
Estimation of Affective Level in the Wild

With Multiple Memory Networks

Jianshu Li 1,2 Yunpeng Chen 1 Shengtao Xiao 1 Jian Zhao 1

Sujoy Roy 2 Jiashi Feng 1 Shuicheng Yan 1 Terence Sim 1

1National University of Singapore 2 SAP Innovation Center Network Singapore

{jianshu, chenyunpeng, xiao shengtao, zhaojian90}@u.nus.edu sujoy.roy@sap.com

{elefjia, eleyans}@nus.edu.sg tsim@comp.nus.edu.sg

Abstract

This paper presents the proposed solution to the “affect

in the wild” challenge, which aims to estimate the affective

level, i.e. the valence and arousal values, of every frame

in a video. A carefully designed deep convolutional neu-

ral network (a variation of residual network) for affective

level estimation of facial expressions is first implemented

as a baseline. Next we use multiple memory networks to

model the temporal relations between the frames. Finally

ensemble models are used to combine the predictions from

multiple memory networks. Our proposed solution outper-

forms the baseline model by a factor of 10.62% in terms of

mean square error (MSE).

1. Introduction

The “affect in the wild” challenge is a facial expres-

sion estimation challenge for estimating the valence and

arousal values of the faces in videos. Unlike previous

datasets which ascribe video-level valence-arousal annota-

tions, the uniqueness of the dataset used in the challenge is

the availability of frame-level annotation of valence-arousal

for faces in natural (“in the wild”) videos. This opens up

novel avenues for understanding and modeling facial ex-

pressions “in the wild” in terms of valence and arousal. In

this challenge, facial expression at a frame has context and

hence can be modeled as a continuous predicate instead of

a single isolated value. It also allows for understanding how

facial expressions transform over time, which is useful for

estimating more subtle facial expressions. Some examples

of the faces with valence and arousal values are illustrated

in Figure 1.

In our proposed solution, we use the major face in the

video as the input to estimate its affective level in terms of

valence and arousal values. Face based emotion recogni-

tion is a well-formulated problem and there are numerous

methods attempting to solve it [2, 9, 7, 6]. Traditional face

emotional analysis casts the emotion recognition problem

into a classification problem [10, 8]. Given an input face

image, the model aims to predict the correct emotion cat-

egory of the face, such as “happy”, “sad”, “angry”, “sur-

prise”, “disgust” and “neutral”. Deep neural networks have

been used to predict the class of the emotion of human faces

and they have demonstrated excellent performance over tra-

ditional emotion recognition models. For the task at hand,

the goal is to estimate the valence and arousal values for the

face. In this work we model the task as a regression prob-

lem and adopt a single deep neural network to predict both

the valence and arousal levels of human faces.

Our proposed solution also models the temporal infor-

mation between video frames. For affective computing in

videos, the contextual information provides useful cues for

affective estimation of the current frame. To model the

temporal information, we use a bi-directional long short-

term memory network (BDLSTM) [4, 12]. As the number

of frames in each video is very large, ranging from a few

thousands to tens of thousands, the temporal relationship

between all the frames is hard to model. So we use a slid-

ing window approach on the video frames. We set a prede-

fined length of input frames, and use a bi-directional LSTM

with the predefined length as the model. The bi-directional

LSTM is used to perform a sliding window on the whole

video sequence, and to predict the value of affective level

for all the frames in the sequence. In such a manner, the pre-

diction of the current frame is affected by the nearby frames

in both forward and backward directions, and the temporal

information in a short term is considered when predicting

the faces in the sequence.

Contributions: 1) We propose a solution to the “affect

in the wild” challenge, which contains a single deep neu-
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Figure 1. Examples of faces with annotated affective levels. For each pair, the left side shows the face, and the right side shows the

corresponding affective levels in terms of valence and arousal values, as indicated by the red dots. The rendered background indicates the

overall distribution of valence and arousal values.

ral network to learn discriminative face features and a bi-

directional LSTM to model the temporal information be-

tween video frames. 2) The proposed solution achieves per-

formance boost on the Aff-Wild dataset from the challenge

compared with the baseline method.

2. The Proposed Approach

This section describes the proposed approach for the

problem of dense prediction of affective level for faces in

every frame in a video. The proposed framework breaks

the problem into two sub-problems and solves each sub-

problem separately, making it a two-stages approach. In the

first stage, we consider how to learn and extract discrimi-

native deep feature representations from each frame. In the

second stage, we consider how to utilize the temporal infor-

mation to leverage the power feature aggregation to achieve

accurate dense affective level prediction.

Deep Face Feature Learning The aim of this stage is to

extract rich and diverse facial features for the following af-

fective level prediction as illustrated in Figure 2. The rich-

ness and diversity of the learned feature representation is

critical for the following stage since the extracted features

serve as the input to the following stage. In this part, we

Figure 2. A deep face feature learner realized by a convolutional

neural network. The input is an aligned face and the output is the

deep face feature learned by the deep face feature learner.

propose a novel convolutional neural network (CNN) archi-

tecture based on Collective Residual Unit (CRU) [13]. The

novel architecture is called CRU-Net-56-tiny, which is a

modified version of the CRU-Net-56 proposed in [13]. The

new proposed CRU-Net-56-tiny is lighter than CRU-Net-

56 with only half the model size. The significantly smaller

model size reduces the number of learnable parameters and

greatly alleviates the over-fitting problem. The time con-

sumption for training the network is also much less than the

original network.

The proposed CNN is designed based on the most re-

cently proposed CRU-Net [13]. Different from the CRU-

Nets proposed in [13], the CRU-Net-56-tiny only has half

the size of ResNet-50 [5] but enjoys higher generalization

stage output CRU-Net-56 (32×4d @×14) CRU-Net-56-tiny (32×4d @×14)

conv1112x112 7 × 7, 64, stride 2 7 × 7, 64, stride 2

conv2 56x56
3 × 3 max pool, stride 2 3 × 3 max pool, stride 2





1×1, 128

3×3, 128, R=32

1×1, 256



 × 3





1×1, 256

3×3, 256, R=32

1×1, 256



 × 3

conv3 28×28





1×1, 256

3×3, 256, R=32

1×1, 512



 × 4





1×1, 512

3×3, 512, R=32

1×1, 256



 × 4

conv4 14×14







1×1, 640

3×3, 640, R=640

1×1, 640

1×1, 1024






× 6







1×1, 512

3×3, 512, R=512

1×1, 1024

1×1, 256






× 6

conv5 7×7





1×1, 1024

3×3, 1024, R=32

1×1, 2048



 × 3





1×1, 1024

3×3, 1024, R=32

1×1, 512



 × 4

1×1
global average pool

1000-d fc, softmax

global average pool

1000-d fc, softmax

# params 25.5 × 10
6

12.4 × 10
6

Table 1. The overall architecture of our proposed deep CNN. Our

new proposed CRU-Net-56-tiny has a less number of parameters

than CRU-Net-56. Thus it has increased generalization ability and

alleviates the over-fitting problem.
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ability than the ResNet-50 (22.9% v.s. 24.0% [1] Top-1 er-

ror). The motivation of building such a CRU-Net-56-tiny

is to alleviate the over-fitting problem. Table 1 shows the

detailed network architecture of the proposed CRU-Net-56-

tiny. Compared with the original CRU-Net-56, we propose

to use thinner shortcut. The number of channels in the first

shortcut keeps unchanged, while the next stage has a much

less number of channels. As a result, the overall number

of learnable parameters has been reduced to less than half

the size of the vanilla CRU-Net-56. Based on experimental

results, we find such modification only increases 1% Top-1

error rate on the ImageNet [11] classification task compared

with the vanilla CRU-Net-56 (22.9% v.s.21.9%), but enjoys

a lighter network with a much less chance of overfitting on

the training set. We adopt the new proposed CRU-Net-56-

tiny on the dataset in the challenge to learn the discrimina-

tive representations of faces for the task of affective level

prediction.

Feature Aggregation with BDLSTM For feature aggre-

gation, we use the Bi-directional Long Short-Term Memory

(BDLSTM) network. As a special case of bidirectional re-

current neural networks, BDLSTM enjoys the privilege of

an increased amount of input information. Different from

multilayer perceptron and time delayed neural networks,

where the input data need to have fixed lengths, BDLSTM

can take in a data sequence of arbitrary lengths. BDLSTM

can also access the data both in the past and in the future,

i.e. the previous and future frames in a video sequence, to

make the prediction of the current frame. The basic idea of

BDLSTM is to connect two hidden layers of opposite di-

rections to a combined feature space, based on which the

prediction of the current frame is made. BDLSTM is useful

when the context of the input in the current frame is needed.

For affective computing in videos, context information is

important, as the affective level of one frame is affected by

adjacent frames both in the near past and in the near future.

The structure of the BDLSTM for face affective level

prediction in videos is shown in Figure 3. The input fea-

tures to the BDLSTM are extracted from the deep neural

network in the first stage, i.e. CNN features. The output

of the BDLSTM are the aggregated features of the input

considering the nearby frames. Within BDLSTM, there are

two streams of information flow, one in the forward direc-

tion and the other one in the backward direction. Given

a sequence of input CNN features, the LSTM unit in the

forward direction scans the sequence from left to right and

performs feature encoding accordingly. Specifically, the

LSTM will selectively remember important features from

the inputs and forget less important features with its inter-

nal input gate and forget gate, respectively. The LSTM also

stores useful features within its internal memory cell and

produces the output with an output gate. In a similar man-

ner the LSTM in the backwards direction scans the input se-

quence in the reverse order and the aggregation of features

is also performed in the reverse order. Finally the features

of the LSTM in both forward and backward directions are

combined so that complimentary information is obtained

as the aggregated feature. The aggregation of features is

densely done for every frame in the sequence, generating a

sequence of aggregated features. Based on the sequence of

aggregated features, affective levels for each frame in the

sequence are predicted using a regression model.

Since a video is long, ranging from several thousand

frames to tens of thousands frames, we cannot simply feed

the whole video as a single sequence to BDLSTM. The

long-term dependency of the affective levels is very weak,

i.e. the affective level of the current frame is not strongly

related to the affective level of a frame a thousand frames

later. So a long sequence of input does not make sense

in this task. Therefore, we segment each video into multi-

ple short sequences with overlapping, where each sequence

is used to train the BDLSTM. The multiple sequences are

generated in a sliding window fashion. To achieve this, we

only need to define a length of the sequence, also known as

window length L, and the step length between the starting

point of each sequence, which is also called stride S. With

a pre-defined window length and a stride, we can segment a

video into multiple sequences. The process is illustrated in

Figure 4. Since the videos in this task only contain a long

continuous shot, no shot segmentation is needed to cut the

video into continuous clips before using the sliding window

method to cut the video into sequences.

During training stage, we randomly shuffle the videos.

For each video, we feed all the sequences generated in the

video to train the BDLSTM. During the testing stage, we

use the same window length as the training stage and use a

stride of 1 to densely scan through the video to make predic-

tions for each frame. In this manner, each frame will have

multiple predictions in different sliding windows. More ex-

plicitly, the number of predictions of the frames is equal

to the window length, except for the beginning and ending

frames, which will have less predictions. The final predic-

tion of one frame is the average prediction of all the sliding

widows containing that frame.

Feature Ensemble with Multiple Memory Networks

So far we have modeled each single frame with a deep CNN

and the temporal information within a relatively short range

with a BDLSTM. Since the task of affective level predic-

tion in video frames is a challenging task, we employs mul-

tiple memory networks, i.e. BDLSTM, to perform the task.

More specifically we use memory networks with different

memory cells and different input sequence lengths.

For ensemble of results from multiple BDLSTM, we use

both prediction level ensemble and feature level ensemble.
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Figure 3. The overall structure of BDLSTM used in our approach. The BDLSTM has two streams of information flows in forward and

backward directions. The input to BDLSTM is a sequence of deep face features and the output is a sequence of aggregated face features.

The output feature of one frame aggregates features of the frames both before and after the current frame.

For prediction level ensemble, the prediction results for the

same frame from different memory networks are averaged

as the final prediction. For feature level ensemble, we pro-

ceed as follows.

For one BDLSTM with memory cell size C and input se-

quence length L, we can generate the feature of the current

frame by considering the forward stream and the backward

stream within the BDLSTM. Each of the stream will pro-

vide a feature vector with dimension C and totally a feature

vector of length 2C is produced. Also the current frame is

processed by L sliding windows (here we ignore the begin-

ning and ending frames, which are contained by less than

L sliding windows), so when concatenating all the features

from the sliding windows, the total feature length will be

2CL. For the beginning and ending frames, we repeat the

features of length 2C to fill up a length of 2CL by repeat-

ing each of the 2C features in a circular manner. With the

above described method, we convert each input frame to a

feature vector of length 2CL as the representation of the

input frame under one BDLSTM model.

When dealing with multiple BDLSTM models with dif-

ferent cell sizes and input lengths, we use concatenation to

fuse all the features from each BDLSTM. So the total fea-

ture length will be

|ffusion| =

M∑

m=1

2CmLm, (1)

where ffusion is the fused feature and M is the number of

total models to be fused. Based on the fused feature ffusion,

we can use regression models to predict the valence and

arousal values of the current frame.

3. Experiments

In this section, we firstly introduce the experimental set-

ting. Then we show experimental results and analysis of the

results.

3.1. Experimental Setting

3.1.1 Dataset

In this paper, all the experiments are performed on Aff-

Wild, the dataset provided by the challenge [14, 15]. The

Aff-Wild dataset is meant for analyzing continuous emotion

dimensions, i.e. valence and arousal. It contains about 300
videos annotated with regard to valence and arousal all cap-

tured “in-the-wild” and the main source is Youtube videos.

Among all the videos, 252 videos are provided for train-

ing and the remaining for testing. We randomly choose 15%
of the videos, i.e. 38 videos as the validation set and the

remaining 214 videos are used as the training set. Totally

there are 841,000 frames in the training set and 127,000
frames in the validation set. We train models with the train-

ing set and report performance on the validation set. We

also report the performance on the test set based on the val-

idation set.

4



Figure 4. An illustration of separating sequences from the videos. In the figure a window length of 11 and a stride of 5 are used, i.e. L = 11

and S = 5. The deep face features of every face in one sequence are used as input to the BDLSTM model.

3.1.2 Implementation Details

We perform pre-processing of the videos in the following

manner. First we use the provided face bounding boxes,

which are detected faces filtered with the tracking algo-

rithm, to crop the faces from the frames in each video. For

all the cropped faces, we use a face landmark detector to

detect the facial landmarks on the faces. Then the detected

facial landmarks are used to align the faces. The inputs into

the deep face feature extractor are the aligned faces. The

size of the aligned face is 128× 128, and a random crop of

112 × 112 is performed during the training stage. Random

mirroring of the input face is also performed during train-

ing. During testing, the center crop is used and no mirroring

is applied.

For the deep face feature extractor, we use deep neural

network CRU-Net-56-tiny. The network is pre-trained on

ImageNet [11] and then adapted to FER2013 dataset [3].

The first one is a large scale image dataset for image classifi-

cation task and the latter one is a facial emotion recognition

dataset. Then the network is fine-tuned with the training

set of the challenge dataset with 20 epochs, with the first

10 epoch at learning rate 10−3, next 5 epochs at learning

rate 10−4, next 3 epochs at learning rate 10−5 and final 2
epochs at learning rate 10−6. After fine-tuning, the network

is used to extract features from input faces and the extracted

features are vectors with dimension 512.

For the multiple memory networks, we use BDLSTM

with different sizes of cell memory C = 250, C = 50,

C = 25 and C = 16. For input length L we use L = 11
and L = 5. The stride S for training is fixed as half of the

input length, i.e. S = 5 and S = 2, respectively. The re-

gression model which produces the output from the feature

of BDLSTM is realized by a neural network with one fully

connected layer with two output units. The two output units

have no activations, and one unit is for prediction of valence

and the other is for prediction of arousal. The memory net-

works are trained with RMSprop optimizer for 200 epochs.

The initial learning rate is 0.02 and reduced by a factor of 10
when the validation MSE does not decrease for 10 epochs.

For feature level ensemble of multiple memory net-

works, we realize the regression model with a multilayer

perceptron. Similar to the regression model in BDLSTM,

the regression model for ensembled features also has two

output units with no activations. The regression model is

also trained with RMSprop optimizer for 200 epochs.

3.1.3 Evaluation Metric

In the affective computing task, we use Mean Square Error

(MSE) and Concordance Correlation Coefficient (CCC) to

evaluate the performance of the prediction of valence and

arousal values. For a video sequence with N frames, we

have a sequence of ground truth annotations for valence

values yvn, ∀n = 1, 2, · · · , N and arousal values yan, ∀n =
1, 2, · · · , N . For each video sequence, we also have a se-

quence of predictions for valence ŷvn and a sequence of pre-

dictions for arousal ŷan.

With these notations, the MSEs for both valence and

arousal are defined as

MSEv =
1

N

N∑

n=1

(yvn − ŷvn)
2,

MSEa =
1

N

N∑

n=1

(yan − ŷan)
2.

(2)

The MSE will measure how much the predictions are de-

viated from the respective ground truth values. A smaller

MSE indicates better performance.

The CCC for valence is defined as

CCCv =
2σyv ŷv

σyv + σŷv + (µyv − µŷv )2
, (3)

where the mean is computed as

µyv =
1

N

N∑

n=1

yvn,

µŷv =
1

N

N∑

n=1

ŷvn,

(4)
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the variance is computed as:

σyv =
1

N

N∑

n=1

(yvn − µyv )2,

σŷv =
1

N

N∑

n=1

(ŷvn − µŷv )2,

(5)

and finally the covariance is calculated as

σyv ŷv =
1

N

N∑

n=1

(yvn − µyv )(ŷvn − µŷv ). (6)

The CCC for arousal is defined in a similar way by re-

placing the superscript (·)v by superscript (·)a:

CCCa =
2σyaŷa

σya + σŷa + (µya − µŷa)2
. (7)

The CCC measures how the distribution of the predic-

tions matches the distribution of the ground truth values. A

larger CCC value indicates better match of them and thus

better performance.

3.2. Results and Analysis

During the experiments, we find that there is always se-

vere over-fitting of the network on the training data. Al-

though there are about 800,000 images in the training set,

they are only from 214 videos. The number of images is

much larger than the number of identities. Each video fo-

cuses on the affective level of only one person. We find that

the network can easily achieve very low MSE (0.02) on the

training set and only obtain about 0.1 MSE on the validation

set. We have tried various models with different techniques

to reduce the over-fitting so that the performance can be im-

proved on the validation and testing sets.

For performance comparison and validation, we use a

single value metric, which is the average of the MSE for

valence and arousal. For the validation set, we also provide

additional evaluation metrics described in the previous sec-

tion. Since our model considers faces as input to predict

the affective level, for the frames with no faces, the model

will not produce predictions and we use linear interpolation

to guess the mission values. So the results for the frames

with faces and all the frames are different, but the trend is

mostly the same. In the experiments we use label FACE to

indicate that the results are obtained from only the frames

with faces and we use label ALL to indicate that the results

are obtained from all the frame.

3.2.1 Baseline Deep CNN

We test the performance on the baseline deep CNN directly.

The results are shown in Table 2. For the results in Table 2,

the MSE is calculated with face frames only. We can see

that the baseline CNN achieves low MSE on the training

set and high MSE on the validation set. From the table we

conclude that the baseline CNN learns useful information

for affective level prediction on the training set. Thus the

features extracted from the baseline CNN are discriminative

for affective level prediction.

Train MSE Validation MSE

CNN 0.0218 0.1067

Table 2. MSEs for the baseline CNN model.

3.2.2 BDLSTM on Top of CNN

To ameliorate the over-fitting in base CNN, we use a BDL-

STM to model the temporal information on top of the base

CNN. We use the decapitated baseline CNN model to ex-

tract face features. Each extracted face feature is a 512 di-

mensional vector. The BDLSTM model is built based on

the sequence of the face feature vectors.

To start with, we use a BDLSTM with memory cell size

C = 250 and input length L = 11. The results are shown

in Table 3. We can see that the gap between the training and

validation MSE becomes smaller. However, the gap is still

considerably large. We use the pre-trained model without

fine-tuning, which is trained on FER2013 dataset for emo-

tion recognition task, to extract another set of 512 dimen-

sional face feature vectors. Based on this set of face fea-

tures, the BDLSTM model gets the performance as shown

in the second row (labeled as BDLSTM No FT). Here the

training and validation MSE is quite close, but both are

quite high. Under this case, the BDLSTM fails to learn use-

ful information from the second set of 512 dimensional fea-

tures. Then we concatenate the two 512 dimensional face

feature vectors to form a long 1024 dimensional face feature

vector, based on which the BDLSTM achieves the perfor-

mance in the third row (labeled as BDLSTM FT+No FT).

The final result is better than the original BDLSTM trained

with the fine-tuned CNN feature. The full results of the last

model are shown in Table 4.

Train MSE Validation MSE

BDLSTM 0.03423 0.09842

BDLSTM No FT 0.098882 0.107055

BDLSTM FT+No FT 0.025454 0.098333

Table 3. MSEs for BDLSTMs with different input deep face fea-

tures.
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Val. MSE Aro. MSE Val. CCC Aro. CCC

BDLSTM-FACE 0.111205 0.085461 0.156441 0.290109

BDLSTM-ALL 0.117331 0.085551 0.173021 0.305441

Table 4. Full results for BDLSTM. FACE means the results are

calculated on the frames with face, and ALL denotes the results

are calculated on all the frames. Val. MSE means the mean square

error for valence and Aro. CCC means the concordance correla-

tion coefficient for arousal.

3.2.3 Multiple BDLSTMs

Then we vary the settings to test different BDLSTMs with

the same set of 512 dimensional features extracted from the

base CNN model. We reduce the memory cell from 250
to 50, 25 and 16, and reduce the input length from 11 to

5. The training and validation MSE for these settings are

reported in Table 5. We can see that some BDLSTM with

small memory cell size achieves better MSE on the valida-

tion set and worse MSE on the training set. We can see with

smaller memory size, the over-fitting problem is partially

addressed in that the training performance decreases while

the validation performance increases.

Train MSE Validation MSE

BDLSTM C=250, L=11 0.03423 0.09842

BDLSTM C=50, L=11 0.03003 0.096982

BDLSTM C=50, L=5 0.02732 0.101284

BDLSTM C=25, L=5 0.03559 0.0964594

BDLSTM C=16, L=5 0.04305 0.098990

Table 5. MSEs for BDLSTMs with different cell memory sizes and

input lengths.

3.2.4 Prediction Level Ensemble

For the various models above, we choose the models with

validation MSE smaller than 0.1 and perform a prediction

level ensemble to merge the results. The merged results

are averaged over all the results from each of the chosen

models. The performance of the merged results is shown in

Table 6. In this table, the mean affective value, i.e. the mean

of valence and arousal values, for the case of face frames

(FACE) is 0.0956345, which is lower than all the models in

previous subsections.

Val. MSE Aro. MSE Val. CCC Aro. CCC

P. Ensemble-FACE 0.106248 0.085021 0.135649 0.179434

P. Ensemble-ALL 0.112563 0.085950 0.160917 0.186296

Table 6. MSEs for prediction level ensemble.

3.2.5 Feature Level Ensemble

For the chosen model with validation MSE smaller than 0.1,

we also perform a feature level ensemble to merge the re-

sults. We extract the features generated from the various

BDLSTM models and fuse the features to further perform

the task of affective level prediction. For some models, the

length of the extracted feature is too long, i.e. the LSTM

models with C = 250 and L = 11 will result in a feature

length of 2CL, or 5500. We exclude these models during

the ensemble process. We train separate regression models

based on fused features of all the models. Specifically, we

train two multilayer perceptrons, one with 1 hidden layer of

32 units and the other with 2 hidden layers of 32 units. The

results for the feature level ensemble are shown in Table 7.

Val. MSE Aro. MSE Val. CCC Aro. CCC

MLP1-FACE 0.112767 0.084258 0.209685 0.261834

MLP1-ALL 0.118834 0.084636 0.222690 0.270243

MLP2-FACE 0.111141 0.084448 0.166286 0.281198

MLP2-ALL 0.117270 0.084574 0.175925 0.292242

Table 7. MSEs for feature level ensemble.

Both the regression models achieve an MSE of lower

than 0.1 on the validation set. A prediction level ensem-

ble is performed for all the models in Section 3.2.4 and the

two regression models above. The final results on validation

set are shown in Table 8. In this table, the mean affective

value for all the face frames is 0.095369, which is the low-

est MSE achieved on the validation set. Compared with the

the MSE of the baseline CNN model, 0.1067, the relative

improvement is about 10%.

Val. MSE Aro. MSE Val. CCC Aro. CCC

F. Ensemble-FACE 0.106630 0.084108 0.149588 0.203219

F. Ensemble-ALL 0.112930 0.084873 0.171364 0.210785

Table 8. MSEs for the final ensemble results.

3.3. Testing Results

The results for the testing data are shown in Table 9. In

the table the results of the single best model, prediction level

ensemble and feature level ensemble are shown. The testing

results are calculated over all the frames in videos. The

corresponding validation results are also shown in the same

table for comparison.

4. Conclusion and Future Directions

In this paper, we proposed a solution to the affect in the

wild challenge. The proposed solution consists of a care-

fully designed deep face feature learner to learn discrim-

inative features for affective levels and multiple memory
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Test set Val. MSE Aro. MSE Val. CCC Aro. CCC

Single Model 0.134358 0.088 0.19635 0.21417

P. Ensemble 0.132 0.0887 0.1655 0.1938

F. Ensemble 0.132158 0.0881 0.177 0.2126

Val Set Val. MSE Aro. MSE Val. CCC Aro. CCC

Single Model-FACE 0.108081 0.084837 0.165066 0.194015

Single Model-ALL 0.114326 0.085927 0.186267 0.199779

P. Ensemble-FACE 0.106248 0.085021 0.135649 0.179434

P. Ensemble-ALL 0.112563 0.085950 0.160917 0.186296

F. Ensemble-FACE 0.106630 0.084108 0.149588 0.203219

F. Ensemble-ALL 0.112930 0.084873 0.171364 0.210785

Table 9. Testing results and the corresponding validation results.

networks for feature aggregation. Prediction level and fea-

ture level ensemble were shown to be effective in improv-

ing the performance of affective level prediction. The final

model of the proposed approach outperforms the baseline

CNN model by a factor of 10% on the validation set. One

direction of further advancing the field of affective level es-

timation is a well-established dataset. As can be observed

from Figure 1, the distribution of the valence and arousal

values in the current dataset is very biased, even if the val-

ues are obtained by averaging the ratings from several hu-

man raters. A real world dataset, or a synthesized one, that

has a nearly uniform distribution will be of great benefit in

the field of affective level estimation.
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