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Abstract

This paper introduces our submission to the 2nd Facial

Landmark Localisation Competition. We present a deep ar-

chitecture to directly detect facial landmarks without using

face detection as an initialization. The architecture con-

sists of two stages, a Basic Landmark Prediction Stage and

a Whole Landmark Regression Stage. At the former stage,

given an input image, the basic landmarks of all faces are

detected by a sub-network of landmark heatmap and affin-

ity field prediction. At the latter stage, the coarse canoni-

cal face and the pose can be generated by a Pose Splitting

Layer based on the visible basic landmarks. According to

its pose, each canonical state is distributed to the corre-

sponding branch of the shape regression sub-networks for

the whole landmark detection. Experimental results show

that our method obtains promising results on the 300-W

dataset, and achieves superior performances over the base-

lines of the semi-frontal and the profile categories in this

competition.

1. Introduction

Face alignment, which is to locate predefined facial land-

marks on images given face detection results, is one of

the most important tasks in the field of computer vision.

Many researchers have devoted great efforts to solving this

task, and recently regression based algorithms have be-

come the dominant solution for the face alignment task

[6, 7, 8, 32, 23, 24, 2, 14, 10, 22, 27, 30, 31] because of their

high precision and efficiency. Currently, as deep learning

introduced to face alignment, many promising deep learn-

ing based methods [27, 19, 17, 29, 21, 13] have also been

developed to further improve performances.

Although current alignment methods have achieved

nearly perfect results on (near) frontal images based on

proper face detectors, they are still facing two main chal-

lenges: (1) Heavily dependent on initialization of face de-

tectors, if the face detector in test phase provides an im-

proper face rectangle, or fails in detection on a face image,

the performance of subsequent face alignment would de-

grade a lot. (2) Alignment for faces with arbitrary poses,

e.g., faces with yaw angle larger than 45◦ is not satisfied

because of unsatisfied face detection, insufficient training

samples, and the lack of research attentions.

In order to boost research in face alignment address-

ing the above challenges, the 2nd Facial Landmark Local-

isation Competition [26] - the Menpo Benchmark is held

in conjunction with CVPR 2017 . We take part in both

the frontal and profile categories and achieve better perfor-

mances over the baselines. We present a deep architecture

to directly detect facial landmarks on faces with arbitrary

poses. Specifically, different from traditional work which

only focus on detecting landmarks based on face detection

results [8, 23, 22, 24, 2, 14, 10, 27, 30, 31, 27, 19, 17, 20],

or work which joint face detection and face alignment

[5, 29, 13, 28], our method does not adopt any face detec-

tor and directly detect facial landmarks on an image in a

bottom-up manner. This advantage is very suitable for this

competition, as the training and testing data sets of all cat-

egories do not provide any face boxes and there are many

profile images are difficult to be detected by traditional face

detectors.

The proposed architecture without face detection, whose

framework is shown in Figure. 1, mainly consists of two

stages, a Basic Landmark Prediction Stage and a Whole

Landmark Regression Stage. The basic landmarks of all

faces, e.g., landmarks of the centers of two pupils, nose tip

and mouth corners, are detected by a sub-network of land-

mark heatmap and affinity field prediction. This step, in-
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Figure 1. The pipeline of the proposed deep regression architecture.

spired by work [3], allows the proposed network directly de-

tect landmarks on arbitrary images from end to end, which

is different from the traditional face alignment methods us-

ing face detection as an initialization. At the latter stage,

the coarse canonical state and pose of each face can be

generated by a Pose Splitting Layer based on the positions

of basic landmarks. The pose of each face, e.g., semi-

frontal, left profile, right profile, can be calculated by a sim-

ple geometry principle of the basic landmarks. According

to its pose, each canonical state is distributed to the corre-

sponding branch of the shape regression sub-network for the

whole landmark detection. Our unconstrained face align-

ment without using face detection as initialization not only

obtains promising results on the 300-W dataset [16] com-

pared with many state-of-the-art methods, but also achieves

superior performance over the baseline in both the semi-

frontal and profile categories of the Menpo Benchmark.

The end-to-end face alignment reduces adverse effects

from unsatisfied face detection results on faces of arbitrary

poses, its time complexity of basic landmark prediction is

constant to number of faces in an image. In the future, by

employing optimization of implementation, it will improve

the efficiency of face alignment for multiple faces in an im-

age because its bottom-up detection way.

2. Our Method

This section describes the framework (shown in Figure

1) and details of the two stages in our proposed deep ar-

chitecture. In the following, we elaborate on the desig-

nations of the two stages, the Basic Landmark Prediction

Stage (BLPS) and the Whole Landmark Regression Stage

(WLRS), and then introduce implementation details of the

whole model.

Given an input image I ∈ ℜw×h (w and h are the

width and height of the image, respectively), the objec-

tive of face alignment is to locate the predefined shape

S = [x1, ...,xn]
T ∈ ℜ2×n with n positions of landmarks

x = (x, y)T on the faces in the image.

2.1. Basic Landmark Prediction Stage

In this stage, the basic landmarks Sbasic instead of face

rectangles of all faces on I are predicted firstly. We choose

five landmarks, the landmarks of the two centers of pupils,

nose tip, two mouth corners as the basic landmarks, for they

are more saliency and easier to be detected than other land-

marks. In order to detect Sbasic on each face, we explore

a module in which heatmaps H responsed by all the land-

marks and association fields L between two associated land-

marks are detected via a sub-network of landmark heatmap

and affinity field prediction (see in Figure 2). This module is

motivated by the work of Part Affinity Fields for Part Asso-

ciation (PAF) in a bottom-up way [3]. Different from PAF

for pose estimation with multiple stages, the sub-network

used in our architecture is designed for responses of po-

sitions and associations of facial landmarks with only one

stage.
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Figure 2. The heatmaps for the basic landmarks.

2.1.1 Landmark Heatmap

Heatmaps responsed by landmarks of Sbasic are predicted

in this stage. The ground truth value of point p on heatmap

H∗

i,k ∈ ℜ
w×h for the ith (i ∈ {1, 2, ..., n}) landmark xi

and the kth face can be formulated by Guassian peaks as:

H∗

i,k(p) = exp(−
||p− xi,k||

2
2

λ
), (1)

where λ is a positive value proportional to the face size.

Each channel of the heatmap for each landmark of all faces

on I can be calculated by the following equation:

H∗

i (p) = max
k

Hi,k(p). (2)

After these heatmaps generated, all the positions of land-

marks for all faces is located firstly, however, because of

the lack of constraint of the whole shape, there are many

false alarms in these heatmaps and how to assemble them

to form whole faces is still a problem.

2.1.2 Landmark Affinity Field

Landmarks affinity field prediction is introduced to reduce

false alarms of heatmaps and deploy a solution to assemble

candidate landmarks. Similar to PAF, we define the land-

mark affinity vector field for describing the association be-

tween any two landmarks. The part connected by arbitrary

landmarks xi1 and xi2 is used to represent association of the

two landmarks. Suppose there are C types of parts for each

face, the ground truth value at point p of the cth landmark

affinity vector field L for the kth face is denoted as:

L∗

c,k(p) =

{

v if p on part c, k

0 otherwise,
(3)

where v is the unit vector in the direction of the part L∗

c,k.

Whether p is on the part or not is determined by a distance

threshold of the line connected by xi1 and xi2 . The value

of landmark affinity field L∗

c(p) ∈ ℜ
w×h×2 of type c for

all faces is the average of all L∗

c,k(p) where different faces’

parts overlap.

The association score Ec of each part can be measured

by integrating values L∗

c(p) along the part. As the max-

imum of types C = C2

5 brings a big inference burden to

find all the candidate landmarks that can be connected be-

long the same face, we only consider the parts which are

assembled by the landmark of nose tip connected to other

four type landmarks, so that c = 4 in our framework. For

the cth part, the optimization goal to find a matching with

maximum scores for all possible connections Zc among all

corresponding landmarks:

max
Zc

Ec = max
Zc

∑

m∈∆i1

∑

n∈∆i2

Emn, (4)

where ∆i1 is the set of all candidate nose landmarks, ∆i2

belongs to the set of all candidate of other type landmarks.

2.1.3 Sub-network Learning

We design a CNN network derived from the VGG-19 [18]

model, which is shown in Figure 3, for jointly learning

heatmaps H and affinity fields L of landmarks on an arbi-

trary image I . The whole sub-network has 14 convolution

layers, with the first 8 convolution layers initialized by VGG

19 model trained on ImageNet classification dataset. Two

sibling branches are followed from the output of conv3 4,

where the first branch is used for the task of predicting the

heatmap Ĥ of all basic landmarks and the other one is used

for another task of predicting associated facial fields L̂ of

all parts. The loss functions for the above two tasks are:

LH =
n
∑

i=1

||Ĥ−H∗||22, (5)

LL =

C
∑

c=1

||L̂− L∗||22. (6)

Instead of using two separated branches for the two tasks

learning and multiple stages for repeatedly prediction in

work [3], we find that it already gets a satisfied perfor-

mance for basic landmarks detection by using only one

stage. Landmarks belong to a whole face can be drawn on

an image after all the basic landmarks and affinity parts are

predicted. Example results of the first stage are shown in

Figure 4. Usually, full basic landmarks are detected for the

semi-frontal faces, there are one or two landmarks are miss-

ing predicted because of self-occlusion for the profile faces.
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Figure 3. The architecture of the sub-network of lanmdark heatmap and affinity field prediction.

Figure 4. Results of the landmark heatmap and affinity field sub-

network, the top and the bottom line show detection results on

semi-frontal and profile faces, respectively. Landmarks occluded

because of large pose on profile faces would be labeled invisible

by the sub-network.

2.2. Whole Landmark Regression Stage

2.2.1 Pose Splitting Layer

According to the visibility of landmarks in each face, faces

are automatically divided into three different pose types

(left profile, right profile and semi-frontal). In general, the

overall procedure of pose splitting is summarized in Algo-

rithm 1, where pLE , pRE , pN , pLM , and pRM represent

locations of left eye center, right eye center, nose tip, left

mouth corner, and right mouth corner, respectively. Espe-

cially for the profile category in the Menpo Benchmark, Al-

gorithm 2 is introduced where there are only two poses to

be classified, left profile and right profile.

After each face is classified into specific pose type, three

different predefined canonical templates are used to normal-

ize faces with three pose, respectively, as shown in Figure

5. Specifically, we use the following formula to define the

similarity transformation.

[

x̄i

ȳi

]

=

[

a b tx
−b a ty

] [

xi

yi

]

(7)

where xi, yi are the detected landmarks, x̄i, x̄i are the pre-

defined canonical positions of templates, a, b, tx and ty are

the parameters of similarity transformation which can be

calculated by the canonical templates and predicted basic

landmarks. For each pose type, each face has at least two

visible landmarks, they are enough for pose calculation.

Algorithm 1 Pose Splitting.

Input: landmarks = {pLE , pRE , pN , pLM , pRM}
Output: pose type (0→ semi− frontal, 1→

left profile, 2→ right profile)
1: function POSESPLITTING(landmarks)

2: result← 0
3: if pLE == invisble and pLM == invisble then

4: result← 1
5: end if

6: if pRE == invisble and pRM == invisble then

7: result← 2
8: end if

9: return result

10: end function

2.2.2 Shape Regression Sub-network

As the landmarks of faces with different poses in the Menpo

Benchmark are differently defined, n = 68 for semi-frontal

face labeling, n = 39 for left and right profile faces label-

ing in the Menpo Benchmark, we explore three branches of

CNNs for the three poses respectively. With the canonical

face image F of the corresponding pose input, a shape re-

gression sub-network is explored to learn positions of shape
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Figure 5. The designation of the Pose Splitting Layer in our deep

architecture, which automatically normalize the face images from

different poses, and enables the whole model to be trained from

end to end.

S∗ with whole landmarks labeled in the training set. This

sub-network can be built based on a traditional deep regres-

sion network for face alignment. Standard Euclidean dis-

tance between the ground truth S∗ and predicted landmarks

Ŝ is used as the loss of the final landmark detection:

LS = ||Ŝ− S∗||22. (8)

After Ŝ is predicted, it would be projected back into the

coordinate space of the initial image I by using the in-

verse transformation matrix calculated by the Pose Splitting

Layer.

2.3. Implementation Details

There are mainly two steps of our whole architecture

training, the training for the sub-network of landmark

heatmap and affinity field prediction and the shape regres-

sion sub-networks, and there is no parameters to be learned

in the Pose Splitting Layer. During the former training, the

patches are cropped from images with arbitrary sizes and

resized to 80 × 80 resolution with a roughly 40 × 40 face.

The loss weights of LH and LL are set to the same value of

1. In order to improve the robustness of each shape regres-

sion sub-network, a few of extension samples are generated

for each input face image with 448× 448 resolution by dis-

turbing face regions by proper translation, scaling, rotation

and flipping. The branch of sub-network for left/right direc-

tion profile faces is built based on the VGG-S network [4],

which comprises eight learnable layers, five among them

are convolutional and the last three are fully-connected. We

modify the output of last layer from 1000 to 2 × 39 for

predicting the 39 landmark positions. The branch of sub-

network for semi-frontal faces is built on the network of

Algorithm 2 Pose Splitting for Profile Category.

Input: landmarks = {pLE , pRE , pN , pLM , pRM}
Output: pose type (0→ semi frontal, 1→

left profile, 2→ right profile)
1: function POSESPLITTINGPROFILE(landmarks)

2: result← 0
3: if pLE == invisible or pLM == invisible then

4: result← 1
5: else if pLE == invisible or pLM == invisible}

then

6: result← 2
7: else

8: if abs(norm(pLE − pN ))+
abs(norm(pLM − pN )) < abs(norm(pRE − pN ))+
abs(norm(pRM − pN )) then

9: result← 1
10: else

11: result← 2
12: end if

13: end if

14: return result

15: end function

[12] for its invariant to various initialization brought by in-

put face regions.

3. Experiments

We first introduce our experimental settings during our

training and test steps. Then compare our method with other

state-of-the-art methods on the 300-W dataset. Finally, we

show the comparison between our method and the baseline

of the Menpo Benchmark. The whole architecture is imple-

mented using the Caffe software package [9].

3.1. Training Datasets and Experimental Settings

In order to prove the effectiveness or our approach, we

use the three following datasets for training, validation and

test:

CelebA [11]: CelebFaces dataset contains 202,599 im-

ages and each image contains only one face. It covers

large pose variations and background clutter. This dataset

contains faces with similarly pose distribution of Menpo

dataset, and it provides 5 basic landmarks for each face,

so it is very suitable for the training of our sub-network of

landmark heatmap and affinity field prediction to predict the

basic landmarks.

300-W [16]: The dataset consists re-annotated five ex-

isting datasets with 68 landmarks: iBug, LFPW, AFW, HE-

LEN, and XM2VTS. We follow the work [30] to use 3, 148

images for training and 689 images for testing. The testing

set is spitted into three parts: common subset (554 images),
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Table 1. The partition of the whole Menpo Data.

semi-frontal profile

Training 6010 2069

Validation 669 231

Test 12006 4253

challenging subset (135 images) and the full set (689 im-

ages). The model trained on this training subset is used for

comparison with other state-of-the-art methods. By fine-

tuning on the Menpo Benchmark, we get all the models of

shape regression networks.

Menpo Data: This dataset are separated into two cate-

gories, the semi-frontal subset and the profile subset. The

former is annotated with the standard 68 point landmarks

following the principle of [16], and the latter has symmetric

39 landmarks for the left and right profile faces. The par-

tition of the whole dataset in our experiments is described

in the Table 1. Among them, the training data and vali-

dation data are separated randomly with the ration of 10:1

on the released training data with ground truth landmarks.

The released test data has no public ground truth. In addi-

tion, there is no face rectangle labeled for any face in this

dataset. Each branch of our shape regression sub-networks

is trained on the subset of training dataset, respectively.

We use the normalized mean error (NME) to evaluate

performance of different methods. For semi-frontal face

with 68 landmarks annotated, inter-ocular distance is em-

ployed to normalize mean error on 300-W following work

[15]. Because there is no released ground truth for test sub-

set of Menpo Data, it is unclear of the normalization way

for profile category in this competition.

3.2. Comparison with the State­of­the­art Face
Alignment Methods

It is not easy to compare our method with other work of

face alignment for profile faces currently for the variety of

annotations. In this section, we only compare our approach

with recently proposed methods [23, 24, 2, 10, 15, 1, 30, 25]

on the 300-W dataset, see in Table 2. Because all the data

of 300-W are all 68-landmark labeled, faces output by the

Basic Landmark Prediction Stage are only distributed to

the branch of shape regression sub-network for semi-frontal

face. For each image, landmarks of multiple faces may be

detected by our method, their overlapping areas with the

face box provided by the 300-W dataset is used as a guide

for the final landmark evaluation. There 23 faces failed to

be detected by BLPS, and the corresponding official boxes

of 300-W are used as supplement for further face alignment.

The results show that the Basic Landmark Prediction Stage

of the proposed architecture is able to provide a good ini-

tialization for further landmark detection even without face

detection. By connecting with a strong shape regression

sub-network, our method gets better performance than other

Table 2. The performance of our proposed method compared with

other methods on the 300-W dataset.

Method Common Challenging Full Set

Subset Subset

RCPR [1] 6.18 17.26 8.35

SDM [23] 5.57 15.40 7.52

ESR [2] 5.28 17.00 7.58

CFAN [27] 5.50 16.78 7.69

DeepReg [17] 4.51 13.80 6.31

LBF [14] 4.95 11.98 6.32

TCDCN [29] 4.80 8.60 5.54

CFSS [30] 4.73 9.98 5.76

DDN [25] - - 5.59

Proposed 4.45 8.03 5.15

methods.

3.3. Comparison with the Baseline Method of the
Menpo Benchmark

As the categories of semi-frontal and profile faces are

separated, we do a necessary modify on our Pose Splitting

Layer. For the evaluation on semi-frontal faces, all the faces

are only input to the branch of regression sub-network for

frontal faces, which is mentioned in 3.2. For the evalu-

ation on profile faces, the output of Pose Splitting Layer

for frontal faces is disabled. In order to evaluate the ef-

fectiveness of our BLPS method, we firstly evaluate it on

the validation subsets, there are 6 of 699 faces in the semi-

frontal category and 8 of 231 faces in the profile category

not detected. When the basic landmarks are detected, the

Pose Splitting Layer achieves an average accuracy of 99%

to classify the left and right profile faces in the validation

subset of the profile category. In the testing set, there are 10

and 134 miss detections in the two categories, respectively.

For these samples, the whole images are supposed as input

for further face alignment. Because there are a few of cases

that multiple faces are detected in an image, the alignment

result of the most central face is selected for the evalua-

tion. The Cumulative Error Distribution (CED) curves of

our method and Menpo baselines, which are evaluated by

the organizers, are illustrated in Figure 7.

4. Conclusion and Future Work

In this paper, we present an architecture for face align-

ment without using face detection as an initialization, and

describe our submission to the 2nd Facial Landmark Lo-

calisation Competition. For the initialization task of face

alignment, the prediction of heat maps of basic landmarks

and the association fields of landmark-pair takes place of

face regions detection. By cooperating with the Pose Split-
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Figure 6. Examples of the face alignment results produced using the proposed method. The images show the results on the 300-W dataset,

semi-frontal subset and profile subset of the Menpo benchmark from the top row to the bottom row.

Ours

APS

(a) semi-frontal subset

Ours

(b) profile subset

Figure 7. The CEDs using the 68 landmarks for (a) semi-frontal

category and 39 landmarks for (b) profile category. APS is the

baseline of Menpo Benchmark.

ting Layer and branches of shape regression sub-network

for each pose, the whole landmarks on faces with arbitrary

poses are detected accurately. Our proposed method with-

out depending any face boxes not only obtains promising

results on the 300-W dataset, but also outperforms the base-

lines of the Menpo Benchmark.
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