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Abstract

Face alignment is a critical topic in the computer vision

community. Numerous efforts have been made and various

benchmark datasets have been released in recent decades.

However, two significant issues remain in recent datasets,

e.g., Intra-Dataset Variation and Inter-Dataset Variation.

Inter-Dataset Variation refers to bias on expression, head

pose, etc. inside one certain dataset, while Intra-Dataset

Variation refers to different bias across different datasets.

In this study, we show that model robustness can be signif-

icantly improved by leveraging rich variations within and

between different datasets. This is non-trivial because of

inconsistent landmark definitions between different datasets

and the serious data bias within one certain dataset.

To address the mentioned problems, we proposed a novel

Deep Variation Leveraging Network (DVLN), which con-

sists of two strong coupling sub-networks, e.g., Dataset-

Across Network (DA-Net) and Candidate-Decision Net-

work (CD-Net). In particular, DA-Net takes advantage of

different characteristics and distributions across different

datasets, while CD-Net makes a final decision on candidate

hypotheses given by DA-Net to leverage variations within

one certain dataset. Extensive evaluations show that our

approach demonstrates real-time performance and dramat-

ically outperforms state-of-the-art methods on the challeng-

ing 300-W dataset.

1. Introduction

Face alignment aims at locating a sparse set of fiducial

facial landmarks. It is a critical component in many face

analysis tasks, such as face recognition [9, 50], face veri-

fication [35, 36], and robust face frontalisation [14]. Al-

though many efforts have been devoted in solving this task

and rapid progress has been made during the past decades

[25, 8, 12, 46, 45, 38, 5]. Face alignment remains a very

challenging problem. The challenge mainly comes from
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Figure 1: Intra and Inter-Dataset Variations appear in recent

popular datasets, e.g., 300-W [27], FaceWareHouse [7], and

Menpo-Profile [43]. Between the rows, great bias and the

inherent annotation gaps issue are shown across datasets,

while between columns, severe bias are also shown inside

one certain dataset.

the large variations of facial appearance, e.g., most changes

come from different poses, lightening conditions and ex-

pressions.

Numerous approaches have been proposed over these

years. Classic methods including Active Shape Mod-

els (ASMs) [24, 16], Active Appearance Models (AAMs)

[11, 29, 22, 18], and Constrained Local Models (CLMs)

[20, 30] estimate a parametric model for the spatial config-

uration of landmarks, often referred as shape models. Re-

gression based methods [8, 5, 40, 10], which map the dis-

criminative features around landmarks to the desired land-

mark positions have been proposed and shown high effec-

tiveness. Besides traditional models, very recent works
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adapt convolutional neural network (CNN) on face align-

ment [34, 46, 4, 31] with the advent of Deep Learning.

These methods show superior accuracy compared to pre-

vious methods and existing commercial systems.

At the same time, various benchmarks have been re-

leased, from datasets under laboratory condition like Multi-

PIE [13] and XM2VTSDB [23], to more recent in-the-wild

datasets like LFPW [3], AFLW [19], AFW [25], HELEN

[21], IBUG [28], 300-W [27] and Menpo [43]. In this study,

we highlight two significant issues among recent datasets,

e.g., Intra-Dataset Variation and Inter-Dataset Variation.

Such issues are briefly illustrated in Fig.1.

Intra-Dataset Variation refers to recent datasets show

very different bias while being compared with each other by

considering different aspects, e.g., expressions, occlusions

and head poses. For instance, AFLW [19] has 16.4% pro-

file faces, while AFW [25] consists of only 3.1%. Such bias

is also common in expression, e.g., 300-W [27] has 14.16%

scream face, while HELEN [21] has even no scream face.

One obvious problem is that a model trained in one dataset

will lead to severe over-fitting easily and perform poor gen-

eralization in recent in-the-wild datasets with large vari-

ations of facial appearance. Naturally, unifying these

datasets from different distributions to train one model can

significantly help alleviate this problem. This though, how-

ever, is hindered by the annotation gaps, e.g., different

datasets have different landmark definitions (for example,

Menpo [43] has 68-landmark markup, while AFLW [19]

has 21-landmark markup). Ideally, different datasets can be

re-announced using unified annotation. Nevertheless, it is

quite labor-intensive and time-consuming. One objective of

this study is to formulate an approach to train a single model

by leveraging datasets with varying annotations.

To address the Intra-Dataset Variation issue, we propose

a Dataset-Across Network (DA-Net), which can integrate

different datasets and take advantage of different distribu-

tions across datasets. As shown in Fig.2, for each dataset

with different annotation, images are fed into a convolu-

tional networks for feature extraction. In this stage, weights

are shared across different datasets to get high-level rep-

resentations. We argue that this mechanism can implicitly

guide the network to learn the general feature of faces, e.g.,

face shape, component relationship and so on, from differ-

ent datasets. While the last fully connected layers are sliced

into n splits, where n is the number of datasets. We regard

these split layers as a mechanism to learn different land-

mark definitions from different datasets. The experiments

show the proposed method is effective in robust facial points

detection and can significantly prevent the network from

over-fitting. The light-weight CNN network also makes our

framework an efficient solution (66 FPS on a single core

i5-4300u CPU).

Inter-Dataset Variation refers to recent datasets have

great bias even inside the dataset itself, especially in form

of the yaw angle of head pose. For instance, Menpo-Profile

[43] dataset has about 27.1% extreme left view faces (with

yaw < −80◦) while 72.9% extreme right view faces (with

yaw > 80◦). It will lead to poor generalization due to the

lack of training samples of certain facial characteristic, for

example, left view faces.

To address this issue, we further propose a Candidate-

Decision Network (CD-Net), which is closely coupled with

DA-Net. Specially, all of the images are split into two parts,

e.g., left and right view. Then, all of the right view faces are

flipped to get one united dataset with only left view. A DA-

Net is trained on this dataset to enjoy all of the variations

of both views. Moreover, to handle the test faces with right

view, a CD-Net is further trained. Thus, in the test process,

each image and its flipped version are taken together into

the trained DA-Net to generate two candidate predictions.

The trained CD-Net will act like a arbiter, whose job is to

decide which candidate hypothesis given by DA-Net will be

finally taken.

In summary, the contributions of this work are:

1. We proposed a Dataset-Across Network (DA-Net) to

combine different datasets together to train an end-to-

end single model. This framework makes it possible

to take advantage of different variations in different

datasets and greatly improves the generalization perfor-

mance.

2. We further introduced a Candidate-Decision Network

(CD-Net), which is closely coupled with DA-Net to

choose one better prediction. This network can take ad-

vantage of various characteristics of faces in one certain

dataset and meanwhile maintain the performance while

encountering diverse views of the faces.

3. Detailed experimental evaluations show our method

demonstrates real-time performance and outperforms

existing state-of-the-art methods on the challenging 300-

W [27] dataset.

The reminder of this paper is organised as follows. In

Sec.2, we provide an overview of the related work. Sub-

sequently, in Sec.3, we describe in detail the architecture

design of our proposed Deep Variation Leveraging Net-

work (DVLN), which is composed of Dataset-Across Net-

work (DA-Net) and Candidate-Decision Network (CD-Net).

The results of experiments are shown in Sec.4 to evaluate

the effectiveness of our method. Finally, the paper is con-

cluded in Sec.5.

2. Related Work

2.1. Generic Face Alignment

In the past decades, a number of achievements have been

made including the classic Active Shape Models (ASMs)
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Figure 2: Structure of our proposed Deep Variation Leveraging Network (DVLN). In the top half of Figure.2, Dataset-Across

Alignment process using a Dataset-Across Network (DA-Net) is shown. Images from different datasets firstly pass a set

of shared parameters and then do a dataset-specific regression respectively to generate predictions with different landmark

definitions. In the bottom half of Figure.2, Candidate Decision mechanism using a Candidate-Decision Network (CD-Net) is

shown. A image from one certain dataset and its flipped version are taken together into the trained DA-Net to generate two

candidate predictions. Then, the trained CD-Net makes a final decision. (Best viewed in color)

[24, 16], Active Appearance Models (AAMs) [11, 29, 22,

18], and Constrained Local Models (CLMs) [20, 30]. Sub-

sequently, regression based face alignment approaches are

proposed, which directly regress shape update based on lo-

cal feature extracted from all current estimated landmarks.

Xiong et al. [41] predict shape increment by applying lin-

ear regression on SIFT features. Both Cao et al. [8] and

Burgos-Artizzu et al. [5] use boosted ferns to regress the

shape increment.

Besides traditional models, convolutional neutral net-

work (CNN) has also been employed in and achieved su-

perior accuracy. Such methods are close to our approach.

Sun et al. [34] firstly formulate the face alignment as a re-

gression problem and use CNN to locate the landmarks in a

coarse-to-fine manner. Zhang et al. [46] frame the problem

as a multi-task learning problem. Our proposed method is

somewhat analogous to the multi-task learning mechanism.

However, the significant difference is that we do not need

any re-annotation while multi-task learning network pro-

posed in [46] needs extra facial attributes annotation which

is sometimes impractical. MDM [37] is the first end-to-

end recurrent convolutional system for deformable object

alignment and improved on the state-of-the-art in face align-

ment on the challenging test-set of 300-W [27] competition

by a large margin. RAR [39] follows the pipeline of cas-

caded regressions. By refining the landmark locations se-

quentially and introducing LSTM models, it demonstrates

superior performance on several benchmarks.

2.2. Face Alignment by Leveraging Data Variations

There are a few works have attempted to solve the

datasets bias issue intra-datasets. Smith et al. [33] proposed

a method that takes multiple source datasets as input and la-

bels a partially labeled target dataset using a union of land-

marks defined in the source datasets. It is the first effort

to combine multiple face landmark datasets with different

landmark definitions for prediction. However, it can only

jointly align all testing images together but can not handle

the single test image scenario and suffers from high com-

putational cost (more than 30 seconds per image). Zhu et
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al. [48] take SDM as basis and formulate a novel Transduc-

tive Cascaded Regression (TCR) method, whose core is a

transductive alignment approach. This method is capable

of transferring annotation style from one dataset to another.

It performs well in cross-dataset evaluation and even un-

seen domain. However, it suffers from some limitation. For

example, it cannot handle samples unsuited for SDM [41]

(e.g. with one eye totally unseen in AFLW [19]). Zhang et

al. [44] present a unified deep regression network coupled

with the sparse shape regression (DRN-SSR) to predict the

union of all types of landmarks. However, it is integrated

with cascaded regression, in which each linear regressors

are learnt independently. The correlations between semanti-

cally related images are not taken into account. In addition,

shape-indexed feature which used to drive the cascade may

be sub-optimal and leading performance degradation. In ad-

dition, to solve the datasets bias issue inter-datasets, Yang

et al. [42] proposed a supervised initialisation scheme for

cascaded face alignment based on explicit head pose esti-

mation. It can decrease failures casused by improper initial-

isation with large head pose variations. However, it brings

much more complexity as an additional head pose estima-

tion model is needed to be trained separately.

3. Our Approach

In this section, we describe in detail the architecture de-

sign of our proposed Deep Variation Leveraging Network

(DVLN), which consists of Dataset-Across Network (DA-

Net) and Candidate-Decision Network (CD-Net). For both

of these two networks, we firstly illustrate a brief overview

and then describe the formulation and detail the learning

process.

3.1. Dataset­Across Network

Overview of DA-Net. Given N training datasets T =
{T i}Ni=1

with different landmarks definition. The land-

marks defined in T i can be denoted as si ∈ R
li , where

li represent the number of x-,y-coordinate of the landmarks

in T i. For instance, li equals 68 × 2 = 136 for Menpo

[43] with 68-landmark markup. The corresponding ground

truth landmarks set is denoted as S = {si}Ni=1
, where

si ∈ R
li×Mi

and M i is the number of images in dataset

T i. The goal of face alignment is to learn a model Θ, to es-

timate the location of landmarks. Specifically, for a image

Ii ∈ T i, the model learns to recover the landmarks loca-

tions pi = Θ(Ii) to predict si.

As shown in Fig.2, the Feature Extraction part of DA-

Net takes in a batch of images. One batch consists of equal

numbers of images from N training datasets T. Convolu-

tional filters are shared among these training images, thus

take advantage of rich variations of facial characteristics of

different datasets. It leads to a much more robust model

for feature extraction. Then, in the Regression part, a set

of linear regressors defined by the last fully connected lay-

ers are used to generate different landmarks defined in T. In

this part, each image have been transformed to its high-level

dataset invariable representation, e.g., xi ∈ R
F is a feature

vector of one image belong to dataset T i. For each land-

mark definition, a specific linear regressor is used to trans-

form dataset invariable representations into dataset specific

landmarks. These individual regressors naturally handle the

specification of annotations definition in different datasets.

Owing to the robust feature extraction before, these individ-

ual linear regressors avoid the lack of variations of a single

dataset.

Learning for DA-Net. Suppose one individual regressor

wi = [wi
1,w

i
2, · · · ,w

i
li
] corresponding to Ti be a weight

matrix, wi ∈ R
F×li , where each column vector corre-

sponds to the parameters of a single coordinate value. For

example, wi
1 ∈ R

F indicates the parameter vector for the x-

coordinary of the first landmark for one image in Ti. Given

a total of N datasets, and for each dataset T i, there are

M i corresponding images. Training data are denoted as

(Iij , s
i
j), with Iij ∈ T i and sij ∈ R

li . The goal of the DA-Net

is to minimize

argmin
θ,wi

N∑

i=1

Mi∑

j=1

λi‖s
i
j −wi⊤Φ(Iij , θ)‖ (1)

where λi denotes the importance coefficient of i-th dat-

sets error, and Φ(Iij , θ) represents the feature vector of one

sample Iij ∈ T i. θ represents the parameters of the Feature

Extraction part of DA-Net, while wi denotes the linear func-

tion maps features to dataset specific landmarks. These two

set of parameters are optimized together in Eq.1. Note that

under this scheme, θ can learn the shared feature space and

wi can learn the landmarks mappings of different landmark

definitions, and loss function gradients of images from dif-

ferent datasets are propagated back together to refine θ and

the shared feature space.

The objective function in Eq.1 is optimized using

stochastic gradient descent with the standard backpropaga-

tion. The batch size is set 128 and is composed of equal

number of images from N training datasets T.

3.2. Candidate­Decision Network

Overview of CD-Net. Sometimes one dataset T will

have severe imbalance distribution of facial characteristics.

The most common scenario is the bias of the yaw angle of

head pose. In general, taking such dataset with extremely

different yaw angles directly to train one model will lead

to poor performance. It is mainly caused by the lack of

data variations in a specific angle of view, e.g., left view

or right view. One straightforward solution is to augment

raw training set with mirrored images to fully utilize all of
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the data variations. However, even though a balance dataset

is constructed with the original of additional mirrored im-

ages. Training a model directly with these augmented data

still suffers from the relationship inconsistency inside the

dataset. Take Menpo-Profile [43] dataset as an example,

for the faces in left view, the semantic point of tip of nose

is always in the left of corner of the mouth, while it is to-

tally opposite for the faces in right view. This inconsistency

will seriously degrade the learning of relationships between

semantic points and further lead to an unsatisfactory perfor-

mance.

We proposed Dataset Standardization, together with a

Candidate Decision mechanism to solve this problem. Data

Standardization simply splits all faces into left and right

view, then flips all images from right view to get one united

dataset with only one view, e.g., left view. This dataset

will be used to train model without suffering from the re-

lationship inconsistency problem. Specifically, we firstly

split T into Tleft and Tright according to the yaw an-

gle. Then, the Tleft and Tright flipped, e.g., the flipped

image set of Tright are merged to construct a new dataset

with a single view of faces. Correspondingly, the ground

truth landmarks s
′

∈ R
l×M is constructed with sleft and

sright flipped. Thus, training data can be denoted as (I
′

j , s
′

j),

with I
′

j ∈ T
′

and s
′

j ∈ R
l. Moreover, T

′

can also be trained

across dataset using DA-Net. One evident problem is that

right view faces in testset necessarily perform poor with

no training data in right view angles. We further introduce

Candidate-Decision Network (CD-Net) to solve this prob-

lem. Specifically, as shown in the bottom of Fig.2, for each

image in testset, take it and its flipped version to a DA-Net

trained on T
′

. Two candidate predictions will be generated.

Then, CD-Net should give a higher score to the candidate

that is closer to its corresponding ground truth.

Learning for CD-Net. To construct training data for

CD-Net. We firstly do a flip on the j-th image Ij ∈ T to

generate Ij flipped. Also, the corresponding flipped version

of the ground truth landmarks sj are denoted as sj flipped.

The ground truth label cj ∈ {0, 1} of Ij can be denoted as

cj = 1{‖sj − pj‖ < ‖sj flipped − pj flipped‖} (2)

where 1 in Eq.2 is a indicator function. Given model pa-

rameters, e.g., θ and w, trained on T
′

. pj and pj flipped,

which represent the prediction landmarks corresponding to

Ij and Ij flipped respectively, can be doneted as pj =
w⊤Φ(Ij ; θ) and pj flipped = w⊤Φ(Ij flipped; θ). Note

that, as shown in Fig.2, if cj = 1, the corresponding pre-

diction landmarks pj flipped will be further flipped to get

the final prediction.

Now that training data for CD-Net can be denoted as

(Ij , cj), with Ij ∈ T and cj ∈ {0, 1}, where j =
{1, 2, · · · ,M}. It is reasonable to employ the cross-entropy

as the loss functions for the optimization of CD-Net. There-

fore, the objective function can be written as

argmin
θc,wc

M∑

j=1

−log(p(cj |xj ;w
c)) (3)

where xj ∈ R
F represent feature vector of image Ii. It

can be denoted as xj = Φ(Ij ; θ
c). θc and wc represent pa-

rameters in Feature Extraction and Regression parts of CD-

Net respectively. We use a softmax function p(cj |xj ;w
c) to

model the class posterior probability, which can be denoted

as

p(cj = m|xj ;w
c) =

exp{wc
m

⊤xj}∑
t∈{0,1} exp{w

c
t
⊤xj}

(4)

where wc
t denotes the t-th column of the weight matrix

wc. Following the optimization scheme of DA-Net, objec-

tive function in Eq.3 is optimized using SGD with the stan-

dard backpropagation. A batch-mode learning method with

a batch size of 128 is also used.

4. Experiments

Datesets To facilitate the training of DA-Net and CD-

Net, we construct two new datasets annotating facial land-

marks on faces randomly collected in-the-wild. One set is

Semifrontal Facial Landmarks (SFL) using a 106 landmarks

mark-up and another is Profile Facial Landmarks (PFL) an-

notated using a 39 landmarks mark-up. Even though PFL

has the same numbers of points as Menpo-Profile [43] has,

the definitions of some points are actually different. Eval-

uations are performed on the two well-known benchmark

datasets. These datasets are challenging due to images with

large head pose, occlusions, and illumination variations.

300-W [27] dataset: 300-W [27] is short for 300 Faces

in-the-Wild and is currently the most widely-used in-the-

wild dataset. It is created from existing datasets, including

LFPW [3], AFW [25], Helen [21], and a new dataset called

IBUG [28] and where each image was re-annotated in a

consistent manner using the 68-point landmark configura-

tion of CMU Multi-PIE [13]. Commonly, these annotations

are split into the following subsets: (i) the training set (3148

images) consisting of AFW [25] (337), LFPW [3] training

set (811) and HELEN [21] training set (2000) (ii) the com-

mon subset (554 images) of HELEN [21] testing set (330)

and LFPW [3] testing set (224) (iii) the challenging subset

(135 images) named IBUG [28] and (iv) the full set (689 im-

ages) consisting of both the common (554) and challenging

subsets (135).

Menpo [43] dataset: The Menpo dataset is a very re-

cently introduced dataset containing landmark annotations

for 8978 faces from FDDB [17] and AFLW [19]. This
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Model Name Network
Training # of Training Testing # of Testing

Point
Normalising

Set Samples Set Samples Factor

Eva-DA-Base DA-Net-A 300W train-set 3,148 300W full-set 689 68
inter-pupil

distance

Eva-DA DA-Net-A
300W train-set

>10K 300W full-set 689 68
inter-pupil

SFL distance

Eva-CD-Base DA-Net-A Menpo-Pr-Train 1,840 Menpo-Pr-Val 460 39 face size

Eva-CD
DA-Net-A Menpo-Pr-Train∗

1,840 Menpo-Pr-Val 460 39 face size
CD-Net-A Menpo-Pr-Train∆

Test-Semifrontal DA-Net-B
Menpo-Fr-Train

>10K Menpo-Fr-Test 5335 68 face size
SFL

Test-Profile
DA-Net-B Menpo-Pr-Train

10K Menpo-Pr-Test 1946 39 face size
CD-Net-B PFL

Table 1: Detailed evaluation/test settings for our experiments. Specifically, model Eva-DA-Base in Sec.4.1 gives a baseline

of a DA-Net and make comparison with state-of-the-art methods. Models named Eva-DA-Base and Eva-DA evaluate the

effectiveness of our proposed DA-Net (more detail is described in Sec.4.2). Meanwhile, models named Eva-CD-Base and

Eva-CD evaluate the effectiveness of our proposed CD-Net (more detail is described in Sec.4.3). Finally, Test-Semifrontal

and Test-Profile give the test results of the 2nd Facial Landmark Localisation Competition. Note that Menpo-Pr-Train∗ is

different from Menpo-Pr-Train. Menpo-Pr-Train is the raw training set, while Menpo-Pr-Train∗ is the standardized version

with only left view faces. Menpo-Pr-Train∆ is generated by a trained DA-Net-A and used to train a CD-Net-A in model

Eva-CD.
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Figure 3: Comparisons of cumulative errors distribution (CED) curves on 300-W [27] Dataset. The proposed method outper-

forms various state-of-the-art methods.

dataset consists of two categories of faces: (i) Menpo-Fr

(6679 semifrontal faces) with regards to the same mark-up

used in the 300-W [27] competition (a total of 68 land-

marks) and (ii) Menpo-Pr (2300 profile faces) using a 39

landmarks mark-up. For Menpo-Fr, we randomly sample

1,200 of 6,679 images to construct a validation set, e.g.,

Menpo-Fr-Val. The corresponding training set is Menpo-

Fr-Train with 5,479 images. Menpo-Pr-Val (460) and

Menpo-Pr-Train (1,840) are constructed in the same way.

Evaluation metric Following most previous works, we

evaluate the alignment accuracy using the standard nor-

malised landmarks mean error. Note that the difference of

normalising factor used between different experiments. All

evaluation settings for different experiments are noted in Ta-

ble.1. Cumulative Error Distribution (CED) is adopted for

different evaluation schemes in the literature. We should

point out that inherent difficulty exits in fitting the bound-

ary points of the face contour for semifrontal faces with

68-points landmarks. Thus, an advisable evaluation is also

taken in 49-points landmarks, e.g., the facial feature land-

marks.

Implementation In the experiments, two hyper-
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parameters settings are used for the network topology. For

DA-Net-A, we modified a VGG-16 [32] with the purpose of

enabling it to adapt to the scenario of face alignment. Note

that the network structure design is not the main task of this

work and other structures, e.g., ResNet-18 [15], also show

similar phenomenon in our experiments. Fully connected

layers are used to produce a feature vector for the final lin-

ear projection. For DA-Net-B, we gain further performance

advance by adding more convolutional layers and enlarg-

ing input image size. DA-Net-B is only used for 2nd Facial

Landmark Localisation Competition in Sec.4.4. Note that

in our experiments, the setting of CD-Net always keep con-

sistent with its coupled DA-Net. We train the network using

Nesterov SGD with a mini-batch size of 128. We choose the

best model according to our validation set (300W full-set).

4.1. Comparison with State­of­the­art Methods

We compare our approach against state-of-the-art meth-

ods. In order to build a baseline of DA-Net, we train a DA-

Net-A on 300-W [27] training set which consists of 3,148

face images without cross dataset training to get the model

Eva-DA-Base. We also augment the training set by affine

transformation.

The evaluation is performed on the 300-W [27] dataset,

which incudes Common Subset (554), Challenging Subset

(135) and Fullset (689). The mean error results normalised

by the inter-pupil distance are listed in Table.2. From the

table, we can observe that our model outperforms the best

ever reported regression-based method, e.g., CFSS [49] and

the best ever reported CNN-based method, e.g., RAR [39]

by a large margin. As shown in Fig.3, we also plot the CED

curves for various methods in order to compare with liter-

atures reporting CED performance. Again, our proposed

method achieves the best performance.

4.2. Evaluation of the Effectiveness of Cross Dataset
Alignment

In this experiment, we wish to verify the effectiveness

of cross dataset alignment method using DA-Net architec-

ture, by evaluating the accuracy of annotations on the tar-

get testset, e.g., 300W full-set. To compare with Eva-DA-

Base which is trained only on 3,148 images in 300-W [27],

we perform a cross dataset training together on 300-W [27]

training set (68pt) and SFL (106pt). Note that we do not

need to re-annotate each of the datasets, e.g., re-annotate

SFL using a 68 landmarks mark-up. All we need to do is

feeding batches consist of images from different datasets in

DA-Net and training together.

It is evident from Table.2 that optimizing landmark de-

tection under dataset-across mechanism are better. In par-

ticular, Eva-DA outperforms Eva-DA-Base much more ob-

vious on the Chanllenging Subset with large pose variations

and severe partial occlusions. This result illustrates the pro-

Method
Commont Challenging

Fullset
Subset Subset

DRMF [2] 6.65 19.79 9.22

RCPR [6] 6.18 17.26 8.35

CFAN [45] 5.50 16.78 7.69

ESR [8] 5.28 17.00 7.58

SDM [41] 5.57 15.40 7.50

LBF [26] 4.95 11.98 6.32

CFSS [49] 4.73 9.98 5.76

TCDCN [47] 4.80 8.60 5.54

RAR [39] 4.12 8.35 4.94

DVLN
3.94 7.62 4.66

(Eva-DA-Base)

DVLN
3.79 7.15 4.45

(Eva-DA)

Table 2: Mean Errors (Percent) on 300-W [27] Dataset (68

Landmarks)

posed DA-Net architecture can leverage different variations

in different datasets to greatly improve the generalization

and leading a much more robust model. Further experi-

ments show that the accuracy of the validation set of SFL

is also improved, which indicate different datasets can ben-

efit from each other by implicit feature sharing and dataset-

specific landmarks regression.

4.3. Evaluation of the Effectiveness of Dataset Stan­
dardization and Candidate Decision

To examine the influence of Dateset Standardization and

Candidate Decision mechanism in our proposed approach,

we do experiments on Menpo-Pr [43] on account of its

extreme variations in yaw angle of head pose. A base-

line model Eva-CD-Base is trained directly on Menpo-Pr-

Train with DA-Net-A network. Note that we also augment

Menpo-Pr-Train with their mirrored images. For dateset

standardization, Menpo-Pr-Train is split into two subsets

based on head pose, e.g., Menpo-Pr-Train-Left and Menpo-

Pr-Train-Right. Menpo-Pr-Train-Left and the flipped ver-

sion of Menpo-Pr-Train-Right are merged to construct sin-

gle Menpo-Pr-Train∗. Note that we always flipped the anno-

tations together with images. A DA-Net-A network is then

trained on Menpo-Pr-Train∗. Next, for realization of Candi-

date Decision mechanism, a CD-Net-A is trained. As men-

tioned in Sec.3.2, to generate the training set, each image Ij
on Menpo-Pr-Train will pass the trained DA-Net-A and gen-

erate the groundtruth class cj according to the errors of its

two candidate predictions. Then, Menpo-Pr-Train∆, which

consists of several pairs of image and its generated class cj
is used to train a CD-Net-A. For a test image, the original

image and its flipped version will be given to DA-Net-A to

generate two plausible hypotheses for landmarks and CD-
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Net-A will choose one of them as final output.

The evaluation is performed on the Menpo-Pr-Val (the

validation set of Menpo-Pr). The comparison result is illus-

trated in Table.3 and Fig.4. It is obvious that Dataset Stan-

dardization and Candidate Decision mechanism which con-

centrate different facial variations to a smaller distribution

space can significantly alleviate over-fitting problem caused

by lack of data. Meanwhile, the performance degradation

caused by relationship inconsistency is automatically alle-

viated.

Model Name Mean Error

Eva-CD-Base 0.0542

Eva-CD 0.0327

Table 3: Mean Errors on Menpo-Pr-Val
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Figure 4: CED for Menpo-Pr-Val

4.4. Results on the 2nd Facial Landmark Localisa­
tion Competition

In this section, we report the result of our submissions

on the 2nd Facial Landmark Localisation Competition [43].

All of the test faces are firstly detected by a face detec-

tor. Then, these face images are converted to gray-scale and

cropped with the input of our models. For the Semifrontal

Challenge, model Test-Semifrontal is trained on Menpo-Fr-

Train and SFL under the dataset-across mechanism with a

DA-Net-B. For the Profile Challenge, model Test-Profile is

trained on Menpo-Pr-Train and PFL under the Dataset Stan-

dardization and Candidate Decision mechanism. Note that

model Test-Profile also benefits from dataset-across training

together with Menpo-Pr-Train and PFL.

The returned results are shown in Fig.5. The baseline

is Active Pictorial Structures (APS) [1] which combines

the main ideas behind Pictorial Structures and Active Ap-

pearance Models. Based on the individual errors provided

by the organizers, we also calculate the mean errors. For

Semifrontal and Profile Challenge, the mean errors, which

normalised by the bounding box size are 0.013 and 0.022

respectively.
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Figure 5: Results on the 2nd Facial Landmark Localisation

Competition.

5. Conclusion

In this paper, we have presented a novel Deep Variation

Leveraging Network (DVLN) to take advantage of rich data

variations among and within different datasets. The pro-

posed network uniquely combined two sub-networks, e.g.,

Dataset-Across Network (DA-Net) and Candidate-Decision

Network (CD-Net) to work in a strong coupling schema.

In DA-Net, data variations can be shared among different

datasets without any re-annotation by one implicit feature

sharing mechanism, while data variations within dataset can

be further utilized with a coupled CD-Net. Thanks to learn-

ing with diverse variations, the proposed model is much

more robust compared to existing methods. Future work

will concentrate on exploring the relationship representa-

tions of datasets to further improve the accuracy and robust-

ness of the proposed model.
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