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Abstract

In the last years, many computer vision algorithms have

been developed for X-ray testing tasks. Some of them deal

with baggage inspection, in which the aim is to detect au-

tomatically target objects. The progress in automated bag-

gage inspection, however, is modest and very limited com-

pared to what is needed because X-ray screening systems

are still being manipulated by human inspectors. In this

work, we present an X-ray imaging model that can sep-

arate foreground from background in baggage screening.

The model can be used in two main tasks: i) Simulation

of new X-ray images, where simulated images can be used

in training programs for human inspectors, or can be used

to enhance datasets for computer vision algorithms. ii) De-

tection of (threat) objects, where new algorithms can be em-

ployed to perform automated baggage inspection or to aid

an user in the inspection task showing potential threats. In

our model, rather than a multiplication of foreground and

background, that is typically used in X-ray imaging, we pro-

pose the addition of logarithmic images. This allows the

use of linear strategies to superimpose images of threat ob-

jects onto X-ray images and the use of sparse representa-

tions in order to segment target objects. In our experiments,

we simulate new X-ray images of handguns, shuriken and

razor blades, in which it is impossible to distinguish sim-

ulated and real X-ray images. In addition, we show in our

experiments the effective detection of shuriken, razor blades

and handguns using the proposed algorithm outperforming

some alternative state-of- the-art techniques.

1. Introduction

Baggage inspection using X-ray screening is a priority

task that reduces the risk of crime, terrorist attacks and

propagation of pests and diseases [29]. Security and safety

screening with X-ray scanners has become an important

process in public spaces and at border checkpoints [18].

However, as shown in Fig. 1, inspection is a complex task

because threat items are very difficult to detect when placed

in closely packed bags, occluded by other objects, or ro-

tated, thus presenting an unrecognizable view [2]. Manual

detection of threat items by human inspectors is extremely

demanding [24]. It is tedious because very few bags ac-

tually contain threat items, and it is stressful because the

work of identifying a wide range of objects, shapes and

substances (metals, organic and inorganic substances) takes

a great deal of concentration. In addition, human inspec-

tors receive only minimal technological support. Further-

more, during rush hours, they have only a few seconds to

decide whether or not a bag contains a threat item [1]. Since

each operator must screen many bags, the likelihood of hu-

man error becomes considerable over a long period of time

even with intensive training. The literature suggests that

detection performance is only about 80–90% [15]. In bag-

gage inspection, automated X-ray testing remains an open

Figure 1. Setup of an X-ray imaging system, the X-ray source ir-

radiates the object (a bag containing a handgun) and produces an

X-ray image.
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question due to: i) loss of generality, which means that

approaches developed for one task may not transfer well

to another; ii) deficient detection accuracy, which means

that there is a fundamental tradeoff between false alarms

and missed detections; iii) limited robustness given that

requirements for the use of a method are often met for

simple structures only; and iv) low adaptiveness in that it

may be very difficult to accommodate an automated sys-

tem to design modifications or different specimens. There

are some contributions in computer vision for X-ray test-

ing such as applications on inspection of castings, welds,

food, cargos and baggage screening [10] and very inter-

esting advances in automated recognition of objects [14]

that evaluates ten different modern computer vision algo-

rithms. Nevertheless, as we can see in the literature review

[21, 27, 30, 11, 20, 6, 17, 4, 9, 5, 16, 13], the progress in

automated baggage inspection is far from being perfected

given that the appearance of the object of interest can be-

come extremely difficult due to problems of (self)occlusion,

noise, acquisition, clutter, etc. We believe, however, that

computer vision algorithms can be improved if we could

model the X-ray images as a contribution of background

and foreground. Thus, the detection can be achieved by an-

alyzing the foreground image only.

In this work, we present an imaging model that can sep-

arate foreground from background of an X-ray image. The

model can be used in the detection of (threat) objects, where

new algorithms can be employed to perform automated bag-

gage inspection or to aid an user in the inspection task show-

ing potential threats. In our model, rather than a multiplica-

tion of foreground and background, that is typically used in

X-ray imaging, we propose the addition of logarithmic im-

ages. This allows the use of linear strategies such as sparse

representations in order to segment target objects.

In addition, the model can be used in the simulation of

new X-ray images, where simulated images can be used in

training programs for human inspectors, or can be used to

enhance datasets for computer vision algorithms. Similarly,

this allows the use of linear strategies to superimpose im-

ages of threat objects onto X-ray images. The simulated

X-ray images should be as similar as possible to real X-ray

images. In the literature, the simulation attempts to model

the physics of the X-ray formation (generation, interaction

and detection) and handle complex 3D objects efficiently

[25]. State–of–the–art of computer modeling of X-ray test-

ing methods are able to simulate different X-ray spectrum

and X-ray source size, varied photon–matter interactions,

and several X-ray detector responses [10]. Special atten-

tion has been given to general purpose Monte Carlo meth-

ods that are able to calculate higher order scattering events

[19, 22, 28]. A computer simulator for X-ray testing should

include the following modules [23]: source model, ray-

tracing engine, material data base, straight line attenuation

model and detector model. Rather than a complex simula-

tion system, that simulates the whole imaging process, we

propose a simple strategy that takes advantage of real X-ray

images. Thus, in our approach, using the proposed model,

we start with an original X-ray image, e.g. acquiered from a

cluttered bag, and we superimpose onto the original image

a real X-ray image of a threat object. A similar approach

based on superimposition was suggested for the simulation

of defects in X-ray images of castings and weldings [3], in

which a synthetic CAD model of a defect was superimposed

onto a real X-ray image.

In our experiments, we simulate new X-ray images of

handguns, shuriken and razor blades, in which it is impos-

sible to distinguish simulated and real X-ray images. In ad-

dition, we show in our experiments the effective detection

of shuriken, razor blades and handguns using the proposed

algorithm.

The rest of the paper is organized as follows: Section 2

describes the proposed model and the simulation approach,

Section 3 outlines the proposed method for threat object de-

tection, Section 4 shows the experimental results, and fi-

nally Section 5 gives concluding remarks.

2. X-ray Imaging Model

Typically, X-ray imaging can be modeled using the ab-

sorption law which characterizes the intensity distribution

of X-rays through matter [8]:

ϕ(d) = ϕ0e
−µd (1)

with µ absorption coefficient, d thickness of the irradiated

matter, ϕ0 incident energy flux density, and ϕ energy flux

density after passage through matter with the thickness of

d. In Fig. 2, we can see an example with n = 3 materials

that can be modeled by:

Figure 2. The X-ray beam passes through materials with linear

absorption coefficients µ1, µ2 and µ3.
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Figure 3. Superimposition of an X-ray image of a handgun onto an X-ray image of a cluttered bag: a) If : Foreground (threat object). b)

Ib: Background (cluttered bag). c) It: Total (bag with threat object).

ϕ = ϕ0 exp

(

−

n
∑

i=1

µidi

)

. (2)

In an X-ray digital image, the grayvalue of a pixel can be

linearly modeled as [3]:

I = A · ϕ+B. (3)

where A and B are constant parameters of the model.

Following the models (2) for the energy flux density and

(3) for the digital image, it is possible to model the X-ray

image of the foreground (If ), e.g. a handgun, and the back-

ground (Ib), e.g. a cluttered bag, as illustrated in Figures 1

and 3. Thus,

If = A · ϕf +B Ib = A · ϕb +B (4)

where

ϕf = ϕ0e
−µfdf ϕb = ϕ0e

−µbdb (5)

in this case µf and µb are the absorption coefficients of the

foreground and background respectively. It is worth men-

tioning, that µbdb represents
∑

j µjdj considering all clut-

tered objects j that lie on the X-ray beam shown in Fig. 2.

The total X-ray image, called It, can be modeled as

ϕt = ϕ0e
−µfdf e−µbdb (6)

It = A · ϕt +B = Ce−µfdf e−µbdb +B (7)

where C = A·ϕ0. It is clear, that (7) can be used to simulate

new X-ray images from If and Ib: replacing (5) in (4), we

obtain

e−µfdf =
If −B

C
e−µbdb =

Ib −B

C
. (8)

From (8) and (7), it yields

It −B

C
=

If −B

C
·
Ib −B

C
. (9)

We can normalize the X-ray images by subtracting B
and dividing by C, e.g., Jt = (It − B)/C. Thus, using

the normalized images for total, foreground and background

images, we obtain:

Jt = Jf · Jb. (10)

Easily, we can compute the total image by

It = C · Jf · Jb +B. (11)

Indeed, image It in Fig. 3c was simulated from If and Ib in

Fig. 3a and 3b respectively using (11).

3. Application: Object detection

In this section, we explain how to detect threat objects

using a sparse representation based on the model of Sec-

tion 2. The keyidea of our strategy is to use a dictionary for

the foreground and another dictionary for the background.

In the foreground images, only the threat objects to be de-

tected are present, whereas in the background, the rest of

the objects are present. In this classic strategy, a testing

image can be modeled by the sum of the contributions of

the foreground and the background, so the detection of the

threat objects can be easily achieved by analyzing the con-

tribution of foreground only. However, in our model (10)

the testing image is obtained by a multiplication –not by an

addition– of two images. We can solve this problem, if we

take the logarithm of both sides of the equation (see Fig. 4).

Thus,

Zt = Zf + Zb. (12)

where the three variables are log(Jt), log(Jf ), log(Jb) re-

spectively. We call these images the logarithmic images. In

general, the logarithmic image Z of an X-ray image I is

computed by

Z(J) = log

(

I −B

C

)

. (13)
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Figure 4. The total image It can be modeled by multiplication or

addition, in first case the original images are used, whereas in the

second case we considere the logarithmic images.

We believe that algorithms based on sparse representa-

tions can be used for this general task because in recognition

applications, under the assumption that natural images can

be represented using sparse decomposition, state-of-the-art

results have been significantly improved [26]. In the sparse

representation approach, a dictionary is built from the train-

ing X-ray images, and matching is done by reconstructing

the test image using a sparse linear combination of the dic-

tionary. Usually, the test image is assigned to the class with

the minimal reconstruction error.

In our approach, we build two dictionaries: Df for the

foreground and Db for the background. The first one is ob-

tained from patches of the foreground (see Fig. 5), the sec-

ond one from patches of the background (see Fig. 6). In

both cases, representative X-ray images are used. In our

approach, we extract a patch z of size w × w pixels of the

logarithmic images subsampled by a pixels in both direc-

tions. For the dictionaries, we use vector y of (w/a)2 el-

ements that corresponds to the intensity values of z given

by stacking its columns normalized to unit length in order

to deal with different contrast conditions. This operation is

represented by function f :

y = f(z). (14)

Dictionaries Df and Db have nf and nb columns respec-

tively. Both dictionaries are concatenated as shown in Fig.

7 yielding a new dictionary of n = nf + nb columns and

(w/a)2 rows:

D = [Df De]. (15)

In testing stage, we use the well-known methodology of

sliding windows, i.e., a small window z of w×w pixels (the

same size of the patches used in the dictionaries) is sledded

over the testing image in both horizontal and vertical di-

rections, and for each localization of z, first we compute y

using transformation (14), and second we calculate x the

Figure 5. Dictionary for foreground: patches of X-ray images of

the detection object are extracted and processed.

Figure 6. Dictionary for background: patches of X-ray images

of cluttered bags with no detection object are extracted and pro-

cessed.

Figure 7. The dictionary is built by concatenating both foreground

and background dictionaries.

sparse representation of y using dictionary D:

||y −Dx|| → min subject to ||x||0 ≤ T, (16)

where ||x||0 means the number of non-zero elements of x.

Thus, in the sparse representation, no more than T elements
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Figure 8. A testing patch is processed.

of x are allowed to be non-zero. According to (15) and

(16), sparse vector x has n = nf +nb elements: the first nf

and the last nb elements corresponds of the contribution to

the foreground and background respectively. Thus, vector

x can be decomposed as:

x =

[

xf

xb

]

, (17)

the first one with nf elements, and the last one with nb el-

ements. We can investigate, how representations xf and xb

can reconstruct the original patch y using dictionaries Df

and Db respectively.

yf = Dfxf , yb = Dbxb. (18)

The idea here, is the following: for example if the recon-

struction yf is good enough, that means that the reconstruc-

tion error ||y − yf || is minimal, then the patch can be clas-

sified as foreground, otherwise as background. The recon-

struction error for both cases are defined as:

ef = ||y − yf ||, eb = ||y − yb||. (19)

The proposed algorithm is simple and it is shown in Algo-

rithm 1. It follows the sliding-windows strategy. Thus, in

each location of the sliding window, we extract a patch z

that is transformed into a vector y which is represented as

a sparse vector x. The idea is to investigate the contribu-

tion of x using both foreground and background dictionar-

ies (Df and De respectively). If the reconstruction error

of the foreground information is low enough and less than

the reconstruction error of the background information, then

our algorithm concludes that a part of the threat object is de-

tected. Finally, we select those regions that are large enough

and have enough parts that were detected.

4. Experimental Results

In this work, the main contribution is a new model that

can be used in X-ray imaging. In this section, we show two

experiments: the first one corresponds to the new method-

ology that can be used to simulate X-ray images following

equation (11), the second one refers to the new approach

to detect threat objects in X-ray images using Algorithm 1.

Algorithm 1 Detection of Threat Objects

1: Input: Testing X-ray image I, dictionary D and threshold θ

2: Initialize Matrices Zf , Ef , Eb with zero (same size as I)

3: Z← logarithmic image of I using (13)

4: Sliding-windows:

5: (i, j)← center position of the patch

6: z← extracted patch of Z centered in (i, j)
7: y← transformation of z using (14)

8: x← sparse representation of y using (16)

9: yf ,yb ← reconstruction using (18)

10: ef , eb ← reconstruction error using (19)

11: add ef to Ef in all locations of the patch centered in (i, j)
12: add eb to Eb in all locations of the patch centered in (i, j)
13: if ef < eb
14: zf ← transformation of yf into a squared patch

15: (same size as z using interpolation)

16: add zf to Zf in location centered in (i, j)
17: end

18: end

19: Detection: R = AND(Ef < θ,Zf > 0)

20: Output: S← large regions of R.

Figure 9. Simulation of a handgun superimposed onto an X-ray

image of a bag. The original X-ray image (Ib) has only one

shuriken, whereas the simulated X-ray image (It) has an additional

handgun in different poses (see the handgun in the middle of the

image). Bottom image shows a zoom in of a simulated image.
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Figure 10. Simulation of a razor blade superimposed onto an X-

ray image of a bag. The original X-ray image (Ib) has only one

shuriken, whereas the simulated X-ray image (It) has an additional

razor blade in different poses (see both razor blades together in the

image). Bottom image shows a zoom in of a simulated image.

In the following two sections, we show some experiments

that validate the proposed model and the methods. All X-

ray images used in our experiments belong to the GDXray1

database [12].

4.1. Simulation

In this Section we show how to simulate X-ray images.

Simulated images can be used in training programs for hu-

man inspectors, or can be used to enhance datasets for com-

puter vision algorithms. The idea is simple, we have to ac-

quire X-ray images of objects that are completely isolated

and then we can superimposed them onto X-ray images of

cluttered bags. In order to acquire isolated X-ray images,

the threat object can be located inside a sphere of expanded

polystyrene (EPS)2 as suggested in [21]. In GDXray we

have those kind of images, where a threat object is irradi-

ated from different points of views. Thus, the threat object

can be superimposed in many different poses.

In order to illustrate the similarity between original and

simulated X-ray images, we show experiments where the

1GDXray is a public database for X-ray testing with more than 20.000

images. The X-ray images included in GDXray can be used free of

charge, for research and educational purposes only. Available at http:

//dmery.ing.puc.cl/index.php/material/gdxray/.
2EPS is used due to its low X-ray absorption coefficient.

Figure 11. Simulation of a shuriken superimposed onto an X-ray

image of a bag. The original X-ray image (Ib) has only one

shuriken, whereas the simulated X-ray image (It) has an additional

shuriken in different poses (see the shuriken partial occluded by

the gun). Bottom image shows a zoom in of a simulated image.

original X-ray image has only one threat object and the sim-

ulated image has the original threat object and the super-

imposed threat object, so in the same image we can com-

pare both of them. We tested with the following threat ob-

jects: handguns, razor blades and shuriken (ninja stars) in

nine different poses. The results are given in Figures 9, 10

and 11 respectively. In our results, the reader can see both

threat objects –simulated and original–, and can conclude

that both objects are so similar that it is imposible to say

which one is the simulated and which one is the original

4.2. Object detection

In this Section, we show some experiments using the

method explained in Section 3 to detect threat objects in

baggage screening. In our experiments, we detect hand-

guns, razor blades and shuriken using sparse representa-

tions. In order to illustrate step by step, in Fig. 12, steps

of Algorithm 1 are shown. We can see the effectiveness

of the proposed method using the sliding-window approach

and the classification basen on sparse representations and

reconstruction error. In addition, we show the output of of

Algorithm 1 for a shuriken and a handgun in Figure 13 and

14 respectively. Again, the effectiveness of the proposed

method is validated.
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I

Eb

Ef

Yf

R

S

Figure 12. Steps of the detection of a razor blade using proposed

algorithm 1. In this example Ef and Eb are the reconstruction

error of foreground and background respectively. We observe that

for the object to be detected the error is low for the foreground and

high for the background.

Figure 13. Setection of a shuriken using proposed algorithm 1.

Figure 14. Setection of a razor blade using proposed algorithm 1.

In order to compare our method with other methods

that can be used for this task, we followed the evalua-

tion protocol proposed in [14] for the detection of hand-

guns in cropped X-ray images. In this experiment, there

are two classes: target and no-target, i.e., handguns and

no-handguns. In no-handguns class there are razor blades,

shuriken and other objects like pens, clips, etc. The num-

ber of target/no-target X-ray images of the sets of training

(used to design the detector), validation (used to tune the

detectors’ parameters) and testing (used to measure the per-

formance) are: 200/700, 50/300, 100/600 respectively (see

more details in [14]). The obtained results (precision, re-

call and accuracy) are summarized in Table 1. The first 10

rows of Table 1 show the reported results by [14] in this ex-

periment. The last row shows the results obtained by our

method (see ‘ours’). As a result, the proposed approach

reaches a very good recognition performance, outperform-

ing some alternative state-of- the-art techniques. In order

to see the positive effect of the use of the logarithmic im-

ages in our model, we repeated this experiment using our

method with no-logarithmic images. The results are shown

in the row called ‘no-log’. We observe that the use of loga-

rithmic images increases the recall from 0.65 to 0.99.
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Table 1. Detection of guns

Method Precision Recall Accuracy [%]

BoW 0.65 0.84 91.3

Sparse KNN 0.99 0.97 99.4

Sparse KNN* 0.92 1.00 98.8

AISM 0.97 0.97 99.1

XASR+ 0.92 0.88 97.2

GoogleNet 0.83 1.00 97.1

AlexNet 0.85 0.99 97.4

SVM 0.90 0.99 98.3

AdaBoost 1.00 0.87 98.1

SRC 0.75 1.00 95.2

no-log 0.93 0.65 94.3

ours 0.93 0.99 98.7

4.3. Implementation

The experiments were carried out on a iMac OS X

10.12.4 with a 3.7 GHz Quad-Core Intel Xeon E5 processor

and 12GB memory (12GB RAM 1866 MHz DDR3). The

X-ray images were obtained from GDXray [12]. The al-

gorithms were implemented in MATLAB3. For the sparse

representation we used SPAMS library from INRIA [7].

The code of the MATLAB implementation is available on

our webpage4. For the simulation: Parameters B and C of

model (7) were obtained using a calibration approach [10]

in which two images of a material with different thickness

are acquired. In our case, B = 0 and C = 230. The simula-

tion of an X-ray image of 6M pixels is performed in 0.09s.

For the detection, we give here details of the last experi-

ment (detection of handguns). For the implementation of

the dictionaries, we used patches of 180 × 180 pixels sub-

sampled to 18 × 18, i.e. w = 180 and a = 10. That means

that vector y has 100 elements. Around 650.000 patches

were extracted for the dictionaries. The sparsity (parameter

T ) was set to 10. The training was performed in 7.45 min,

and the detection of threat objects in 65 sec per image (for

images of 1M pixel).

5. Conclusions

The main contribution of our paper is a new X-ray imag-

ing model that can separate foreground from background.

The model can be used for example in: i) simulation of

new X-ray images, and ii) recognition of objects when fore-

ground and background are appropriately defined. On the

one hand, simulated images can be used in training pro-

grams for human inspectors, or can be used to enhance

3Release 2016a from http://ww.mathworks.com
4See http://dmery.ing.puc.cl/index.php/material/.

datasets for computer vision algorithms. On the other hand,

detection algorithms can be employed in automated bag-

gage inspection, because it can be used to aid an user in an

inspection task.

Rather than a multiplication of foreground and back-

ground, that is typically used in X-ray imaging, we propose

the addition of logarithmic images. This allows the use of

linear strategies such as sparse representations in order to

segment target objects.

In our experiments, we simulate new X-ray images of

handguns, shuriken and razor blades, in which it is impos-

sible to distinguish simulated and real X-ray images. On

the other hand, we developed an algorithm based on the

minimization of the reconstruction error in sparse repre-

sentations that can be used effectively in the recognition

of threat objects. We show in our experiments the detec-

tion of shuriken, razor blades and handguns. As a result,

the proposed approach reaches a very good recognition per-

formance, outperforming some alternative state-of- the-art

techniques. In our experiments, the increase of the perfor-

mance by including logarithmic images was considerable.

The preliminary results are promising. Nevertheless,

since the effectiveness of the proposed model has been ver-

ified on a few X-ray images, it is necessary an evaluation on

a broader dataset.
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