 conv4 conv5

(1) KAIST VIS KAIST IR

KAIST VIS + IR

45.21 % 40.99 % 36.46 % 36.11 % 36.23 %

(2)
Caltech + Caltech R +

47.94 % 39.87 % 36.86 % 35.81 % 36.18 %
KAIST VIS KAIST IR

(3)
Caltech + CVC-09 +

44.71 % 41.49 % 35.50 % 36.42 % 35.52 %
KAIST VIS KAIST IR

and the IoU against recall. In addition, we compare the

fusion RPN with the separately trained pure VIS and pure

IR RPN. The results are visualized in Fig. 4 and Fig. 5. The

proposed fusion RPN achieves a recall of more than 0.8 for

5 proposals per image and a recall of more than 0.9 for 10

proposals. With 40 proposals per image we can even reach

a recall of about 0.98, i.e. we miss only two percent of the

annotated true positive (TP) persons. The gap between the

fusion RPN and the IR RPN, which performs second best,

is about 0.05 recall. A similar conclusion can be made for

the second plot: with increasing IoU, the recall of the fusion

RPN is consistently higher compared to the VIS and the IR

RPN. For an IoU between 0.5 and 0.7, the gap is similar

with about 0.05 recall.

The third and last experiment is the comparison with

other approaches. We evaluate our proposed fusion RPN

and the fusion RPN + BDT with four other methods: (1)

the KAIST baseline approach consisting of ACF+T+THOG

features in combination with BDT [20], (2) this baseline ap-

proach applied as proposal generator in combination with a

LateFusion CNN for classification [36], (3) the Checker-

boards based detector [42] extended for processing mul-

tispectral images (Checkerboards+T+THOG), and (4) the

Halfway Fusion Faster R-CNN approach proposed in [27].

Figure 6 shows the results using the log-average miss rate

as evaluation measure. We report two versions of the

ACF+T+THOG baseline approach [20]: one with the origi-

nal parameters achieving 54.40 % log-average miss rate and

one with our own optimization reaching 42.57 %. Here, we

can see that there is still potential to improve channel fea-

tures based detectors. The fusion RPN alone already out-

performs the other three methods. By applying the BDT

classifier in addition, the log-average miss rate can be even

further reduced to 29.83 %, which is the best reported re-

sult up to now. Liu et al. [27] reported 36.99 % in their

paper. However, the authors sent us their detections and by

using the evaluations scripts of the Piotr toolbox [10], we

got the 36.22 % that we added to our plot in Fig. 6. With

the proposed method, we are able to improve the current

state-of-the-art by about 18 %.

However, the log-average miss rate can probably be fur-

ther reduced by improving the annotations. In Fig. 7, we

show the qualitative evaluation. GT bounding boxes are de-

picted in red color and detection bounding boxes in green

color. Ignore regions are visualized with orange rectangles.

Red arrows point at image regions, in which the annota-

tions are either imprecisely located or missing. Especially

in Fig. 7 (a) and (e), there are several missing annotations.

In image (e), our approach is able to detect some of the

not annotated persons. This causes additional false positive

(FP) detections in the quantitative evaluation. If such im-

precise or missing annotations appear in the training data,

this could even lead to an RPN or BDT classifier model of

weaker discriminative power. In the past, similar observa-

tions were made for the Caltech dataset and the annotations

were improved [41]. In this way, we do not want to diminish

the authors’ great work behind the KAIST dataset. Instead,

we want to encourage prospective authors to improve the

annotations in the future.

5. Conclusions

Inspired by recent literature [39], we proposed a fully

convolutional fusion RPN in combination with a BDT clas-

sifier for person detection in multispectral video data. This

data consists of the three VIS channels RGB and an addi-

tional thermal IR channel. Within the fusion RPN archi-

tecture, we experimentally identified the best convolutional

layer after which to fuse the multispectral image informa-

tion. The fusion RPN alone already outperforms the current

state-of-the-art w.r.t. log-average miss rate on the KAIST

Multispectral Pedestrian Detection Benchmark. Further-

more, the fusion RPN is able to achieve a recall larger than

0.9 with only 10 proposals per image. Even more improve-

ment in detection performance is achieved with the addi-

tional application of the BDT classifier pushing the log-

average miss rate to 29.83 %. To the best of our knowledge

this is currently the best reported result on this benchmark.
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