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Abstract

Hyperspectral cameras provide unique spectral signa-
tures that can be used to solve surveillance tasks. This
paper proposes a novel real-time hyperspectral likelihood
maps-aided tracking method (HLT) inspired by an adap-
tive hyperspectral sensor. We focus on the target detec-
tion part of a tracking system and remove the necessity to
build any offline classifiers and tune large amount of hyper-
parameters, instead learning a generative target model in
an online manner for hyperspectral channels ranging from
visible to infrared wavelengths. The key idea is that our
adaptive fusion method can combine likelihood maps from
multiple bands of hyperspectral imagery into one single
more distinctive representation increasing the margin be-
tween mean value of foreground and background pixels in
the fused map. Experimental results show that the HLT
not only outperforms all established fusion methods but is
on par with the current state-of-the-art hyperspectral target
tracking frameworks.

1. Introduction

Vehicle detection and persistent tracking in aerial im-
agery is an extremely challenging problem due to the need
for accurate movement tracking of vehicles under all pos-
sible circumstances - traffic, low resolution due to platform
height, camera motion compensation, parallax, occlusion,
environmental interference, and low frame rate to name a
few. In spite of these challenges, aerial vehicle tracking has
attracted considerable interest over the past few years due
to its growing importance in various applications.

The ultimate goal of an aerial vehicle tracking system
is to continuously track target(s) of interest through po-
tential confusers such as occlusions, dense traffic, and ve-
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Figure 1: Spectral reflectances of different objects com-
monly found in an urban scene. As observed, vehicles 1
and 2 (Black and Red respectively) can be distinguished be-
tween themselves and from background objects if hyper-
spectral signatures are put to use.

hicles drifting away from the road. Aerial imagery typi-
cally yields a relatively small number of pixels on a target
(roughly 20-100 pixels) and comparatively lower sampling
rates (1-2 Hz) than common traditional rates (25-60 Hz)
degrading the performance of apperance-based tracking-
by-detection methods. Different sensor modalities such
as infrared [2, 8, 3], Wide Area Motion Imagery (WAMI)
[22, 4, 5] and RGB [23, 35, 32, 6] have all shown the po-
tential to improve tracking, however most of them perform
poorly to achieve persistent tracking in real-time due to the
unique challenges posed by aerial imagery or dependency
on external sources of information (e.g. road map informa-
tion) for achieving optimum results.

For these reasons, the research community has started to
explore multi-modal or adaptive sensor concepts. Uzkent,
Hoffman and Vodacek [28] use a multi-modal sensor con-
cept - a wide field of view (FOV) panchromatic sensor cou-
pled with a narrow FOV hyperspectral sensor to design a
real-time persistent aerial tracking method that supersedes
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results observed in the above platforms. Hyperspectral sen-
sors can provide unique spectral signatures for robustly dis-
tinguishing materials that can be used to solve surveillance
tasks ranging from normal city traffic monitoring to military
applications like border security. This can address some
of the problems faced in infrared and single-band imaging
such as discriminating foreground from background when
the contrast is too low and tracking through traffic/clutter,
e.g. Fig. 1 shows spectral signatures for background (build-
ing, trees, roads) as well as foreground objects which can
be easily distinguished visually and hence, analytically as
well. Along similar lines, if we can identify the signature of
an upcoming potential occlusion (such as a patch of shad-
ows), an adaptive sensing strategy could be employed to
switch to a different modality such as polarization as shown
in [33, 34]. Spectral signatures acquired by a hyperspec-
tral camera (Fig. 1) can be used to identify places of prob-
able occlusion beforehand and account for them without
the need for designing complex models and classifiers in
grayscale and color imagery.

A crucial part of any tracking framework is detecting the
target of interest in a given region. Hyperspectral imagery
generally has anything between 50 - 400 bands, which is a
huge amount of data to be processed and transmitted. Con-
ventionally, these large bands are reduced to a significantly
smaller number of bands by either applying dimensionality
reduction techniques (e.g. PCA) or averaging/sub-sampling
(as the [28]) before any processing is carried out. This may
result in loss of valuable information that may be present in
those dropped bands (as observed in Fig. 2).

In this paper, we propose the Hyperspectral Likelihoods-
aided Tracker (HLT) with the following contributions:

e An adaptive likelihood map fusion method that ac-
counts for variability in the hyperspectral bands’ data
and calculates weights to fuse them such that valuable
information from all bands is preserved.

e A novel target detection method that minimizes the
user effort for training offline classifiers and tun-
ing their hyperspectral parameters and dependency on
other sources of information.

e A grouping method to group certain wavelengths chan-
nels together and represents them in a single likelihood
map to achieve real-time target tracking.

A small preview of the result of our fusion method is shown
in Fig. 3.

In the following sections, we provide insight into the
work done by the community towards aerial vehicle track-
ing and how hyperspectral imaging can help tackle the
unique challenges posed by aerial platforms. Section 2 dis-
cusses very briefly the works done in different imaging do-

Figure 2: (a) shows the RGB ROI including the target of
interest whereas (b,c,d) denote the likelihood maps from the
blue, green, and red light, (e) represents the IR band and
(f) represents the classic fusion (likelihood maps fused by
equal weights). With the exception of the white car (last
case), classic fusion actually makes triangulating the target
of interest difficult rather than helpful.

(a) ROI (¢) Classic Fusion

(b) Proposed Fusion

Figure 3: (a) shows the target of interest whereas (b) dis-
plays the result of the proposed hyperspectral likelihood
maps fusion method and (c) represents the output of the
classic fusion (equal weights to all bands). As seen, our
method provides better contrast in the final likelihood map
that helps triangulate the target of interest as compared to

(c).

mains. Section 3 and Section 4 describe our algorithm and
the results we obtained, and Section 5 summarizes the work.

2. Related Work

Our work is inspired by Yin, Porikli and Collins [31]
who proposed a single target tracker for aerial imagery and
Palaniappan et al. [16] who used different set of visual fea-
tures to extract feature likelihood maps and adaptively fuse
them to obtain a single fusion map. While hyperspectral
imagery has shown to have potential for vehicle tracking
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[10, 27,28, 24,29, 26, 25], the sensors are rare and expen-
sive and hence most of the aerial tracking work has been
done in infrared, single-band or RGB. In this section, we re-
view the efforts done in the above sensor domains to solve
vehicle detection and tracking and how hyperspectral im-
agery could possibly solve some of the problems.

2.1. Infrared Imagery

Infrared imagery is helpful for object detection and
tracking since it can pick up heat signatures emitted by the
objects that conventional cameras are not capable of see-
ing. It has the ability to penetrate through smoke, fog and
is generally insensitive to changes in light condition. The
COCOALIGHT system [2] proposed by Bhattacharya et
al. consists of three phases - motion compensation, ob-
ject detection and lastly, object tracking within and be-
yond the visible spectrum. The authors used feature-based
(e.g. KLT [19]) image registration to compensate for mo-
tion of the aerial imaging platform and then adopted cu-
mulative frame differencing to detect and track foreground
objects. Gong et al. [8] proposed ATR-Seg, a shape-
aware manifold-learning based algorithm for joint tracking-
recognition-segmentation in infrared imagery. Cao et al. [3]
present two new frameworks that use local clustering seg-
mentation and kernel-based tracking theory to improve ac-
curacy in target detection and tracking. However, since ther-
mal imagery does not give unique fingerprints for different
objects of the same category and is very contrast dependent,
the above methods suffer during cluttered scenarios.

2.2. WAMI

The WAMI sensor platform has received reasonable at-
tention as it provides single band imagery covering a large
area with higher spatial and temporal resolution than satel-
lite imagery. It consists of camera array stitched together
e.g. the widely used WPAFB 2009 [1] dataset uses a ma-
trix of 6 cameras to form a combined image of an over-
looked scene. Moving object detection in WAMI is very
challenging due to factors such as split and merged detec-
tions, weak contrast between object and background, shad-
ows, and occlusions; most of which are already discussed
above as potential obstacles towards successful aerial track-
ing (for survey of the algorithms used in WAMI, see [20]).
A recent approach by Teutsch and Grinberg [22] attempt
to solve tracking vehicles in WAMI with promising results,
however a large number of false negatives still occur during
the initial 2-frame differencing for making object propos-
als. Chen and Medioni [4] proposed the use of 3-D medi-
ated approaches to detect vehicles independent of parallax
and registration errors. They then use a Bayesian network
based data association method to link vehicle detection with
their corresponding tracks. Cormier, Sommer and Teutsch
[5] show that a combined descriptor of Local Binary Pat-

terns (LBP) and Local Variance Measure (VAR) histograms
with the usage of Hellinger distance as a measure for simi-
larity can significantly improve vehicle detection in WAMI
data. Recently, Yi et al. [30] proposed the use of deep
networks for classifying given patches as vehicles or non-
vehicles in WAMI data. The fine-tuned AlexNet [13] out-
perms the HoG+Linear SVM classifier by 5%, however the
fine-tuning and testing samples are collected on the same
video, reducing the generalization capability of the network
model.

2.3. RGB Aerial Imagery

Detection, tracking and most recently, the counting of
targets from satellite or aerial platform are useful for both
commercial and government purposes. Tuermer et al. [23]
uses a disparity maps based approach with prior information
of the road structure, orientation during image capture, and
a global digital elevation model (DEM) to narrow down ar-
eas that can have vehicles. They then use an offline-trained
histogram of oriented gradients (HoG) classifier for vehicle
detection. Zhang et al. [35] proposed an online discrim-
inative feature selection method that couples the classifier
score with the importance of samples, leading to a more
robust and efficient tracker. Yousefhussien, Browning and
Kanan [32] propose the Smooth Pursuit Tracking (SPT) al-
gorithm which uses three kinds of saliency maps: appear-
ance, location, and motion to track objects under all condi-
tions, including long-term occlusion. Elliethy and Sharma
[6] proposed an innovative approach to register captured
WAMI frames with vector road map data(Open Street Map
[15]) and track vehicles within those registered frames si-
multaneously, leading to efficient results.

2.4. Spectral Aerial Imagery

Hyperspectral imagery captures spectral signatures that
can be used to uniquely characterize the materials in a given
scene, the most common application being vegetation and
mineral separation. Kerekes et al.[10] showed that it is
possible to uniquely associate a vehicle in one image with
its location in a subsequent image by using matched filter,
given some constraints are imposed on the scene under con-
sideration. The recent work of Svejkosky [21] shows that
the spectral signatures of vehicles in hyperspectral imagery
exhibit temporal variations due to changes in illumination,
road surface properties and vehicle orientation - which jus-
tifies the outcomes in [10]. Uzkent et al. [27] use single
band WAMI-like imagery from a fixed platform to perform
background subtraction for motion detection. Hyperspec-
tral sensing is applied on the motion blobs to assign them
hyperspectral likelihoods and filter hyperspectrally unlikely
blobs. This is further improved by integrating the hyper-
spectral and kinematic likelihoods in a multi-dimensional
assignment algorithm which better handles the changes in
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Figure 4: The proposed framework Hyperspectral Likelihoods-aided Tracker (HLT) showing major components: Image
Acquisition and Alignment, Target Detection and Target Tracking. While we follow conventional methods for the first and

the last part, our novelty lies in the target detection module.

illumination and vehicle orientation specified in Kerekes et
al. [10]. Such a framework can also handle mild occlu-
sions as it includes the evolution of both kinematic and hy-
perspectral likelihoods. Uzkent et al. [28] use a similar
sensor on a moving platform to perform single target track-
ing. Different to [27], it follows the concept of tracking-
by-detection methods by sampling a narrow FOV region of
interest (ROI) hyperspectrally to search for the target. They
avoid background subtraction in the moving platform case
and instead use only narrow ROI hyperspectral image to get
detection mask. The normalized difference vegetation index
(NDVI) metric is used to detect vegetation dominated pixels
using near-infrared and red wavelength bands. Cascaded to
vegetation detection, a pixel-wise hyperspectral road clas-
sifier with non-linear SVM is applied to remove road pix-
els. These two classifiers are used to optimize the search
space wherein HoG coupled with a linear SVM is used for
removing non-vehicle blobs. The proposed approach shows
promising results, however it relies on offline-trained classi-
fiers which requires a considerable amount of training data
collection and hyper-parameter tuning.

3. Proposed Approach

In the aforementioned papers, a lot of human effort is
required in determining the best feature set and initializing
parameters for model training since the performance of the
framework depends on the former being carried out prop-
erly. To make things simpler, we propose the Hyperspec-
tral Likelihoods-aided Tracker (HLT), an "online’ single tar-

get tracking framework on an aerial platform using a multi-
modal sensor setup.

An advantage of using hyperspectral imagery is that we
have the freedom of leveraging information from multiple
bands and picking the combination of bands that best helps
our case. Our framework uses the fact that objects with cer-
tain spectral signatures can be better discriminated from the
background in particular bands. For example, a blue object
is less reflective to blue light whereas it is relatively more
reflective to red, and green light. On the other hand, an ob-
ject of class 'vegetation’ absorbs the blue and red light more
than the green light as seen in Fig. 1, causing the plant to
look greener. By concatenating individual bands histograms
without using this information can result in likelihood maps
with less inter-class variance.

HLT’s work flow can be divided into three parts: Im-
age Acquisition and Camera Motion Removal (Alignment),
Target Detection and Target Tracking, which can be visu-
alized in Fig. 4. While we follow conventional methods
for the first and the last part, the novelty of our algorithm
lies in how we process the target detection module at near
real-time speeds.

3.1. Image Acquisition and Alignment

As part of a multi-modal sensor framework, we have two
images at our hands for each frame: a panchromatic wide
FOV image and a hyperspectral (400 nm - 1000 nm; 61
bands) narrow FOV image. For our convenience, we drop
the last (1000 nm) band and hence are left with 60 bands at
our disposal. In this section, we use consecutive panchro-
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matic images to compute the homographies between two
successive frames using SIFT [14] and RANSAC [7]. This
step is required as we perform multi-dimensional (frames)
blob-to-track association method to correct the false assign-
ments in light of later observations. Additionally, the large
camera motion in between two successive frames can lead
to false prediction without alignment. With alignment and
better filtering, we can keep the hyperspectral region of in-
terest (ROI) as narrow as possible, thus speeding up the
frame rate of the system.

3.2. Target Detection

Initially, the predicted bounding box area is obtained
from the tracker and sampled hyperspectrally, which re-
sults in a 200x200 pixels image of each hyperspectral band.
Next, we generate a likelihood map for each band image as
follows: We take all the 60 bands at our disposal. To reduce
the computational load, we exploit the fact that neighbor-
ing bands contribute to the final likelihood map similarly.
In this direction, we propose a grouping based approach to
use the correlation in between the same group wavelength
maps. To do so, we consider computing two likelihood
maps in every 100 nm: in between 400 and 500 nm, two
likelihood maps are computed by grouping the histograms
in between 400 and 450 nm and 460 and 500 nm. We di-
vide our 60 bands into groups of 12 and use the integral
image theorem to obtain a 10-bin histogram representation
for each band - leading to each group’s 50-D feature vector
representation. All histograms are normalized to improve
robustness against lighting changes. We then use three slid-
ing windows: 20 x 10, 10 x 20 and 14 x 14 to compare
the spectral pdf and the target model’s pdf using y? dis-
tance metric and obtain 3 potential likelihood maps. The
one with the highest confidence is picked out of three pixel-
wise confidences. The three sliding windows relate to an
estimate of the pixels occupied by a target in the sampled
window - going vertical, going horizontal and moving in di-
agonal manner with the same scale considering the constant
altitude during flight time.

Now that we have 12 likelihood maps amongst all 60
bands in consideration, there is still a need to fuse them
and generate one final likelihood map. Techniques such
as Variance Ratio method [31] and Sum-rule method [11]
(discussed briefly in Section 4) do not take into considera-
tion spectral correlation. Here, we adaptively fuse the maps
in the following manner: We obtain a specific threshold
T, = {i = 1,2,3,...} for every likelihood map L; = {i =
1,2,3, ...} using multilevel Otsu’s thresholding method as
described in [28]. Once the thresholds are estimated, we
apply them to the likelihood maps to estimate correspond-
ing binary maps as shown in Eq. 1:

0 if Li(z,y) > T,
1 otherwise

After computing the binary maps, the coefficients are esti-
mated by considering the positive pixels (1s) as

‘- sum(B;) ' )

S sum(B))

where N represents the number of bands. From Eq. 2, the
L; with large number of positive pixels in B; are assigned
large values. However, we want to assign smaller weights
to these likelihood maps since they contain many false pos-
itives i.e. the contribution of that band group is small. To
do so, we convert the coefficients to meaningful values with
logistic function shown as:

1

= 3
1 + exp—k(ci=zo) )

w;

where k£ and x( are preset parameters. We normalize the
weights with L-/ normalization to have unit weight vector

as:
w;

“)

w; =

w2’

The final likelihood map fusion is formulated as follows:

N
Lpinat = Y wiL;. )

For this step, since fusing N number of likelihood maps
(in this case, 60) would have been computationally expen-
sive, we exploited the fact that neighboring bands contribute
to the final likelihood map similarly and grouped them to-
gether, helping us achieve near real-time computations. The
fusion also ensures that data from all bands is effectively
taken into consideration, as opposed by conventional tech-
niques that use dimensionality reduction algorithms (e.g.
PCA) to obtain fewer bands. Eq. 5 gives us the final like-
lihood map which is again thresholded to obtain the final
binary map. Morphological closing and connected compo-
nent labeling post-processing methods are then performed
to determine the final set of candidate blobs which is passed
to the tracking part of the algorithm. This entire flow is
summarized in Fig. 5. The optimal candidate blob is then
determined by the target tracking framework discussed be-
low.

One disadvantage of this method is it does not handle
tracking robustly when the scene is cluttered with objects
having similar paint models to the target. The proposed
framework will try to assign smaller weights to the dis-
criminative maps as the number of positive pixels will be
large as expected. However, we consider the evolution of
the target’s motion in our data association framework com-
plementing the proposed detection method in these cases.
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Figure 5: The grouping framework discussed in the Tar-
get Detection (3.2) section. The likelihood maps of all
12 groups are thresholded to binary maps which are adap-
tively processed to obtain weighting parameters for fusing
the groups. This leads to a final likelihood and binary map
that marks the possible location(s) of the target-of-interest
in the scene.

3.3. Target Tracking

The high-level description of the tracking framework
highlights the fact that we do not use the full-frame
panchromatic imagery in the tracking task. The homogra-
phies computed in the registration module are used to up-
date the track statistics on a canonical plane. We follow
the Mixture of Extended and Linear Kalman Filter Banks
approach similar to [28, 27]. By using multiple filters, we
can accommodate different motion models which approxi-
mate different scenarios such as turning right, left and going
straight. The Extended Kalman Filter leads to better han-
dling of mildly non-linear motion density functions. This
filtering framework, coupled with Gaussian Mixture Filter
(GMF), helps us sample a ROI that is more likely to con-
tain the target in an incoming frame. After the detection
step (see 3.2), the detected blobs are passed to the Multi-
dimensional Hyperspectral and Motion Likelihood Aided
Assignment algorithm (covered extensively in [26]). Hy-
perspectral likelihoods are computed for each blob by com-
paring the spectral histogram features of the blob and ref-
erence model using the x? distance metric. Finally, the
track statistics (i.e. the track’s state space matrix) are up-
dated with the new set of measurements from the previous
N scans.

4. Experiments and Results
Our synthetic and real hyperspectral videos are described

in the section below followed by the experiments and re-
sults.

4.1. Data
4.1.1 Synthetic DIRSIG Data

We use synthetic imagery generated by the Digital Imaging
and Remote Sensing Image Generation (DIRSIG) model to
develop and test the approach in a user-controlled environ-
ment that also provides us solid ground truth without the
need for annotation. DIRSIG [18, 9] is capable of and has
been proved to produce imagery in a variety of modalities,
such as multispectral, hyperspectral, polarimetric, LIDAR,
etc. in the visible through thermal infrared regions of the
electromagnetic (EM) spectrum. Our motivation for using
DIRSIG’s synthetic data is two fold:

e We know the true positions of all objects in a synthetic
image and can accurately compute performance met-
rics for the tracking system.

e The use of multi-modal sensors in Unmanned Aerial
Vehicles (UAV) is a new and evolving area of research.
Costs associated with procuring hardware, such as hy-
perspectral imagery devices is fairly expensive and
cost prohibitive.

The scenario used in this paper comes from the DIRSIG
Megascene #1 area, a high fidelity artificial recreation of
natural and man-made objects in a vast region of the north-
ern Rochester, NY (Fig. 6).

(a) DIRSIG (b) Google Maps

Figure 6: (a) DIRSIG Nadir RGB image of Megascene #1
area in northern Rochester, NY and (b) same region as ob-
served via Google Maps.

We simulated the flight of the platform across the en-
tire scene shown in Fig. 6 with 90 m/s constant velocity
at an altitude of 3000 m under varying atmospheric and
time conditions (comparable to the simulation carried out in
[28]). The spectral range was 400 to 1000 nm with a spec-
tral resolution of 10 nm and the average ground sampling
distance (GSD) was set to 0.30 m. We used Simulation of
Urban Mobility (SUMO) [12], integrated with DIRSIG, to
produce dynamic images with vehicles moving along a pre-
defined path. A total of 88 vehicles were placed in scenes
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that generated 130 seconds of video each. Vehicle move-
ment was modeled by a normal distribution N (u, o), where
1 was set to 35 mph (i.e., the average speed limit in the part
of Rochester, NY under consideration) and o was 10. Fi-
nally, we assign 24 different paints with equal probability
to induce extra variance in the vehicles generated. To sim-
ulate a challenging environment, we also incorporate traffic
lights in one of the intersections - thus modeling a nearly
perfect urban scene, the only exception being the presence
of pedestrians. Overall, we obtain two images per frame
- a wide FOV panchromatic imagery that is used for im-
age registration and a narrow FOV hyperspectral imagery
that is used for vehicle detection and tracking. Since most
materials can be identified by their reflectance spectra (Fig.
1), we convert all hyperspectral images from radiance to re-
flectance before any processing is carried out.

4.1.2 University Parking Lot Data

To capture real data, we used a hyperspectral camera that
collects 30 channels in the visible wavelength range at 2
Hz. The scenes were captured overlooking an university’s
parking lot at a non-nadir point of view. The hyperspectral
image obtained was of the size 184 x 200 pixels, similar to
the size of the ROI given to the target detection method.

4.2. Experimental Results

We test the adaptive likelihood map fusion approach in
the scenario described in [28] to compare our results. We
select 43 of the 88 rendered cars and initialize the first frame
with a bounding box selection representative of the target of
interest. We consider the Track Purity (TrP) and Target Pu-
rity (TgP) metrics to measure tracking performance. TrP
evaluates the ratio of the number of frames a dominant tar-
get is assigned to the track to the track life. On the other
hand, TgP takes into account the ground truth life. TrP fa-
vors short tracks (terminated) whereas the TgP can provide
more fair evaluation in cases where the track life is shorter
than ground truth life.

We compare our proposed adaptive fusion approach to
several cases and kinematic data based trackers across var-
ious sensor modalities as seen in Table 1. We have already
discussed online discriminative feature selection learning
(OFDS) [35] and Hyperspectral Feature based Tracker
(HFT) [28] (Note: [28] also uses the same synthetic data).
Additionally, we introduce a recent state-of-the-art aerial
vehicle tracker, LoFT (wide-area aerial tracker via likeli-
hood of features tracking) [17], an improved version of [16]
for WAMI data - it should be noted that the source code for
LoFT is not publicly available and hence we use the results
from their paper itself since the GSD’s and temporal reso-
lution for datasets used in the papers is very similar. We
also compare our results to two popular band fusion meth-

Tracker Track Purity | Target Purity
Gray-scale Data 28.43 04.28
RGB Data 39.20 35.07
MS Data 55.12 5091
OFDS [35] 12.66 12.66
LoFT [17] 60.30 40.50
Sum-rule [ 1] 50.17 45.25
Variance Ratio [31] | 48.26 44.56
HFT [28] 69.78 60.30
Ours (HLT) 64.37 57.49

Table 1: Comparison of the proposed HLT tracker with
other trackers.

ods: the Variance Ratio method [31] and Sum-rule method
[11]. Variance Ratio method considers uncorrelated like-
lihood maps - namely Intensity Histogram, HoG, Motion
History, Saliency and Template likelihood maps, and se-
lects weights such that the map that maximizes the sepa-
rability between the foreground target and its surrounding
background region is given higher importance. On similar
lines, Sum-rule method concatenates individual likelihood
maps with equal weights and fuses them. We also compare
the adaptive fusion with hyperspectral data to tracking with
grayscale, RGB and multispectral (MS) data. For RGB, the
bands are sampled in the central wavelength of Red, Green
and Blue light with the same spectral resolution (10 nm).
In multispectral case, 6 bands are considered to represent
every pixel in a ROI. These bands are sampled in the full
spectrum range.

As seen in Table 1, the proposed adaptive fusion ap-
proach outperforms the current fusion methods: Sum-rule
and Variance Ratio based likelihood map fusion approach
by a large margin. Our approach is a global method that
can better determine the usefulness of the distance map
by taking account the label of each pixel in a ROI. The
tracking-by-detection algorithms (OFDS) perform poorly
as this is a low temporal and spatial resolution scenario.
As expected, the proposed fusion on hyperspectral data out-
performs gray-scale, RGB and multispectral data as they
contain less information on the objects. The proposed fu-
sion outperforms the other fusion methods by a large mar-
gin. Finally, the proposed fusion method is outperformed
slightly by HFT [28], however, the HFT tracker requires
designing and training classifiers offline together with rea-
sonable number of parameter tuning for the vegetation de-
tection, pixel-wise road classifier and vehicle detector. On
the other hand, our method does not use any offline-trained
classifier and requires only two parameter tuning (see eq. 3)
in the target detection part.

We also test the adaptive fusion approach with different
band grouping strategies. In our original approach, we used
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12 groups out of the 60 bands - every group is represented
by 50-D feature vector from 5 adjacent bands. The results
for different grouping strategies are shown in Table 2. This
concludes that using 12 groups was the best option amongst
all grouping methods.

l Tracker \ Track Purity | Target Purity
2 Groups 48.50 45.28
3 Groups 55.27 48.81
6 Groups 60.11 55.39
12 Groups | 64.37 57.49
20 Groups | 55.65 51.50

Table 2: The results of the grouping by using different num-
ber of neighboring bands are shown in the table. Twelve
groups are shown to be the optimum number of groups for
60 bands in the 400-1000 nm wavelength range. Twenty
groups (3 neighboring bands) shows inferior performance
as 3 neighbors might result in less discriminative histogram
features than the 5 neighbors case. Also, 6 groups (10
neighboring bands) is outperformed by 12 groups as the
groups contain first five and second five bands where the
contribution of the first half can be reduced by the less dis-
criminative second half. We believe that each 50 nm (400-
450 nm, 450-500 nm, ... 950-1000 nm) contains more use-
ful histogram features than any other combination resulting
in more discriminative final fusion likelihood map.

Module | Run-time | Allocated Time |
Gradient Integral Images | 0.21 s. -

Likelihood Map Fusion 0.16 s. -

Detection Module 0.37 s. 0.35s.

Table 3: Run time performances of the detection modules.
Experiments were carried out on a Linux server with AMD
Opteron 4226/2.7 GHz processor. We code the detection
modules in C and couple them to MATLAB platform with
the mex compiler.

Table 3 displays the run-time performances of the
detection module which is the key contribution of this
tracker. The proposed detection module of new HLT tracker
matches the time (0.35 s.) allocated for the detection mod-
ule. We want to highlight that the other parts of the HLT
tracker are similar to the HFT tracker [28]. To summarize
the workflow, the HLT performs tracking at 1.43Hz as the
HFT tracker. It proposes a new detection module running
at the same operation rate to the detection module of the
HFT tracker while minimizing the user effort that has to be
performed offline.

4.2.1 Preliminary Results on University Parking Lot
Data

We increase the validity of the proposed approach by per-
forming a high-level preliminary test on real data captured
at a parking lot of an university in Rochester, NY. The size
of the frames is 184 x 200 pixels which is similar to the
ROI sampled hyperspectrally in the synthetic dataset. Fig. 7
shows some channels and corresponding hyperspectral like-
lihood maps extracted in the same way as in the section 3.2.
It is seen that blue wavelength describes our target better
than the others. If classic fusion or dimensionality reduction
was applied, this particular band information would proba-
bly be lost. Since our method works by adaptively assigning
weights, one can assume that in this case, blue wavelength
would have major importance during fusion.

Figure 7: The object being tracked in the university’s park-
ing lot. Top row figures demonstrate some of the band im-
agery whereas bottom row figures show corresponding like-
lihood maps.

5. Conclusion

In this study, we propose a novel hyperspectral likeli-
hood maps-aided tracking method inspired by an adaptive
hyperspectral sensor. Our target detection method removes
the need to build offline classifiers and learns the generative
target model in an online manner for hyperspectral chan-
nels. The foreground background separation methods are
excluded resulting in a detection module more robust to the
3D parallax effect. The run-time of the detection part is op-
timized by finding the optimal subset of neighboring hyper-
spectral channels with high correlation to reduce number of
likelihood maps we process. As an extension of this work,
we plan on designing a framework that can adaptively group
different hyperspectral channels to generate more discrimi-
native likelihood maps. As flying UAVs with fitted sensors
become more practical, we will capture real data and con-
duct more comprehensive tests to strengthen our claim on
the currently published results. Also, we plan on building
a large aerial hyperspectral dataset covering different sce-
narios to train a CNN to perform semantic vehicle detection
and release this dataset to the research community.
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