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Abstract

In this paper, we propose Deep Alignment Network

(DAN), a robust face alignment method based on a deep

neural network architecture. DAN consists of multiple

stages, where each stage improves the locations of the fa-

cial landmarks estimated by the previous stage. Our method

uses entire face images at all stages, contrary to the recently

proposed face alignment methods that rely on local patches.

This is possible thanks to the use of landmark heatmaps

which provide visual information about landmark locations

estimated at the previous stages of the algorithm. The use of

entire face images rather than patches allows DAN to han-

dle face images with large variation in head pose and diffi-

cult initializations. An extensive evaluation on two publicly

available datasets shows that DAN reduces the state-of-the-

art failure rate by up to 70%. Our method has also been

submitted for evaluation as part of the Menpo challenge.

1. Introduction

The goal of face alignment is to localize a set of prede-

fined facial landmarks (eye corners, mouth corners etc.) in

an image of a face. Face alignment is an important com-

ponent of many computer vision applications, such as face

verification [28], facial emotion recognition [25], human-

computer interaction [6] and facial motion capture [12].

Most of the face alignment methods introduced in the

recent years are based on shape indexed features [33, 22, 4,

36, 30]. In these approaches image features, such as SIFT

[33, 36] or learned features [22, 30], are extracted from im-

age patches extracted around each of the landmarks. The

features are then used to iteratively refine the estimates of

landmark locations. While those approaches can be suc-

cessfully applied to face alignment in many photos, their

performance on the most challenging datasets [23] leaves

room for improvement [4, 33, 36, 30]. We believe that this

is due to the fact that for the most difficult images the fea-

tures extracted at disjoint patches do not provide enough

information and can lead the method into a local minimum.

In this work, we address the above shortcoming by

proposing a novel face alignment method which we dub

Deep Alignment Network (DAN). It is based on a multi-

stage neural network where each stage refines the landmark

positions estimated at the previous stage, iteratively improv-

ing the landmark locations. The input to each stage of our

algorithm (except the first stage) are a face image normal-

ized to a canonical pose and an image learned from the

dense layer of the previous stage. To make use of the en-

tire face image during the process of face alignment, we

additionally input at each stage a landmark heatmap, which

is a key element of our system.

A landmark heatmap is an image with high intensity val-

ues around landmark locations where intensity decreases

with the distance from the nearest landmark. The convo-

lutional neural network can use the heatmaps to infer the

current estimates of landmark locations in the image and

thus refine them. An example of a landmark heatmap can

be seen in Figure 1 which shows an outline of our method.

By using landmark heatmaps, our DAN algorithm is able to

reduce the failure rate on the 300W public test set by a large

margin of 72% with respect to the state of the art.

To summarize, the three main contributions of this work

are the following:

1. We introduce landmark heatmaps which transfer the

information about current landmark location estimates

between the stages of our method. This improvement

allows our method to make use of the entire image of

a face, instead of local patches, and avoid falling into

local minima.

2. The resulting robust face alignment method we pro-

pose in this paper reduces the failure rate by 60% on
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Figure 1. A diagram showing an outline of the proposed method. Each stage of the neural network refines the landmark location estimates

produced by the previous stage, starting with an initial estimate S0. The connection layers form a link between the consecutive stages

of the network by producing the landmark heatmaps Ht, feature images Ft and a transform Tt which is used to warp the input image

to a canonical pose. By introducing landmark heatmaps and feature images we can transmit crucial information, including the landmark

location estimates, between the stages of our method.

the 300W private test set [23] and 72% on the 300-W

public test set [23] compared to the state of the art.

3. Finally, we publish both the source code of our imple-

mentation of the proposed method and the models used

in the experiments.

The remainder of the paper is organized in the follow-

ing manner. In section 2 we give an overview of the related

work. In section 3 we provide a detailed description of the

proposed method. Finally, in section 4 we perform an eval-

uation of DAN and compare it to the state of the art.

2. Related work

Face alignment has a long history, starting with the early

Active Appearance Models [5, 21], moving to Constrained

Local Models [7, 1] and recently shifting to methods based

on Cascaded Shape Regression (CSR) [33, 4, 22, 19, 17, 31,

14] and deep learning [35, 11, 30, 32, 3].

In CSR based methods, the face alignment begins with

an initial estimate of the landmark locations which is then

refined in an iterative manner. The initial shape S0 is typi-

cally an average face shape placed in the bounding box re-

turned by the face detector[4, 33, 22, 30]. Each CSR itera-

tion is characterized by the following equation:

St+1 = St + rt(φ(I, St)), (1)

where St is the estimate of landmark locations at iteration

t, rt is a regression function which returns the update to St

given a feature φ extracted from image I at the landmark

locations.

The main differences between the variety of CSR based

methods introduced in the literature lie in the choice of the

feature extraction method φ and the regression method rt.

For instance, Supervised Descent Method (SDM) [33] uses

SIFT [20] features and a simple linear regressor. LBF [22]

takes advantage of sparse features generated from binary

trees and intensity differences of individual pixels. LBF

uses Support Vector Regression [10] for regression which,

combined with the sparse features, leads to a very efficient

method running at up to 3000 fps.

Coarse to Fine Shape Searching (CFSS) [36], similarly

to SDM, uses SIFT features extracted at landmark loca-

tions. However the regression step of CSR is replaced with

a search over the space of possible face shapes which goes

from coarse to fine over several iterations. This reduces the

probability of falling into a local minimum and thus im-

proves convergence.

MIX [31] also uses SIFT for feature extraction, while

regression is performed using a mixture of experts, where
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each expert is specialized in a certain part of the space of

face shapes. Moreover MIX, warps the input image before

each iteration so that the current estimate of the face shape

matches a predefined canonical face shape.

Mnemonic Descent Method (MDM) [30] fuses the fea-

ture extraction and regression steps of CSR into a single Re-

current Neural Network that is trained end-to-end. MDM

also introduces memory into the process which allows in-

formation to be passed between CSR iterations.

While all of the above mentioned methods perform face

alignment based only on local patches, there are some meth-

ods [35, 11] that estimate initial landmark positions using

the entire face image and use local patches for refinement.

In contrast, DAN localizes the landmarks based on the en-

tire face image at all of its stages.

The use of heatmaps for face alignment related tasks pre-

cedes the proposed method. One method that uses heatmaps

is [3], where a neural network outputs predictions in the

form of a heatmap. In contrast, the proposed method uses

heatmaps solely as a means for transferring information be-

tween stages.

The development of novel methods contributes greatly in

advancing face alignment. However it cannot be overlooked

that the publication of several large scale datasets of anno-

tated face images [23, 24] also had a crucial role in both

improving the state of the art and the comparability of face

alignment methods.

3. Deep Alignment Network

In this section, we describe our method, which we call

the Deep Alignment Network (DAN). DAN is inspired by

the Cascade Shape Regression (CSR) framework, just like

CSR our method starts with an initial estimate of the face

shape S0 which is refined over several iterations. However,

in DAN we substitute each CSR iteration with a single stage

of a deep neural network which performs both feature ex-

traction and regression. The major difference between DAN

and approaches based on CSR is that DAN extracts features

from the entire face image rather than the patches around

landmark locations. This is achieved by introducing ad-

ditional input to each stage, namely a landmark heatmap

which indicates the current estimates of the landmark posi-

tions within the global face image and transmits this infor-

mation between the stages of our algorithm. An outline of

the proposed method is shown in Figure 1.

Therefore, each stage of DAN takes three inputs: the in-

put image I which has been warped so that the current land-

mark estimates are aligned with the canonical shape S0, a

landmark heatmap Ht and a feature image Ft which is gen-

erated from a dense layer connected to the penultimate layer

of the previous stage t− 1. The first stage only takes the in-

put image as the initial landmarks are always assumed to

be the average face shape S0 located in the middle of the

Figure 2. A diagram showing an outline of the connection layers.

The landmark locations estimated by the current stage St are first

used to estimate the normalizing transform Tt+1 and its inverse

T
−1

t+1. Tt+1 is subsequently used to transform the input image I

and St. The transformed shape Tt+1(St) is then used to generate

the landmark heatmap Ht+1. The feature image Ft+1 is generated

using the fc1 dense layer of the current stage t.

image.

A single stage of DAN consists of a feed-forward neural

network which performs landmark location estimation and

connection layers that generate the input for the next stage.

The details of the feed-forward network are described in

subsection 3.1. The connection layers consist of the Trans-

form Estimation layer, the Image Transform layer, Land-

mark Transform layer, Heatmap Generation layer and Fea-

ture Generation layer. The structure of the connection layers

is shown in Figure 2.

The transform estimation layer generates the transform

Tt+1, where t is the number of the stage. The transforma-

tion is used to warp the input image I and the current land-

mark estimates St so that St is close to the canonical shape

S0. The transformed landmarks Tt+1(St) are passed to the

heatmap generation layer. The inverse transform T−1
t+1 is

used to map the output landmarks of the consecutive stage

back into the original coordinate system.

The details of the Transform Estimation, Image Trans-

form and Landmark Transforms layer are described in sub-

section 3.2. The Heatmap Generation and Feature Image

layers are described in sections 3.3, 3.4. Section 3.5 details
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Table 1. Structure of the feed-forward part of a Deep Alignment

Network stage. The kernels are described as height × width ×

depth, stride.

Name Shape-in Shape-out Kernel

conv1a 112×112×1 112×112×64 3×3×1,1

conv1b 112×112×64 112×112×64 3×3×64,1

pool1 112×112×64 56×56×64 2×2×1,2

conv2a 56×56×64 56×56×128 3×3×64,1

conv2b 56×56×128 56×56×128 3×3×128,1

pool2 56×56×128 28×28×128 2×2×1,2

conv3a 28×28×128 28×28×256 3×3×128,1

conv3b 28×28×256 28×28×256 3×3×256,1

pool3 28×28×256 14×14×256 2×2×1,2

conv4a 14×14×256 14×14×512 3×3×256,1

conv4b 14×14×512 14×14×512 3×3×512,1

pool4 14×14×512 7×7×512 2×2×1,2

fc1 7×7×512 1×1×256 -

fc2 1×1×256 1×1×136 -

Figure 3. Selected images from the IBUG dataset and intermediate

results after 1 stage of DAN. The columns show: the input image

I , the input image normalized to canonical shape using transform

T2, the landmark heatmap showing T2(S1), the corresponding fea-

ture image.

the training procedure.

3.1. Feed­forward neural network

The structure of the feed-forward part of each stage is

shown in Table 1. With the exception of max pooling layers

and the output layer, every layer takes advantage of batch

normalization and uses Rectified Linear Units (ReLU) for

activations. A dropout [27] layer is added before the first

fully connected layer. The last layer outputs the update ∆St

to the current estimate of the landmark positions.

The overall shape of the feed-forwad network was in-

spired by the network used in [26] for the ImageNet

ILSVRC 2014 competition.

3.2. Normalization to canonical shape

In DAN the input image I is transformed for each stage

so that the current estimates of the landmarks are aligned

with the canonical face shape S0. This normalization step

allows the further stages of DAN to be invariant to a given

family of transforms. This in turn simplifies the alignment

task and improves accuracy.

The Transform Estimation layer of our network is re-

sponsible for estimating the parameters of transform Tt+1

at the output of stage t. As input the layer takes the output

of the current stage St. Once Tt+1 is estimated the Image

Transform and the Landmark Transform layers transform

the image I and landmarks St to the canonical pose. The

image is transformed using bilinear interpolation. Note that

for the first stage of DAN the normalization step is not nec-

essary since the input shape is always the average face shape

S0, which is also the canonical face shape.

Since the input image is transformed, the output of ev-

ery stage has to be transformed back to match the original

image, the output of any DAN stage is thus:

St = T−1
t (Tt(St−1) + ∆St), (2)

where ∆St is the output of the last layer of stage t and T−1
t

is the inverse of transform Tt

A similar normalization step has been previously pro-

posed in [31] with the use of affine transforms. In our im-

plementation we chose to use similarity transforms as they

do not cause non-uniform scaling and skewing of the output

image. Figure 3 shows examples of images before and after

the transformation.

3.3. Landmark heatmap

The landmark heatmap is an image where the intensity

is highest in the locations of landmarks and it decreases

with the distance to the closest landmark. Thanks to the use

of landmark heatmaps the Convolutional Neural Network

can infer the landmark locations estimated by the previous

stage. In consequence DAN can perform face alignment

based on entire facial images.

At the input to a DAN stage the landmark heatmap is cre-

ated based on the landmark estimates produced by the previ-

ous stage and transformed to the canonical pose: Tt(St−1).
The heatmap is generated using the following equation:

H(x, y) =
1

1 + minsi∈Tt(St−1) ||(x, y)− si||
, (3)

where H is the heatmap image and si is the i-th landmark

of Tt(St−1). In our implementation the heatmap values are

only calculated in a circle of radius 16 around each land-

mark to improve performance. Note that similarly to nor-

malization, this step is not necessary at the input of the first
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stage, since the input shape is always assumed to be S0,

which would result in an identical heatmap for any input.

An example of a face image and a corresponding land-

mark heatmap is shown in Figure 3.

3.4. Feature image layer

The feature image layer Ft is an image created from a

dense layer connected to the fc1 layer (see Table 1) of the

previous stage t − 1. Such a connection allows any in-

formation learned by the preceding stage to be transferred

to the consecutive stage. This naturally complements the

heatmap which transfers the knowledge about landmark lo-

cations learned by the previous stage.

The feature image layer is a dense layer which has 3136

units with ReLU activations. The output of this dense layer

is reshaped to a 56×56 2D layer and upscaled to 112×112,

which is the input shape of DAN stages. We use the smaller

56×56 image rather than 112×112 since it showed similar

results in our experiments, with considerably less parame-

ters. Figure 3 shows an example of a feature image.

3.5. Training procedure

The stages of DAN are trained sequentially. The first

stage is trained by itself until the validation error stops im-

proving. Subsequently the connection layers and the second

stage are added and trained. This procedure is repeated until

further stages stop reducing the validation error.

While many face alignment methods [4, 33, 22] learn

a model that minimizes the Sum of Squared Errors of the

landmark locations, DAN minimizes the landmark location

error normalized by the distance between the pupils:

min
∆St

||T−1
t (Tt(St−1) + ∆St)− S∗||

dipd
, (4)

where S∗ is a vector of ground truth landmark locations, Tt

is the transform that normalizes the input image and shape

for stage t and dipd is the distance between the pupils of S∗.

The use of this error is motivated by the fact that it is a far

more common [33, 22, 36] benchmark for face alignment

methods than the Sum of Squared Errors.

Thanks to the fact that all of the layers used in DAN

are differentiable DAN can also be trained end-to-end. In

order to evaluate end-to-end training in DAN we have ex-

perimented with several approaches. Pre-training the first

stage for several epochs followed by training of the entire

network yielded similar accuracy to the proposed approach

but the training was significantly longer. Training the entire

network from scratch yielded results significantly inferior

to the proposed approach.

While we did not manage to obtain improved results with

end-to-end training we believe that it is possible with a bet-

ter training strategy. We leave the creation of such a strategy

for future work.

4. Experiments

In this section we perform an extensive evaluation of the

proposed method on several public datasets as well as the

test set of the Menpo challenge [34] to which we have sub-

mitted our method. The following paragraphs detail the

datasets, error measures and implementation. Section 4.1

compares our method with the state of the art, while sec-

tion 4.2 shows our results in the Menpo challenge. Section

4.3 discusses the influence of the number of stages on the

performance of DAN.

Datasets In order to evaluate our method we perform

experiments on the data released for the 300W competi-

tion [23] and the recently introduced Menpo challenge [34]

dataset.

The 300W competition data is a compilation of images

from five datasets: LFPW [2], HELEN [18], AFW [37],

IBUG [23] and 300W private test set [23]. The last dataset

was originally used for evaluating competition entries and

at that time was private to the organizers of the competi-

tion, hence the name. Each image in the dataset is anno-

tated with 68 landmarks [24] and accompanied by a bound-

ing box generated by a face detector. We follow the most

established approach [22, 36, 17, 32] and divide the 300-W

competition data into training and testing parts. The train-

ing part consists of the AFW dataset as well as training sub-

sets of LFPW and HELEN, which results in a total of 3148

images. The test data consists of the remaining datasets:

IBUG, 300W private test set, test sets of LFPW, HELEN.

In order to facilitate comparison with previous methods we

split this test data into four subsets:

• the common subset which consists of the test subsets

of LFPW and HELEN (554 images),

• the challenging subset which consists of the IBUG

dataset (135 images),

• the 300W public test set which consists of the test sub-

sets of LFPW and HELEN as well as the IBUG dataset

(689 images),

• the 300W private test set (600 images).

The annotation for the images in the 300W public test

set were originally published for the 300W competition as

part of its training set. We use them for testing as it became

a common practice to do so in the recent years [22, 36, 32,

19, 17].

The Menpo challenge dataset consists of semi-frontal

and profile face image datasets. In our experiments we only

use the semi-frontal dataset. The dataset consists of train-

ing and testing subsets containing 6679 and 5335 images

respectively. The training subset consists of images from
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the FDDB [13] and AFLW [16] datasets. The image were

annotated with the same set of 68 landmarks as the 300W

competition data but no face detector bounding boxes. The

annotations of the test subset have not been released.

Error measures Several measures of face alignment error

for an individual face image have been recently introduced:

• the mean distance between the localized landmarks

and the ground truth landmarks divided by the inter-

ocular distance (the distance between the outer eye cor-

ners) [36, 22, 32],

• the mean distance between the localized landmarks

and the ground truth landmarks divided by the inter-

pupil distance (the distance between the eye centers)

[30, 23],

• the mean distance between the localized landmarks

and the ground truth landmarks divided by the diag-

onal of the bounding box [34].

In our work, we report our results using all of the above

measures. For evaluating our method on the test datasets

we use three metrics: the mean error, the area under the

cumulative error distribution curve (AUCα) and the failure

rate.

Similarly to [31, 30], we calculate AUCα as the area

under the cumulative distribution curve calculated up to a

threshold α, then divided by that threshold. As a result the

range of the AUCα values is always 0 to 1. Following [30],

we consider each image with an inter-ocular normalized er-

ror of 0.08 or greater as failure and use the same threshold

for AUC0.08. In all the experiments we test on the full set

of 68 landmarks.

Implementation We train two models, DAN which is

trained on the training subset of the 300W competition data

and DAN-Menpo which is trained on both the above men-

tioned dataset and the Menpo challenge training set. Data

augmentation is performed by mirroring around the Y axis

as well as random translation, rotation and scaling, all sam-

pled from normal distributions. During data augmentation a

total of 10 images are created from each input image in the

training set.

Both models (DAN and DAN-Menpo) consist of two

stages. Training is performed using Theano 0.9.0 [29] and

Lasagne 0.2 [9]. For optimization we use Adam stochastic

optimization [15] with an initial step size of 0.001 and mini

batch size of 64. For validation we use a random subset of

100 images from the training set.

The Python implementation runs at 73 fps for images

processed in parallel and at 45 fps for images processed se-

quentially on a GeForce GTX 1070 GPU. We believe that

the processing speed can be further improved by optimiz-

ing the implementation of some of our custom layers, most

notably the Image Transform layer.

To enable reproducible research, we release the source

code of our implementation as well as the models used in

the experiments1. The published implementation also con-

tains an example of face tracking with the proposed method.

4.1. Comparison with state­of­the­art

We compare the DAN model with state-of-the-art meth-

ods on all of the test sets of the 300W competition data. We

also show results for the DAN-Menpo model but do not per-

form comparison since at the moment there are no published

methods that use this dataset for training. For each test set

we initialize our method using the face detector bounding

boxes provided with the datasets.

Tables 2 and 3 show the mean error, AUC0.08 and the

failure rate of the proposed method and other methods on

the 300W public test set. Table 4 shows the mean error, the

AUC0.08 and failure rate on the 300W private test set.

All of the experiments performed on the two most diffi-

cult test subsets (the challenging subset and the 300W pri-

vate test set) show state-of-the-art results, including:

• a failure rate reduction of 60% on the 300W private

test set,

• a failure rate reduction of 72% on the 300W public test

set,

• a 9% improvement of the mean error on the challeng-

ing subset.

This shows that the proposed DAN is particularly suited for

handling difficult face images with a high degree of occlu-

sion and variation in pose and illumination.

4.2. Results on the Menpo challenge test set

In order to evaluate the proposed method on the Menpo

challenge test dataset we have submitted our results to the

challenge and received the error scores from the challenge

organizers. The Menpo test data differs from the other

datasets we used in that it does not include any bounding

boxes which could be used to initialize face alignment. For

that reason we have decided to use a two step face alignment

procedure, where the first step serves as an initialization for

the second step.

The first step performs face alignment using a square ini-

tialization bounding box placed in the middle of the image

with a size set to a percentage of image height. The sec-

ond step takes the result of the first step, transforms the

landmarks and the image to the canonical face shape and

1https://github.com/MarekKowalski/

DeepAlignmentNetwork
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Table 2. Mean error of face alignment methods on the 300W public

test set and its subsets. All values are shown as percentage of the

normalization metric.

Method
Common

subset

Challenging

subset
Full set

inter-pupil normalization

ESR [4] 5.28 17.00 7.58

SDM [33] 5.60 15.40 7.52

LBF [22] 4.95 11.98 6.32

cGPRT [19] - - 5.71

CFSS [36] 4.73 9.98 5.76

Kowalski et al.

[17]

4.62 9.48 5.57

RAR [32] 4.12 8.35 4.94

DAN 4.42 7.57 5.03

DAN-Menpo 4.29 7.05 4.83

inter-ocular normalization

MDM [30] - - 4.05

Kowalski et al.

[17]

3.34 6.56 3.97

DAN 3.19 5.24 3.59

DAN-Menpo 3.09 4.88 3.44

bounding box diagonal normalization

DAN 1.35 2.00 1.48

DAN-Menpo 1.31 1.87 1.42

Table 3. AUC and failure rate of face alignment methods on the

300W public test set.

Method AUC0.08 Failure (%)

inter-ocular normalization

ESR [4] 43.12 10.45

SDM [33] 42.94 10.89

CFSS [36] 49.87 5.08

MDM [30] 52.12 4.21

DAN 55.33 1.16

DAN-Menpo 57.07 0.58

Table 4. Results of face alignment methods on the 300W private

test set. Mean error is shown as percentage of the inter-ocular

distance.

Method Mean error AUC0.08 Failure (%)

inter-ocular normalization

ESR [4] - 32.35 17.00

CFSS [36] - 39.81 12.30

MDM [30] 5.05 45.32 6.80

DAN 4.30 47.00 2.67

DAN-

Menpo

3.97 50.84 1.83

creates a bounding box around the transformed landmarks.

The transformed image and bounding box are used as input

to face alignment. An inverse transform is later applied to

get landmark coordinates for the original image.

Figure 4. The 9 worst results on the challenging subset (IBUG

dataset) in terms of inter-ocular error produced by the DAN model.

Only the first 7 images have an error of more than 0.08 inter-ocular

distance and can be considered failures.

In order to determine the optimal size of the bounding

boxes in the first step we ran DAN on a small subset of the

Menpo test set for several bounding box sizes. The optimal

size was determined using a method that would estimate

the face alignment error of a given set of landmarks and

an image. Said method extracts HOG [8] features at each

of the landmarks and uses a linear model to estimate the

error. The method was trained on the 300W training set

using ridge regression. The chosen bounding box size was

46% of the image height.

Figure 6 and Table 5 show the CED curve, mean error,

AUC0.03 and failure rate for the DAN-Menpo model on the

Menpo test set. In all cases the errors are calculated us-

ing the diagonal of the bounding box normalization, used

by the challenge organizers. For the AUC and the failure

rate we have chosen a threshold of 0.03 of the bounding

box diagonal as it is approximately equivalent to 0.08 of the

interocular distance used in the previous chapter.

Figure 5 shows examples of images from the Menpo

test set and corresponding results produced by our method.

Note that even though DAN was trained primarily on semi-

frontal images it can handle fully profile images as well.

4.3. Further evaluation

In this subsection we evaluate several DAN models with

a varying number of stages on the 300W private test set. All

of the models were trained identically to the DAN model

from section 4.1. Table 6 shows the results of our eval-
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Figure 5. Results of our submission to the Menpo challenge on some of the difficult images of the Menpo test set. The blue squares denote

the initialization bounding boxes. The images were cropped to better visualize the results, in the original images the bounding boxes are

always located in the center.

Figure 6. The Cumulative Error Distribution curve for the DAN-

Menpo model on the Menpo test set. The Point-to-Point error is

shown as percentage of the bounding box diagonal.

Table 5. Results of the proposed method on the semi-frontal subset

of the Menpo test set. Mean error is shown as percentage of the

bounding box diagonal.

Method Mean error AUC0.03 Failure (%)

bounding box diagonal normalization

DAN-

Menpo

1.38 56.20 1.74

uation. The addition of the second stage increases the

AUC0.08 by 20% while the mean error and failure rate are

reduced by 14% and 56% respectively. The addition of a

third stage does not bring significant benefit in any of the

metrics.

5. Conclusions

In this paper, we introduced the Deep Alignment Net-

work - a robust face alignment method based on convo-

Table 6. Results of the proposed method with a varying number

of stages on the 300W private test set. Mean error is shown as

percentage of the inter-ocular distance.

# of stages Mean error AUC0.08 Failure (%)

inter-ocular normalization

1 5.02 39.04 6.17

2 4.30 47.00 2.67

3 4.32 47.08 2.67

lutional neural networks. Contrary to the recently pro-

posed face alignment methods, DAN performs face align-

ment based on entire face images, which makes it highly

robust to large variations in both initialization and head

pose. Using entire face images instead of local patches ex-

tracted around landmarks is possible thanks to the use of

novel landmark heatmaps which transmit the information

about landmark locations between DAN stages. Extensive

evaluation performed on two challenging, publicly available

datasets shows that the proposed method improves the state-

of-the-art failure rate by a significant margin of over 70%.

Future research includes investigation of new strategies

for training DAN in an end-to-end manner. We also plan

to introduce learning into the estimation of the transform Tt

that normalizes the shapes and images between stages.
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