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Abstract

We propose a novel 3D-assisted coarse-to-fine

extreme-pose facial landmark detection system in this

work. For a given face image, our system first refines the

face bounding box with landmark locations inferred from

a 3D face model generated by a Recurrent 3D Regressor

at coarse level. Another R3R is then employed to fit a

3D face model onto the 2D face image cropped with the

refined bounding box at fine-scale. 2D landmark locations

inferred from the fitted 3D face are further adjusted with the

popular 2D regression method, i.e. LBF. The 3D-assisted

coarse-to-fine strategy and the 2D adjustment process

explicitly ensure both the robustness to extreme face poses

and bounding box disturbance and the accuracy towards

pixel-level landmark displacement. Extensive experiments

on the Menpo Challenge test sets demonstrate the superior

performance of our system.

1. Introduction

Facial landmark detection is a critical preprocessing step

in many face related research works and applications since

their performance is closely dependent on the accuracy of

the predicted landmark locations. Recently 2D cascaded

regression approaches [20, 14, 22] have demonstrated

appealing facial landmark detection performance for face

images under moderate conditions. However, robustness

and accuracy of those approaches may drop significantly

when the face images are with large poses and extreme

expressions.

To solve the bottleneck of those 2D regression

approaches, the 3D face model has been gradually

employed in recent research [3, 10, 24, 11] to improve the

robustness towards large poses and extreme expressions in

facial landmark detection. The core idea is aligning a 3D

morphable face model [2] for a given 2D face image. Since

the 3D morphable face model (3DMM) can effectively

capture the head pose and expressions, landmark detection

Figure 1: Flowchart of the proposed system. The detected

face bounding box is first refined with landmark locations

inferred from a coarse 3D face model. Based on the refined

bounding box, our system fits a 3D face on re-cropped

image at fine-level. The final landmark locations are

obtained by adjusting the landmark locations, fine-Sp, with

a 2D regression method.

inferred/initialized from a 3D face model inherits the merits

of 3DMM and generally shows superior performance on

large-pose face images.

In [3], binary shape-indexed pixel difference features

are effectively extracted around the predicted landmark

locations on the image and employed for 3D face

regression. [3] shows desirable 3D face fitting performance

for near-frontal face images. However, its performance

is bottlenecked by the weak low-level features and

drops for large-pose face images. In [24, 11], the

3D fitting parameters are predicted with cascaded

convolutional neural networks. Those methods show

remarkable performance enhancement of landmark

detection on large-pose face images. They share a similar

framework where the entire convolutional network is

forward-propagated a few times to iteratively update the

3D fitting parameters. At each iteration, the input to the

convolutional neural network is generated by concatenation
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between the original face image and features generated

with the predicted 3D face model. Extra computational

resources are required for features preparation and forward

propagation of the entire network. Therefore, we are

motivated to seek for high-level deep features for 3D

face regression without forward propagation of the entire

network.

In [12], a deep shape-indexed feature extracting layer

is introduced and utilized in [12, 18] which demonstrates

much superior landmark detection performance over

conventional features, e.g. SIFT, HOG and binary pixel

difference features. Intuitively, such features can also be

beneficial for the 3D face regression.

In order to enhance our system’s robustness to face

bounding boxes, we develop a 3D-assisted coarse-to-fine

framework. 3D face model is first generated by utilizing

deep shape-indexed features at coarse-level with the

original face bounding box and used to provide a tighter

bonding box. The refined bounding box is then used to

re-crop the face image for further 3D face fitting and 2D

landmark adjustment at fine-level. We observe that with the

coarse-to-fine framework, the generated 3D face model can

provide better initialization for 2D landmark refinement and

hence leads to superior landmark detection performance.

Fig. 1 illustrates the flowchart of our landmark detection

system. For a given image, our system first detects the face

with a cascaded deep neural network-based face detector,

360-NUS1, developed by our team. For the detected face, a

coarse 3D face fitting process is performed with a Recurrent

3D Regressor (R3R) that takes deep shape-indexed features

as input at each regression iteration. 2D landmark locations

inferred from the coarse 3D face model are used to generate

a tighter face bounding box. The original image is then

re-cropped with the refined bounding box and passed into

another R3R for fine-scale 3D face regression. The final

landmark locations are obtained by adjusting the locations

inferred from the fitted 3D face with LBF [14].

The main contributions of this paper are summarized as

follows:

• A 3D-assisted coarse-to-fine facial landmark detection

system is developed.

• A recurrent 3D regressor which requires only one-step

forward propagation of the network is developed.

• Our system shows both strong robustness and high

accuracy on face images under various challenging

pose, expression and illumination conditions.

The remainder of the paper is as follows. We provide a

review of related works in Section 2 before introducing

1Results of the “360-NUS” face detector can be found in the FDDB [9]

website: http://vis-www.cs.umass.edu/fddb/results.html

our 3D-assisted coarse-to-fine facial landmark detector in

Section 3. The experimental results are presented and

discussed in Section 4. Then we conclude the paper in

Section 5.

2. Related Work

2.1. Deep Regression with Deep Shapeindexed
Features

Deep features extracted around the predicted landmark

locations from a feature layer are proposed recently [12]

and utilized for iteratively refining landmark locations [12,

18]. The deep shape-indexed feature has shown significant

performance enhancement as compared to the conventional

hand-crafted features, e.g. HOG and SIFT [20, 23] and

binary features [14, 5]. High-level discriminative shape

information provided from deep shape-indexed feature

makes it a good choice for 3D face regression as well.

With the deep shape-indexed feature, our system only needs

to forward propagate the entire network once during the

refinement process.

2.2. 3D Morphable Face Model

3D Morphable Face Model (3DMM) [2] is used in this

work to align the 3D face mesh to a given 2D face image.

With 3DMM, a 3D face can be formally modelled by a set

of expression and shape controlling parameters as follows:

A = Ā0 +αααidAid +αααexpAexp. (1)

Ā0 is the 3D mean face model. Aid and Aexp are the PCA

reconstruction basis for shape and expression accordingly.

A = {x1, y1, z1;x2, y2, z2, ..., xN , yN , zN} ∈ R3×N with

N vertices. αααid and αααexp are the reconstruction coefficients

for Aid and Aexp. Following [24, 11], we use 29

expression bases and 199 shape bases to model A. These

bases are obtained with the Bessel Face Model [13] and

Face Warehouse [4]. The 3D face A is fitted onto a

2D image via rotation, translation and projection. This is

formulated as

M(q) = ΠfRφ,γ,θA+ t2d, (2)

where t2d is the translational vector in the 2D space

and Rφ,γ,θ is the 3D rotation matrix formulated by the

head pose, i.e. pitch, yaw and roll angles. q =
{φ, γ, θ, f, t2d,αααid,αααexp} is the related parameters for

3D face fitting and 3D-to-2D projection. Assuming

orthographic projection, the projection matrix can be

described as

Πf =

(

f 0 cx
0 f cy

)

,

where f is the scaling factor and [cx cy] denotes the image

center.
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Figure 2: The flowchart of our 3D-assisted coarse-to-fine facial landmark detector. For the given face image (cropped with

the bounding box given by our face detector), our system first predicts the 3D face model with a recurrent 3D regressor (R3R)

network depicted as b) and estimates a tightly fitted face bounding box based on the 3D face model. The re-cropped image is

then used to predict the 3D face model at fine-level. 2D refinement is employed to further adjust the landmark locations. The

Deep Regressional Feature Network illustrated in c) prepares the feature layer for deep shape-indexed feature extraction [12]

employed by R3R.

The facial landmark locations can be directly inferred

from the fitted 3D face by extracting 2D locations of the

key landmark vertices from M and formulated as

Sp = M(q){v} ∈ R2×L (3)

where M(q) is the predicted 3D face model on the 2D

plane with parameter set q. v presents the correspondence

between the 3D face model and 2D landmarks.

3. 3D-assisted Coarse-to-fine Landmark

Detection

3.1. Overview

Fig. 2-a) shows the detailed framework of our landmark

detection system. It takes a 2D image cropped with a

coarse face bounding box provided by our face detector

as input. The initial input image is passed into a

recurrent 3D regressor (R3R) which generates a 3D face

model and infers 2D landmark locations from the model.

The estimated landmark locations are utilized to generate

a face bounding box which tightly encloses the entire

face region. Based on the refined bounding box, the

original image is re-cropped and passed into another R3R

which is designed for generating the 3D face model

at fine-scale. 2D landmark locations inferred from the

3D model at fine-scale are further adjusted with the 2D

refinement method to alleviate possible errors incurred due

to inaccurate 3D fitting parameters and unperfect 3D-to-2D

landmark correspondence. Details of our system are

explained in this section.

3.2. Recurrent 3D Regression

We develop two networks to model the 3D face, Deep

Regressional Feature Network (Fig. 2-c)) and Recurrent

3D Regressor Network (Fig. 2-b)). They are employed

to iteratively and recurrently update the 3D face model

and ensure that the fitted 3D face model captures the head

pose and facial expression robustly even under extreme

conditions. At each recurrent refinement iteration, the

R3R extracts deep shape-indexed features [12] around

landmark locations predicted at the previous iteration

from Regression Feature Layer and updates 3D fitting

parameters. This refinement process is formulated as

qk = qk−1 + LSTM(Φk−1, ok−1, Ck−1) (4)

where LSTM(Φk−1, ok−1, Ck−1) is the conventional

long short-term memory unit [8] which takes features

Φk−1 extracted around landmark locations Sk−1
p from

the Regressional Feature Layer, previous memory output

Ck−1 and previous LSTM output ok−1 as inputs.

LSTM(Φk−1, ok−1, Ck−1) outputs update to 3D fitting

parameter ∆qk = ok such that the following objective
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(a) Left profile face (b) Frontal face (c) Right profile face

Figure 3: Landmark definitions by the Menpo benchmark

function is optimized:

arg min
Ws,bs

‖q∗ − (qk−1 + LSTM(Φk−1, ok−1, Ck−1)‖2.

(5)

Ws,bs are weight and bias terms related to the LSTM

unit and q∗ is the ground-truth 3D fitting and projection

parameters.

At each recurrent iteration, the landmark locations are

directly inferred via

Sk
p = M(qk−1 +∆qk){v} (6)

where v represents the correspondence between the 3D

face model and 2D landmarks. As the inner landmarks

have fixed definitions to explicit facial components, i.e.

eyes, eyebrows and mouth lips, the landmark vertices

of these inner landmarks are fixed. However, 3D-to-2D

correspondence of landmarks on the contour line is

pose-variant. We follow [25] to find the corresponding

contour landmark vertices on the 3D face. Once the

correspondence between the 3D model and 2D landmark is

established, the 2D landmark location can be easily inferred

via Eqn. (3).

3.3. 2D Adjustment

Landmark locations inferred from 3D the face model

may be inaccurate to small landmark displacement [3]. The

inaccurate 3D-to-2D correspondence and prediction error

of 3D fitting parameters directly deteriorates the locations

of landmark inferred. The incurred localization error is at

small scale and can hardly be captured by the 3D model.

To tackle this bottleneck related to the 3D face model,

2D refinement is employed. The objective of 2D refinement

is formulated as

argmin
R2D

‖S∗ − (Ŝp +R2D(I, Ŝp)‖
2 (7)

where Ŝp = M(q̂){v̂} is the landmark locations obtained

from the fitted 3D face defined by the estimated parameter

q̂ via unperfect 3D-to-2D landmark correspondence v̂.

R2D represents the 2D refinement process which takes the

original image as input and Ŝp as the initial prediction.

Various 2D refinement methods can be used, e.g.

SDM [20], ESR [5], LBF [14], etc. LBF is employed in

this work.

3.4. 2D Landmark Refinement of Profile Face
Images

The profile and semi-frontal categories are manually

determined by the competition organizer and we do not

need to classify a test image into semifrontal/profile

categories. Unlike the images from the semi-frontal

category2, face images from the profile category are

annotated with 39 landmarks defined in Fig. 3a and Fig. 3c.

The contour landmarks have completely different physical

meaning for the left and right profile faces. To ease the

refinement process, we divide 2D refinement for faces

from the profile category into two subtasks. To be more

explicit, left and right profile face 2D refinement modules

are designed to handle the two profile cases correspondingly

and independently. Based on the estimated 3D pose of the

face image, our system automatically selects the correct 2D

profile landmark refinement task. The initial 39 landmark

locations to be refined are obtained via one step linear

projection of predicted 68 landmarks Ŝp by following the

method in [7].

3.5. System Training

Our system consists of two recurrent 3D regressor

(R3R) networks which are trained jointly. The coarse-R3R

module is trained with a set of training images with large

perturbation in face angles, scale and translation. The

fine-R3R network is trained with face images re-cropped

based on the landmark locations obtained from the 3D face

2The Menpo Challenge [21, 16] divides testing set into two categories,

i.e. semi-frontal and profile.
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Algorithm 1: Recurrent 3D Regression.

Inputs: Regressional Feature Layer Lfeat; 3D

parameters: q∗; refinement steps: K

Initialization: q0 = q̄, S0
p .

while k ≤ K do

Get deep shape-indexed feature Φ(Sk−1
p , Lfeat)

Optimize recurrent 3D regression unit via Eqn. (4)

Obtain 3D parameter update:

∆qk = LSTM(Φ(Sk−1
p , Lfeat), o

k−1, Ck−1)
Update 3D parameters:

qk = qk−1 +∆qk

Infer 2D landmark locations: Sk−1
p via Eqn. (3)

end

Outputs: SK
p ,qK

model generated with the coarse-R3R. The training process

for both modules is same and described in Algorithm 1.

We follow [12] to train the Regression Feature Layer. The

Regressional Feature Layer is trained jointly with R3R and

it is fed with cropped face images.

In this paper, LBF [14] is employed to refine the

landmark locations directly inferred from 3D face model.

We initialize the LBF regressor with SK
p instead of the

conventional mean shape S̄. This ensures the LBF to

have a good initial shape and focus on capturing pixel-level

landmark displacement.

4. Experiment

4.1. Experimental Data

Training Data Preparation. We use the 300W [15],

300W-LP [24] and Menpo training set provided by the

2nd Facial Landmark Detection Challenge [21] for training.

300W-LP [24] is an extension of 300W with original 300W

face images morphed into large poses. Menpo training set

consists of 6,679 semi-frontal face images annotated with

68 landmarks and 2,300 profile face images annotated with

39 landmarks. We perform flipping, shifting, scaling and

rotation operations with the face images. The ground-truth

3D reconstruction parameters q∗ are generated by following

[24, 11].

Evaluation Datasets. Our landmark detection

performance is evaluated on both semi-frontal and

profile categories.

Semi-frontal category: This category consists of 12,006

near-frontal face images in the wild. All images from

the semi-frontal category are annotated with 68 landmarks

defined as Fig. 3b. There is substantial number of

challenging face images, i.e. large poses, extreme

expression and heavy occlusion, within this category.

Profile Category: The profile category contains 4,253

profile face images which are annotated with 39 landmarks

defined in Fig. 3a and Fig. 3c. All images are taken under

unconstrained conditions.

4.2. Face Detection

Our system employs “360-NUS” face detector to

localize the face inside a given image. For images with

multiple detected faces, we select the one closer to the

image center for landmark detection. We manually check

the detected faces and find there are 405 false detections

among the 16,239 testing images from both categories. The

false detections are manually corrected. ”360-NUS” ranks

top in the FDDB [9] benchmark and can more effectively

reduces false/multiple detections compared to Viola-Jones

method.

4.3. Evaluation Metric

The accuracy of landmark detection is measured by the

normalized point-to-point mean error. In this competition,

inter-ocular distance is used to normalize the absolute

distance error for the semi-frontal testing set. The

normalized point-to-point landmark detection error for a

face image can be formulated as

Ep2p =

∑L
i ‖S∗

i − Ŝi‖2
LDN

(8)

where L is the number of landmarks and DN represents the

normalization factor. S∗
i and Ŝi represent the ground-truth

and predicted locations of the i-th landmark. In the

semi-frontal category, the normalization factor is defined by

DN = ‖S∗
37 − S ∗46 ‖2 with S37 and S46 being the outer

corners of the left and right eyes. The normalization factor

used for the profile category is unknown to the participants.

For validation purpose, we define DN = ‖S11 − S16‖2.

Readers may refer to Fig. 3 for the landmark definitions.

The Cumulative Error Distribution (CED) curves are

given in Fig. 4 and 5. The CED curves are plotted up until

0.08. The X-axis represents the normalized error and the

Y-axis represents the proportion of images.

4.4. Network Structure

We use the our customized ResNext network [19] as the

initial model. The network structure is shown in Table 1

and it is pre-trained on the ImageNet dataset [6]. The

input is RGB images with fixed 256 × 256 dimension.

“de-conv4”,“de-conv5” and ”Regressional Feature Layer”

are de-convolutional layers which perform up-sampling.

The output of the regressional feature layer has dimension

of 256 × 256 × 64. The Regressional Feature Layer

is connected to a convolutional layer which predicts the

locations of 68 landmarks directly via softmax regression
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(a) Results on the semi-frontal category (b) Results on the profile category

Figure 4: Evaluation on the semi-frontal and profile categories.

Table 1: The network structure used for regressional feature

preparation.

stage output Operations

conv2 128x128





1×1, 256

3×3, 256, R=32

1×1, 256



 × 3

conv3 64×64





1×1, 512

3×3, 512, R=32

1×1, 256



 × 4

conv4 32×32







1×1, 512

3×3, 512, R=512

1×1, 1024

1×1, 256






× 6

de-conv4 64×64 4x4,128, stride 2, de-conv

de-conv5 128×128 4x4,64 stride 2, de-conv

Regression Feature Layer 256×256 4x4, 64, stride 2, de-conv

Loss Layer 256×256 3x3, 68, conv

and each channel of the Loss Layer only responds to the

location of a typical landmark. In the testing process, the

loss layer is removed. The number of refinement stages

within an R3R module is set to 5. The deep shape-indexed

features extracted are reduced to dimension of 256 before

passed into the LSTM unit.

Our model is trained via the standard stochastic gradient

descent method with a momentum of 0.9, a mini-batch of

8 images and a weight decay parameter of 0.0001. The

weights of LSTM are randomly initialized with a uniform

distribution of [−0.1, 0.1].

4.5. Results

Landmark locations predicted for both categories are

submitted to the organizers. All predictions are evaluated

by the organizers with ground-truth annotations which

are unknown to the participants. The returned landmark

detection errors are compared with the baseline method,

Active Pictorial Structures (APS) [1] which employs a

generative deformable model with pictorial structure and

active appearance model. Viola Jones [17] face detector is

used for face localization in the baseline method.

4.5.1 Semi-frontal Category

Fig. 4a shows that our system significantly outperforms the

APS method. Over 95% of testing images are within 0.03

normalized point-to-point error for our system. This is

about 50% performance enhancement as compared to the

baseline. Our system has a median error of 0.013 which is

around 56% of the median error of the baseline method.

4.5.2 Profile Category

Compared with the baseline method, our system shows

consistently superior performance on the profile category.

Over 75% of the testing images are within 0.03 normalized

point-to-point error. Compared with 45% testing images

within 0.03 error, ours achieves about 66% enhancement

over the APS method. The median error of our system

is 0.021 which is about 60% of the median error of the

baseline method.

4.5.3 Menpo Validation Set

We randomly select 697 images from the semi-frontal

training set and 200 images from the profile training

set for validation. These images are not involved in

the training process. Performance of the landmark

detected with coarse-R3R+LBF and Coarse-to-fine-R3R

+ LBF is evaluated and shown in Fig. 5. It shows

that the coarse-to-fine strategy performs consistently and

significantly better than the coarse-R3R+LBF framework

on both semi-frontal and profile categories.

4.6. Qualitative Analysis

In Fig. 7 and Fig. 8, sample face images from

the semi-frontal and profile categories are shown with
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Figure 5: Results on the validation sets. “C-R3R”

represents results of 2D adjustment on the the coarse-R3R

module. “C2F-R3R” represents results of 2D adjustment on

the Coarse-to-fine-R3R module. “-68” and “-39” are results

on the semi-frontal and profile validation sets accordingly.

(Best viewed in color)

landmarks detected by our system.

Fig. 7 shows face images under various challenging

conditions, i.e heavy occlusion, large poses, extreme

expressions, poor lighting and low image resolution. Our

system can robustly overcome all these situations and

demonstrates high accuracy. The first row of Fig. 7 shows

a few sample face images under heavy occlusion. Desirable

location accuracy of occluded landmarks is assured by the

R3R which robustly fits a 3D face model and provides

strong shape prior for 2D refinement, even though our

system does not explicitly handle occlusion. The merits of

R3R are also verified by the outstanding landmark detection

performance for the faces with low resolution (last row

of Fig. 7) and poor illumination (4-th row of Fig. 7).

Robustness and accuracy of our system are further verified

by the landmark detection performance on the profile face

category in Fig. 8.

Failure Cases. Fig. 6 shows a few samples on which our

system fails. These are images with extreme head roll

angles and heavy occlusion on the profile faces. When

the face is upside-down (1st image from Fig. 6) or the

refined-bounding box is too large/small (3rd and 4th images

from Fig. 6), our system hardly localizes the landmarks.

This is possibly because the R3R fails at estimating the head

pose and leads to large initial error for the 2D adjustment.

For some heavily occluded profile faces, our system can

roughly capture the head poses, but with much lower

accuracy.

5. Conclusion

In this work, we developed a 3D-assisted coarse-to-fine

extreme-pose facial landmark detection system which

shows strong robustness and high accuracy for face

Figure 6: Failure cases from both categories. (Best viewed

in color)

images under various challenging conditions. A recurrent

3D regressor is developed to fit a 3DMM model to

the face image in a coarse-to-fine manner. Landmark

locations inferred from the 3D face model are further

adjusted with 2D refinement to further reduce the

estimation error inherited from 3D parametric error and

imperfect 3D-to-2D landmark correspondence. The

coarse-to-fine method shows superior performance over one

stage coarse-3D regression framework and demonstrates

significant enhancement over the baseline method.
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