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Abstract

Automated affective computing in the wild is a chal-

lenging task in the field of computer vision. This paper

presents three neural network-based methods proposed for

the task of facial affect estimation submitted to the First

Affect-in-the-Wild challenge. These methods are based on

Inception-ResNet modules redesigned specifically for the

task of facial affect estimation. These methods are: Shallow

Inception-ResNet, Deep Inception-ResNet, and Inception-

ResNet with LSTMs. These networks extract facial features

in different scales and simultaneously estimate both the va-

lence and arousal in each frame. Root Mean Square Error

(RMSE) rates of 0.4 and 0.3 are achieved for the valence

and arousal respectively with corresponding Concordance

Correlation Coefficient (CCC) rates of 0.04 and 0.29 using

Deep Inception-ResNet method.

1. Introduction

Affect is a psychological term for describing the exter-

nal exhibition of internal emotions and feelings. Affective

computing attempts to develop systems that can interpret

and estimate human affects through different channels (e.g.

visual, auditory, biological signals, etc.) [32]. Facial ex-

pressions are one of the primary non-verbal communication

methods for expressing emotions and intentions.

There have been numerous studies for developing reli-

able automated Facial Expression Recognition (FER) sys-

tems in the past. However, current available systems are

still far from desirable emotion perception capabilities re-

quired for developing robust and reliable Human Machine

Interaction (HMI) systems. This is predominantly because

of the fact that these HMI systems are needed to be in an

uncontrolled environment (aka wild setting) where there are

significant variations in the lighting, background, view, sub-

jects’ head pose, gender, and ethnicity [22].

Three models of Categorical, Dimensional, and FACS

are proposed in the literature to quantify affective facial be-

haviors. In categorical model, emotion is chosen from a list

of affective-related categories such as six basic emotions

(anger, disgust, fear, happiness, sadness, and surprise) de-

fined by Ekman et al. [10]. In Dimensional model, a value

is assigned to an emotion over a continuous emotional scale,

such as “valence” and “arousal” defined in [25]. In Facial

Action Coding System (FACS) model, all possible facial

component actions are described in terms of Action Units

(AUs) [11]. FACS model only describes facial movements

and does not interpret the affective state directly.

The dimensional modeling of affect can distinguish be-

tween subtle differences in exhibiting of affect and encode

small changes in the intensity of each emotion on a con-

tinuous scale, such as valence and arousal where valence

shows how positive or negative an emotion is, and arousal

indicates how much an event is intriguing/agitating or calm-

ing/soothing [25]. The First Affect-in-the-Wild challenge,

focuses on estimation of valence and arousal (dimentional

model of affect) in the wild.

In this paper, we propose different methods submitted to

the First Affect-in-the-Wild challenge for estimating dimen-

sional model values of affect (valence and arousal) in the

wild using deep convolutional networks and Long Short-

Term Memory (LSTM) units. We also report the results of

our methods on the Aff-Wild database provided in the First

Affect-in-the-Wild challenge.

The remainder of the paper is organized as follows: Sec-

tion 2 provides an overview of the related work in this field.

Section 3 explains the methods submitted to the challenge.

Experimental results and their analysis are presented in Sec-

tion 4 and finally the paper is concluded in Section 5.

2. Related work

Conventional algorithms for affective computing from

faces use different engineered features such as Local Bi-

nary Patterns (LBP) [28], Histogram of Oriented Gradients

(HOG) [6, 13], Histogram of Optical Flow (HOF) [7], and
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facial landmarks [4, 5]. These features often lack required

generalizability in cases where there is high variation in

lighting, views, resolution, subjects’ ethnicity, etc. Also,

most of these works are applied on the categorical model

of affect which can be considered an easier task than the

dimensional model estimation task.

Few number of studies have been conducted on the di-

mensional model of affect in the literature. Nicolaou et

al. [23] trained bidirectional LSTM on multiple engineered

features extracted from audio, facial geometry, and shoul-

ders. They achieved Root Mean Square Error (RMSE) of

0.15 and Correlation Coefficient (CC) of 0.79 for valence

as well as RMSE of 0.21 and CC of 0.64 for arousal.

He et al. [16] won the AVEC 2015 challenge by training

multiple stacks of bidirectional LSTMs (DBLSTM-RNN)

on engineered features extracted from audio (LLDs fea-

tures), video (LPQ-TOP features), 52 ECG features, and

22 EDA features. They achieved RMSE of 0.104 and CC

of 0.616 for valence as well as RMSE of 0.121 and CC of

0.753 for arousal.

Koelstra et al. [19] trained Gaussian naive Bayes classi-

fiers on EEG, physiological signals, and multimedia fea-

tures by binary classification of low/high categories for

arousal, valence, and liking on their proposed database

DEAP. They achieved F1-score of 0.39, 0.37, and 0.40 on

arousal, valence, and Liking categories respectively.

In recent years, Convolutional Neural Networks (CNNs)

have become the most popular approach among researchers

in the field of computer vision. Szegedy et al. [30] in-

troduced GoogLeNet which contains multiple “Inception”

layers that apply several convolutions on the feature map in

different scales. Several variations of Inception have been

proposed [18, 31]. Also, Inception layer is combined with

residual unit introduced by He et al. [15] resulting consider-

able acceleration in the training of Inception networks [29].

Recurrent Neural Networks (RNNs) can learn temporal

dynamics by mapping input sequences to a sequence of hid-

den states [9]. One of the problems of RNNs is that it is dif-

ficult for them to learn long-term sequences. This is mainly

due to the vanishing or exploding gradients problem [17].

LSTMs [17] contain a memory unit which solves this prob-

lem by memorizing the context information for long periods

of time. LSTM modules have three gates: 1) the input gate

(i) 2) the forget gate (f) and 3) the output gate (o) which

overwrite, keep, or retrieve the memory cell c respectively

at the timestep t. Letting σ be the sigmoid function, φ be

the hyperbolic tangent function, and ◦ denoting Hadamard

product, the LSTM updates for the timestep t given inputs

xt, ht−1, and ct−1 are as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

gt = φ(WC · [ht−1, xt] + bC)

Ct = ft ◦ Ct−1 + it ◦ gt

ht = ot ◦ φ(Ct)

(1)

Several works have used LSTMs and their extensions for

different tasks. Fan et al. [12] won the EmotiW 2016 chal-

lenge by cascading 2D-CNN with LSTMs and combining

the resulting feature map with 3D-CNNs for facial expres-

sion recognition task. Donahue et al. [9] proposed Long-

term Recurrent Convolutional Network (LRCN) by com-

bining CNNs and LSTMs. Byeon et al. [3] proposed an

LSTM-based network by applying 2D-LSTMs in four di-

rection sliding windows. As mentioned earlier, Nicolaou et

al. [23] used bidirectional LSTMs and He et al. [16] used

multiple stacks of bidirectional LSTMs (DBLSTM-RNN)

for the dimensional model of affect.

In order to evaluate our methods, we calculate and re-

port Root Mean Square Error (RMSE), Correlation Coef-

ficient (CC), Concordance Correlation Coefficient (CCC),

and Sign Agreement Metric (SAGR) metrics for our meth-

ods. In the following, we briefly review the definitions of

these metrics.

Root Mean Square Error (RMSE) is the most common

evaluation metric in a continuous domain which is defined

as:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(θ̂i − θi)2 (2)

where θ̂i and θi are the prediction and the ground-truth of

ith sample, and n is the number of samples. RMSE-based

evaluation metrics can heavily weigh the outliers [2], and

they do not consider covariance of the data.

Pearson’s Correlation Coefficient (CC) overcomes this

problem [23, 26, 27] and it is defined as:

CC =
COV {θ̂, θ}

σ
θ̂
σθ

=
E[(θ̂ − µ

θ̂
)(θ − µθ)]

σ
θ̂
σθ

(3)

Concordance Correlation Coefficient (CCC) is another met-

ric [24, 33] which combines CC with the square difference

between the means of two compared time series:

ρc =
2ρσ

θ̂
σθ

σ2

θ̂
+ σ2

θ + (µ
θ̂
− µθ)2

(4)

where COV is covariance function, ρ is the Pearson corre-

lation coefficient (CC) between two time-series (e.g., pre-

diction and ground-truth), σ2

θ̂
and σ2

θ are the variance of
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each time series, σ
θ̂

and σθ are the standard deviation of

each, and µ
θ̂

and µθ are the mean value of each. Unlike

CC, the predictions that are well correlated with the ground-

truth but shifted in value are penalized in proportion to the

deviation in CCC.

The value of valence and arousal fall within the interval

of [-1,+1] and correctly predicting their signs are essential

in many emotion-prediction applications. Therefore, we use

Sign Agreement Metric (SAGR) which is proposed in [23]

to evaluate the performance of a valence and arousal pre-

diction system with respect to the sign agreement. SAGR is

defined as:

SAGR =
1

n

n
∑

i=1

δ(sign(θ̂i), sign(θi)) (5)

where δ is the Kronecker delta function, defined as:

δ(a, b) =

{

1, a = b

0, a 6= b
(6)

3. Proposed methods

Inception and ResNet have shown remarkable results in

various tasks [14, 21, 30, 34]. For the Affect-in-the-Wild

challenge, we proposed Inception-ResNet based architec-

tures followed by LSTM units (submission 3) for the task

of affect estimation. Our proposed methods extract contex-

tual information of the frames in an end-to-end deep neural

network. In the following, we explain each of the methods

presented in our submissions.

3.1. Shallow Inception­ResNet (submission 1)

For the first submission, we propose modified version

of Inception-ResNet which originally presented in [29].

Our first module is shallower than the original Inception-

ResNet containing only “stem” and single “Inception-

ResNet” module. Most of the settings are the same as the

ones presented in [29] while the input size of the network

is changed from 299 × 299 to 49 × 49. Because of this re-

duction in the size of the input, we are not able to have a

very deep network. Therefore, only one Inception-ResNet

module is used in this method.

Figure 1 shows the structure of our shallow Inception-

ResNet method. The input images with the size 49×49×3
are followed by the “stem” layer. Afterwards, the stem

is followed by Inception-ResNet-A, dropout, and a fully-

connected layer respectively. In Figure 1, detailed speci-

fication of each layer is provided. All convolution layers

are followed by a batch normalization layer and all batch

normalization layers (except the ones that are indicated as

“Linear” in Figure 1) are followed by a ReLU [20] activa-

tion function to avoid the vanishing gradient problem.

Figure 1. Network architecture for submission 1. The “V” and

“S” marked layers represent “Valid” and “Same” paddings respec-

tively. The size of the output tensor is provided next to each layer.

3.2. Deep Inception­ResNet (submission 2)

As mentioned earlier, in order to have a deeper network

to extract more abstract features and having more number of

parameters to learn, we changed the properties of the previ-

ously mentioned network.

Figure 2 shows the structure of our Deep Inception-

ResNet method. Comparing tho the previous method, we

change all of the “valid” paddings to “same” paddings to

save the feature map size. Also, strides are changed in this

method. Same as before, the input images with the size
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Figure 2. Network architecture for submission 2. The “S” marked

layers represent “Same” padding. The size of the output tensor is

provided next to each layer.

49 × 49 × 3 are followed by the “stem” and “Inception-

ResNet-A” layers. Afterwards, to deepen the network, we

include “Reduction” (which reduces the grid size from 13×
13 to 7 × 7) followed by “Inception-ResNet-B”, dropout,

and fully-connected layers.

Same as before, all convolution layers are followed by a

batch normalization layer and all batch normalization layers

(except the ones that are indicated as “Linear” in the Fig-

ure) are followed by a ReLU activation function to avoid

the vanishing gradient problem.

3.3. Inception­ResNet & LSTM (submission 3)

As explained earlier, LSTMs have shown remarkable re-

sults in different emotion recognition/estimation tasks [9,

12, 16, 23]. Therefore, we incorporate LSTMs in our next

method in two directions to estimate the valence and arousal

intensity in the challenge.

Figure 3 shows the network used for the third submis-

sion. The network has the same settings as the second sub-

mission. The only difference here is that after the dropout

layer, we vectorize the feature map on two dimensions (one

on the width of the feature map and the other one on its

height). This is inspired by the work in [3] where LSTMs

are used in four different directions. Adding LSTMs will

take the complex spatial dependencies of adjacent pixels

into account [3]. We investigated that 200 hidden units for

each LSTM unit is a reasonable amount for this task. At

the end, the resulting feature vectors of these two LSTMs

are concatenated together and are followed by a fully-

connected layer (Figure 3).

All of the proposed methods are implemented using a

combination of TensorFlow [1] and TFlearn [8] toolboxes

on NVIDIA Tesla K40 GPUs. We used asynchronous

stochastic gradient descent with weight decay of 0.0001,

and learning rate of 0.01. Mean square error used for loss

function.

4. Database & results

In this section, we briefly review Aff-Wild database pro-

vided in the First Affect-in-the-Wild challenge. We then

report the results of our experiments on both validation and

test sets using the metrics provided in section 2.

4.1. Aff­Wild database

Aff-Wild database contains 300 videos of different sub-

jects watching videos of various TV shows and movies. The

videos contain subjects from different genders and ethnic-

ities with high variations in head pose and lightning. Pro-

vided videos in this database are annotated with valence and

arousal values for each frame. 254 videos of this database

are selected for training and the rest 46 videos are used for

evaluating the participants in the challenge.
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Figure 3. Network architecture for submission 3. The “S” marked

layers represent “Same” padding. The size of the output tensor is

provided next to each layer.

4.2. Results

We first extract the faces from the frames using the

bounding boxes that are released alongside the database.

Afterwards, we resize the faces to 49×49 pixels and divide

the training data into training and validation sets by assign-

ing 10 percent of the subjects to the validation set and the

rest of them to the training set.

Figure 4 shows the histograms of annotated values and

predicted values on the validation set for all submissions. It

can be seen that the database is heavily imbalanced. The

number of annotated frames with values close to zero for

valence and arousal (center of the circumplex) is consider-

ably higher than other regions. Therefore, our methods are

also biased toward this region. Figures 4b and 4c show that

submissions 1 and 2 were not able to correctly estimate in-

stances with high arousal and low valence values. Figure 4d

shows that submission 3 performs better in this region but

as table 1 indicates, this submission generally does not per-

form well on estimating arousal values comparing to others.

However, all of the methods show mostly similar patterns

on the validation set and no unusual predicted values can be

seen throughout any of the methods.

We evaluate our proposed methods with RMSE, CC,

CCC, and SAGR metrics defined in the section 2. The re-

ported results are the calculated values on the validation set.

Table 1 shows different metrics calculated for the validation

and test sets of the provided database. The CC and SAGR

metric are not reported to the authors for the test set, there-

fore these metrics are not reported in Table 1.

Results on validation set show more accurate estimation

for arousal in all submissions. This can be in part due to

the less dynamic range of values for arousal in the training

data. By looking at the results on our validation set, it can

be seen that almost all of the metrics show the superiority

of submission 2 comparing to other submissions. CC and

CCC metrics show that there is more correlation between

the results of submission 2 and the ground-truth comparing

to other methods.

The test set results in Table 1 also show the superiority

of submission 2. In all three methods, the estimation for

valence is considerably less accurate comparing to the esti-

mated values for arousal while the results in the validation

set do not show such drastic difference. Nevertheless, sub-

missions 1 and 3 show almost the same results on the test

set while submission 2 shows less error in terms of RMSE

and also shows more correlation with ground-truth in terms

of CCC metric. The reduction of correlation in submission

3 can be in part due to the fact that the input feature map

of LSTM units does not contain the notion of time which

shapes an unfitting input for the LSTMs. Using 3D convolu-

tional neural networks would provide such temporal infor-

mation within the feature map but this temporal processing

of input sequences is not experimented in this work.
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(a) Annotated values (ground-truth) (b) Shallow Inception-ResNet (submission 1)

(c) Deep Inception-ResNet (submission 2) (d) Inception-ResNet with LSTMs (submission 3)

Figure 4. Histograms of valence and arousal values in the validation set for annotated values (a), submission 1 (b), submission 2 (c), and

submission 3 (d). Best viewed in color.

submission

validation set test set

RMSE CC CCC SAGR RMSE CCC

valence arousal valence arousal valence arousal valence arousal valence arousal valence arousal

#1 0.29 0.37 0.29 0.22 0.28 0.19 0.53 0.72 0.41 0.33 0.03 0.19

#2 0.27 0.36 0.44 0.26 0.36 0.19 0.57 0.74 0.40 0.30 0.04 0.29

#3 0.28 0.36 0.33 0.17 0.31 0.14 0.55 0.70 0.40 0.33 0.04 0.17

Table 1. Results of submissions on validation and test sets

5. Conclusion

In this paper, we presented three methods submitted to

the First Affect-in-the-Wild Challenge: Shallow Inception-

ResNet, Deep Inception-ResNet, and Inception-ResNet

with LSTMs. These Inception-ResNet based methods are

engineered specifically for the task of facial affect estima-

tion by extracting facial features in different scales and they

estimate both valence and arousal values for each frame si-

multaneously. We used four metrics to evaluate our meth-

ods on our validation set: RMSE, CC, CCC, and SAGR.

On the test set, Inception-ResNet with LSTMs network

achieved the best performance with noticeably good estima-

tion in terms of RMSE and CCC rates especially on arousal

values.
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