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Abstract

In this work we present three methods to improve a deep

convolutional neural network approach to near-infrared

heterogeneous face recognition. We first present a method

to distill extra information from a pre-trained visible face

network through the output logits of the network. Next, we

put forth an altered contrastive loss function that uses the ℓ1
norm instead of the ℓ2 norm as a distance metric. Finally,

we propose to improve the initialization network by training

it for more iterations. We present the results of experiments

of these methods on two widely used near-infrared hetero-

geneous face recognition datasets and compare them to the

state-of-the-art.

1. Introduction

Heterogeneous face recogntion (HFR) is the problem

of identifying face images obtained via alternative sensing

modalities by matching to a gallery of visible face images.

Alternative sensing modalities can be used for a variety of

reasons such as poor ambient illumination (infrared), phys-

ical limitations (low-resolution), no camera at all (sketch),

etc. In this work, we focus on near-infrared (NIR) hetero-

geneous face recognition.

NIR cameras are widely used in situations where am-

bient light may not be very bright (e.g. outdoor security

cameras at night). To perform face recognition on subjects

in these cameras, we would ideally have a gallery of NIR

faces to match to. Unfortunately, NIR face galleries gen-

erally don’t exist, especially with non-cooperative subjects.

In contrast, it is usually possible to get a visible light im-

age of just about anyone in the world. The solution to this

problem is to match NIR faces to visible galleries with NIR

HFR algorithms.

The methods presented in this work build off of the work

of Reale et al. [14], which presented a deep convolutional

neural network approach NIR HFR. That work takes a two-

step approach to training the neural networks. First, an ini-

tialization network is trained with a very large dataset to

perform visible light face recognition. Then, the HFR net-

works are initialized with the learned network parameters

and further trained on cross-modal data to map visible and

infrared faces into a domain independent feature space.

In this work, we improve the performance of the previous

approach with three key changes. First, we use cross-modal

distillation to leverage more information from the initial-

ization network. In the previous approach, the networks are

trained so that images of the same subject are close together

and images of different subjects are farther apart. Cross-

modal distillation attempts to enforce the following princi-

ple: if a subject looks similar/dissimilar to another subject

in the visible domain, then the same degree of similarity

should hold in the IR domain. As shown in Figure 1, this

is achieved by training the IR network to reproduce the vis-

ible network’s logits (classification scores before the soft-

max output) which can be thought of as similarity scores

to the initialization subjects. This allows the IR network to

”distill” information from the visible domain network.

The second proposed improvement is to replace the ℓ2
distance metric with the ℓ1 distance metric in the contrastive

loss during training. This prevents a few feature compo-

nents from dominating the optimization and allows all the

features learned by the initialization network to have com-

parable effects during the HFR training.

The third improvement we present is to use a better ini-

tialization network. We accomplish this by training the ini-

tialization network for over twice as many iterations. This

yields a more thoroughly trained network with more mean-

ingful, discriminative features for identifying faces.

The remainder of the paper is organized as follows. In

Section 2 we discuss other work related to our method. In

Section 3 we briefly describe our original method and the

changes we have made to improve performance. In Sec-
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Figure 1. Top: Architecture of Reale et al. [14]. Bottom: Archi-

tecture of the proposed network adding a second loss measuring

difference of the logits of the two networks to the architecture of

[14].

tion 4 we discuss the details of the implementation. In Sec-

tion 5 we present experiments we performed to evaluate our

method. Finally, we conclude the paper in Section 6.

2. Related Work

2.1. NIR HFR

Much research has been published on NIR HFR. Until

recently, most approaches used shallow models and/or lo-

cal features to solve the problem. Klare and Jain [10] use

kernel similarities to a set of training subjects as features.

Zhu et al. [19] perform domain-adaptive matching with a

transductive model and present a new local feature vector.

Yi et al. [17] reduce the domain discrepancy locally with re-

stricted Boltzmann machines and then take a subset of PCA

coefficients to do the same globally. Jin et al. [5, 6] learn lo-

cal features that are consistent across sensing modalities yet

discriminative within each domain. Juefei-Xu et al. [7] use

cross spectral joint dictionaries to reconstruct visible light

images from near IR images and vice-versa.

Recently, deep learning has been used to achieve state-

of-the-art results for NIR HFR. Virtually all HFR deep

learning methods [12, 14, 15] leverage a large visible face

dataset to pretrain networks. They then fine-tune them on

cross-modal data for HFR.

2.2. Distillation

Distillation was first introduced by Hinton et al. [3] as

a means to condense an ensemble of neural networks into

a single neural network by extracting information from net-

work logits. It has since been used by Gupta et al. [1] to

help train in modalities with limited training data. Su and

Maji [16] take a similar approach when training a model for

use with low quality data.

3. Our Method

3.1. Original Method

The baseline method [14] works by using deep CNNs to

map face images into a domain independent feature space

where they can be directly compared across domains. As

shown in Figure 2, the networks are trained by minimizing

the contrastive loss [2] between visible and IR faces. The

contrastive loss is defined as follows,

L(x,y) =

{

‖x− y‖2
2

if lx = ly

max(0, (p− ‖x− y‖2)
2) otherwise,

where feature vectors x and y have respective labels lx and

ly , and p is a tuneable parameter. Minimizing this loss en-

courages feature representations of same-subject faces to be

as close together as possible and feature representations of

different-subject faces to be farther apart.

In order to speed-up the optimization and reduce the

amount of cross-modal training data needed (which is gen-

erally not plentiful), the networks are pretrained to perform

visible face recognition. In our case, we first train the net-

works to recognize 10,575 subjects in the CASIA WebFace

dataset [18]. We then tweak the networks to perform het-

erogeneous face recognition.

3.2. Cross­modal Distillation

The first method we use to improve performance is cross-

modal distillation. The main assumption is that if a sub-

ject looks similar or dissimilar to another subject in visible

imagery, that should carry over into the near-infrared im-

agery. Cross-modal distillation does this by using informa-

tion about the initialization subjects in the pretrained net-

work. While that information is not included in any dataset,

we can infer it from the initialization network output logits.

The initialization network is trained to recognize 10,575

celebrities from their face images. Given a face, this is

done by calculating similarity scores (sometimes called log-

its) for each possible celebrity in the dataset. The network

classifies the face image as belonging to the celebrity with

the highest score. The network can perform this operation

on any face image, regardless of the subject in the image.

While it is not useful for recognition of subjects which are
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not in the initialization set (like our test and training set sub-

jects), the logits still contain valuable information about the

appearance of the face. They can be thought of as a rough

estimate for how similar the input face is compared to the

celebrity faces in the visible domain. A high logit indicates

the input face looks very similar to the celebrity while a low

logit indicates the opposite.

As shown in Figure 2, we incorporate this extra infor-

mation into our algorithm by adding a second contrastive

loss function that takes the logits as inputs. This contrastive

loss operates only on same-subject pairs, so it essentially

performs regression on the logits. Basically, we’re trying

to ensure that the infrared network can recreate the logits

that are generated by the visible network. The idea is that

in order to accomplish this task, the network is forced to

learn more disciminative features in the convolutional lay-

ers of the network. Also note that, as with the convolutional

weights, the weights of the fully connected layers are ini-

tialized with the corresponding values in the initialization

network. Without the pretrained values, the computed log-

its would be meaningless.

3.3. Contrastive Loss Metric

The second adjustment we make to improve performance

is a change in the metric used by the contrastive loss. In the

original work, only the euclidean norm is used with the con-

trastive loss. On the other hand, when testing, Reale et al.

[14] cross-validated over three distance metrics to compare

face images (ℓ1, ℓ2, and cosine). We thought it might be

beneficial to cross-validate over the distance metric used in

the contrastive loss as well.

In this work, we only cross-validate over the ℓ1 and ℓ2
norms. When using the ℓ1 norm, the constrastive loss is

computed as follows,

L(x,y) =

{

‖x− y‖1 if lx = ly

max(0, p− ‖x− y‖1) otherwise,
.

This gives the training algorithm more flexibility to tai-

lor the networks for the data. It turns out that in virtually

all experiments, the ℓ1 norm provides the best results. We

believe it tends to be a better fit for this data because it pre-

vents a few feature components from dominating the opti-

mization. By this we mean that the gradient passed back-

wards by a given feature component no longer depends on

the components magnitude. For example, consider the ℓ2
norm. One component of gradient of the ℓ2 norm squared is

equal to that component itself. Because of this, components

that naturally have a larger discrepancy across domains will

have an undue effect on the network parameters when their

gradients back-propagated. The gradient of the ℓ1 norm, on

the other hand, is merely the sign of each component and

does not depend on the magnitude of the components at all.

This prevents a few components from dominating the opti-

mization, allowing for a better solution.

Since we are using two contrastive loss functions (the

original one and the one for distillation), we also used cross-

validation to determine the distance metric for the distilla-

tion loss function. In that case, the ℓ2 distance yielded better

results.

3.4. Improved Initialization

The third adjustment we make to improve performance is

by providing the networks with a better initialization. Gen-

erally, a simple way to improve performance of any deep

network is to train it for longer. Usually this will achieve a

small increase in performance. In our case, extra training of

the HFR networks does not change the performance much

because of the limited amount of training data available.

While we do not have enough cross-modal training data

to warrant training the HFR networks for more iterations,

we do have a large initialization dataset (CASIA Webface).

Thus we train the initialization network for a longer pe-

riod of time (450,000 iterations vs 200,000 iterations). This

makes the initialization learn more effective features for

recognizing faces (83% vs 80% recognition rate on a val-

idation set from CASIA Webface) and therefore increases

the HFR performance.

4. Engineering Details

4.1. Network Structure

We use the same network structure from [14]. Shown

in Table 1, it consists of five sections, each of which con-

tains two convolution layers and a max-pooling layer (with

the exception of the last section which uses average pool-

ing). All convolution layers feature 3×3 filters and are fol-

lowed by rectified linear units (ReLU). After the five sec-

tions, there is one fully connected layer that serves as a

softmax classifier. In our previous work, we discarded the

softmax layer after initialization, but now it is needed for

cross-modal distillation as described in Section 3.2.

4.2. Image Preprocessing

We follow [14] and perform very minimal image prepro-

cessing. We first align the face images with the Dlib [9] im-

plementation of a regression tree face alignment algorithm

[8]. This method works for both NIR and visible images

despite only being trained on the latter. We crop and re-

size the faces to be 100×100 pixel square images. Finally,

we convert the images to gray-scale and subtract the mean

face image (calculated from the WebFace dataset). Figures

3 and 4 show sample images for the CASIA WebFace and

NIR-VIS 2.0 datasets respectively.
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Figure 2. Network Diagram: This figure shows a visualization of our training algorithm and how our improvements affect it. The gray

section on the left shows the initialization training setup. One of the contributions of this work is to improve this initialization by training it

for longer. The gray section on the left shows the HFR training. Black dashed lines indicate any components added to include cross-modal

distillation.

Figure 3. Sample Webface images.

4.3. Training Details

4.3.1 Initialization Training

We train the initial network using the Caffe [4] deep learn-

ing framework for 450,000 iterations (the baseline method

trains for 200,000 iterations) with a batch size of 256 im-

ages. We initially set the learning rate to be .01 and reduce

Figure 4. Sample NIR-VIS 2.0 face images. The top row is visible-

light and the bottom row is near-infrared.

it by a factor of 10 after 350,000 and 400,000 iterations. We

set the momentum to .9 and the weight decay to .0005. We

use a single NVIDIA 12GB GeForce GTX Titan X GPU to

train IDNet which takes approximately four days.
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Table 1. Face recognition network layer details

Name Type Filter Size Stride Output Size Params

conv11 Convolution 3× 3× 32 1 100× 100× 32 288

relu11 ReLU 100× 100× 32 0

Section 1 conv12 Convolution 3× 3× 64 1 100× 100× 64 18.4K

relu12 ReLU 100× 100× 64 0

pool1 Max Pooling 2× 2 2 50× 50× 64 0

conv21 Convolution 3× 3× 64 1 50× 50× 64 36.7K

relu21 ReLU 50× 50× 64 0

Section 2 conv22 Convolution 3× 3× 128 1 50× 50× 128 73.7K

relu22 ReLU 50× 50× 128 0

pool2 Max Pooling 2× 2 2 25× 25× 128 0

conv31 Convolution 3× 3× 96 1 25× 25× 128 111K

relu31 ReLU 25× 25× 128 0

Section 3 conv32 Convolution 3× 3× 192 1 25× 25× 192 166K

relu32 ReLU 25× 25× 192 0

pool3 Max Pooling 2× 2 2 13× 13× 192 0

conv41 Convolution 3× 3× 128 1 13× 13× 128 221K

relu41 ReLU 13× 13× 128 0

Section 4 conv42 Convolution 3× 3× 256 1 13× 13× 256 295K

relu42 ReLU 13× 13× 256 0

pool4 Max Pooling 2× 2 2 7× 7× 256 0

conv51 Convolution 3× 3× 160 1 7× 7× 160 369K

relu51 ReLU 7× 7× 160 0

Section 5 conv52 Convolution 3× 3× 320 1 7× 7× 320 461K

relu52 ReLU 7× 7× 320 0

pool5 Avg Pooling 7× 7 1 1× 1× 320 0

fc6 Fully Connected 10575 3.38M

cost Softmax 10575 0

4.3.2 HFR Training

We train the HFR networks with the same setup as in [14]

with a few notable differences due to the incorporation of

our new methods. First, due to the large number of param-

eters in the fully connected layers (see Table 1), we do not

allow them to be adjusted during the HFR optimization. Ad-

ditionally, we found that when training with distillation on

the HFB dataset, we did not have to fix as many of the con-

volutional layers (i.e. the model didn’t overfit as easily with

distillation). We attribute this to relatively low number of

training subjects (100) in the HFB dataset. The additional

information from the CASIA WebFace subjects helped to

improve generalization.

5. Experiments and Results

5.1. Datasets

We test our algorithms on two widely-used NIR HFR

datasets: CASIA HFB and CASIA NIR-VIS 2.0. Both

datasets are organized in the same manner by splitting into

two views: View1 for parameter selection and View2 for

evaluation. View1 consists of a single experimental setup,

whereas View2 contains 10 different setups, the results of

which are averaged. In CASIA HFB, the typical experi-

ment setup splits the set of subjects into training and testing

groups. This yields about 1000 visible and 1500 NIR im-

ages for training and similarly 1000 visible and 1500 NIR

images for testing. In NIR-VIS 2.0, 715 subjects are split

into training and testing groups, with about 2500 visible

and 6000 NIR images for training. CASIA NIR-VIS 2.0 is

slightly different in that it restricts algorithms to one gallery

image per subject during testing. So while there are about

6000 NIR images for testing, there are only 358 gallery im-

ages to compare to.

In addition to different numbers of images, some of the

images in NIR-VIS 2.0 present challenging variations such

as difficult poses, whereas the HFB images were mostly

captured in a more controlled environment. Combined with

the higher number of subjects and restriction of one image

per gallery subject, this makes the NIR-VIS 2.0 dataset sig-

nificantly more challenging.
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HFB Rank 1 FAR=.01 FAR=.001

Baseline [14] 97.58 96.9 85.0

Distill 98.55 94.7 81.2

L1 Loss 98.68 95.0 82.6

Better Init. 99.08 97.7 87.7

All Three 99.52 98.6 91.8
Table 2. Performance of our algorithms on View2 of CASIA HFB

Face Database

5.2. Results

We present the results of evaluations of five variants of

our method (each method individually, all three together,

and the original method as a baseline) in Tables 2 and 3.

From the results, it is clear that all three methods have a

positive effect on the recognition performance.

Of the three methods, distillation provides a more mod-

est increase in performance, though it is comparable to the

other two on the HFB dataset. We attribute this to the

smaller number training subjects and images in HFB. This

makes information about additional subjects (through distil-

lation) more valuable. On the other hand, NIR-VIS 2.0 pro-

vides more training subjects and images. Thus, the training

algorithm does not benefit as much from information about

additional subjects. The other two methods (ℓ1 metric and

better initialization) help the training on both datasets, with

the better initialization adding a noticeably bigger perfor-

mance boost in both cases. This demonstrates the remark-

able ability of deep networks to soak up information even

after they have already been trained for a long time.

Finally, it is clear that the best performance is achieved

when all three methods are used together. The recogni-

tion rates are improved from 97.58% to 99.52% and from

87.1% to 92.6% on the HFB and NIR-VIS 2.0 datasets re-

spectively. Additionally, the verification rates increase from

85.0 to 91.8 and from 74.5 to 81.6.

We compare the results of our method to those of other

methods in Tables 4 and 5. Our method performs very well

on the HFB dataset with the highest recognition rate among

all algorithms. This should be taken with a grain of salt

as some papers don’t report results on this dataset. On the

other hand, our method does not achieve state-of-the-art re-

sults on NIR-VIS 2.0. Although it is not better than all other

published methods, it is second best and within a few per-

centage points.

6. Conclusion

In this work we have presented three improvements

for NIR HFR. We have evaluated each individually and

shown that they all perform better than the original baseline

method. Additionally, we have shown that the combination

of all three methods performs even better. We have also

compared our combined method with the current state-of-

NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

Baseline [14] 87.1 0.88 74.5

Distillation 87.5 1.04 76.1

L1 Loss 89.4 1.23 79.5

Better Init. 90.8 0.79 77.9

All Three 92.6 0.64 81.6
Table 3. Performance of our algorithms on View2 of CASIA NIR-

VIS 2.0 Face Database

HFB Rank 1 FAR=.01 FAR=.001

IDNet 80.9 70.4 36.2

P-RS [10] 87.8 98.2 95.8

C-DFD[11] 92.2 85.6 65.5

THFM [19] 99.28 99.66 98.42

[17] 99.38 - 92.25

Our Method 99.52 98.6 91.8
Table 4. Performance comparison to other algorithms on View2 of

CASIA HFB Face Database

NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001

C-CBFD[13] 81.8 2.3 47.3

[15] 85.9 0.9 78.0

[17] 86.2 0.98 81.3

[12] 95.74 0.52 91.03

Our Method 92.6 0.64 81.6
Table 5. Performance comparison to other algorithms on View2 of

CASIA NIR-VIS 2.0 Face Database

the-art.
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