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Abstract

With the increasing number of public available train-

ing data for face alignment, the regression-based method-

s attracted much attention and have become the dominant

methods to solve this problem. There are two main factors,

the variance of the regression target and the capacity of re-

gression model, affecting the performance of the regression

task. In this paper, we present a Stacked Hourglass Net-

work for robust facial landmark localisation. We first adopt

a supervised face transformation to remove the translation,

scale and rotation variation of each face, in order to re-

duce the variance of the regression target. Then we em-

ploy a deep convolutional neural network named Stacked

Hourglass Network to increase the capacity of the regres-

sion model. To better evaluate the proposed method, we

reimplement two popular cascade shape regression model-

s, SDM and LBF, for comparison. Extensive experiments

on four challenging datasets, COFW, IBUG, 300W and the

Menpo Benchmark, prove the effectiveness of the proposed

method.

1. Introduction

A key step towards understanding people in images and

videos is accurate facial landmark localisation [20, 7, 44,

37, 39, 29, 1], also known as face alignment. Given a sin-

gle RGB face image, face alignment algorithms try to de-

termine the precise pixel location of crucial points on the

face. Achieving an efficient and effective system to locate

facial landmarks is beneficial to higher level tasks, e.g. fa-

cial attribute analysis [25], expression analysis [28], and

face recognition [37, 46, 38, 21, 22, 34]. Face alignment

also serves as a fundamental tool in field such as human-

computer interaction and animation [6]. Although the past

decades have witnessed intensive research and great strides

in designing and developing algorithms for face alignmen-

t [15, 11, 26, 14, 7, 12, 8, 29, 13, 24], it remains a challeng-

ing task, especially when the face images suffer from large

pose variations and partial occlusions.

Recently, the cascade shape regression method has be-

come the mainstream approach for robust face alignment,

and it is primarily motivated by the cascade pose regres-

sion presented in [14], which attempts to directly infer a

face pose through a discriminative non-linear mapping be-

tween the textual features and the object’s pose parameters.

It has inspired a volume of research works in the field of

face alignment [7, 12, 39, 29], in which a mapping function

is directly learned from the image appearance to the face

shape. The discriminations among these approaches main-

ly lie in the regression methods and the employed appear-

ance features. Although all above works perform favorably

for the nearly frontal faces, they struggle when the faces

are confronted with large changes of appearance from view

variations and severe occlusions. This is mainly because

the shape and appearance relations exhibited in faces with

large view variation are rather complex for the regression

function to handle. For faces with severe occlusions, the

performance of the learned model becomes even worse, be-

cause the stage-wised regressor is unable to take the outliers

caused by the severe occlusion into consideration.

More recently, to address the aforementioned limitation-

s of prior work, many algorithms based on deep convolu-

tional neural network have been proposed which benefits

from the strong discriminative deep features. In the top-

ic of human pose estimation, which aims at locating the

precise pixel location of key points of a human body, is

quite close to face alignment. The architecture combining

the part detection network with Hourglass [27] and deep re-

gression network has achieved huge success in human pose

estimation [4], and naturally has been applied to face align-

ment [3]. The Hourglass Network is based on bottom-up,

top-down procession along with intermediate supervision,

which enables the network to capture features from differ-
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Figure 1. First row, some faces with large view angles in the men-

po dataset. Second row, the normalised face images by supervised

transformation. Third row, the alignment results of Stacked Hour-

glass Model.

ent scales as well as contextual information. Therefore, this

detection followed by regression method is capable of deal-

ing with occlusion and large pose variations well, but the

problem existed is that the speed is slow, and the model is

large, reaching at hundreds of MBs.

In this paper, to provide a robust face alignment algo-

rithm, we combine the supervised face transformation [9]

and Stacked Hourglass Network [27]. Firstly, the super-

vised face transformation aims at reducing the shape vari-

ance among the datasets by removing rigid transformations

from translation, scale and rotation. If the shape variance

in datasets is large, as at the first row in Figure 1, the learn-

ing model will be deteriorated. After the supervised face

transformation, the new training dataset is illustrated as the

second row in Figure 1. Therefore, the regressors learn-

ing process will pay more attention to the feature and non-

rigid transformation. Secondly, the Stacked Hourglass Net-

work based on convolutional layers is explored in our algo-

rithm, which serves as discriminative feature provider and

strong regressor. To better evaluate our algorithm, we re-

implement two cascade shape regression based algorithms

LBF and SDM with supervised face transformation to make

a comparison. Extensive experiments on four challenging

datasets, COFW, IBUG, 300W and the Menpo Benchmark,

confirm the effectiveness of the proposed methods.

2. Related Work

The proposed method belongs to the regression based

method. In this section, we mainly review two kinds of pop-

ular regression based methods, the cascade shape regression

and the convolutional neural network based methods.

2.1. Cascade Shape Regression

The main idea of Cascade Shape Regression (CSR) [14,

7, 39] is to learn a sequence of regressors in an addi-

tive manner to approximate an intricate nonlinear map-

ping between the initial shape and the ground-truth shape.

Specifically, given a set of N images {Ii}
N
i=1

and their

corresponding ground truth {x̂i}
N
i=1

, in which x̂i =
[x1, y1, ..., xl, yl, ...xn, yn]

⊤ and n is the number of the fa-

cial landmarks. A typical CSR model is formulated as:

W
t = argmin

Wt

N∑

i=1

L∑

j=1

∥(x̂i − x
t−1

ij )−W
tΦ(Ii,x

t−1

ij )∥2
2
,

(1)

where W
t is the linear regression matrix, which maps the

shape-indexed features to the residual shape. xt−1

ij denotes

the intermediate shape of image Ii at stage t−1. j counts the

perturbations. The training data is augmented with L multi-

ple initialisations for each image, which serves as an effec-

tive method for improving the generation capability of train-

ing. t is the current iteration number. Φ(Ii,x
t−1

ij ) denotes

the shape-index feature. The CSR model can be solved by

the least square algorithm.

In the test procedure, CSR is performed sequentially

closer to the ground-truth shape as in Algorithm 1.

Algorithm 1 Cascade Shape Regression

Input: Face image: I, initial shape estimation: x0, shape-

indexed feature extractor: Φ.

1. for t = 1 to T

2. compute shape-indexed features: Φ(I,xt−1)
3. residual shape estimation: ∆x = W

tΦ(I,xt−1)
4. update update: xt = x

t−1 +∆x

5. end

Output: final estimation x
T .

One critical factor of CSR is the informative shape-

indexed features, which can be achieved by feature s-

election/learning method or off-the-shelf feature descrip-

tor. Cao et al. [7] propose shape-indexed features and a

correlation-based feature selection method to learn infor-

mative features. Ren et al. [29] utilise the random forest

to learn discriminative binary features with “locality” prin-

ciple, and it is worth mentioning that this method achieves

3000 fps speed. Xiong et al. [39] concatenate the SIFT fea-

tures around each landmark as the shape-index feature and

learn the regression matrix via linear regression. P. Burgos-

Artizzu et al. [5] find that CSR is sensitive to occlusion, they

present a robust cascaded pose regression method, which

incorporates occlusion directly during learning to improve

shape estimation so that the robust shape-indexed features

can be used.

Another key point is the model capacity. Because CSR

works in a data-driven manner, which means it remembers

the fitting paths in the training phase and directly maps face
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appearance to the target shape update in the testing phase.

However, over-fitting occurs when a discrepancy exists be-

tween the fitting rates in learning and testing. Therefore, X-

iong et al. [40] enhance the model’s robustness by dividing

the whole search space into individual regions with similar

gradient directions. This method enhances the model capac-

ity by learning different models in a “divide and conquer”

strategy. Yang et al. [41] propose a deep convolutional net-

work model to estimate head pose so that an alignment-

friendly initialisation is allocated. This method enhances

the algorithm’s performance from a lateral view by adding

the pose prior information to decrease the shape variance.

2.2. Convolutional Neural Network

To detect facial landmarks in near-frontal faces, Sun et

al. [35] first apply a three-level convolutional network to ob-

tain robust and accurate landmark estimation from coarse to

fine. Zhang et al. [43] have modeled a multi-task problem

to deal with the facial landmark location and attribute clas-

sification. Trigeorgis et al. [36] have applied the recurrent

neural networks to face alignment.

For large pose face alignment problem, [19] proposes

an algorithm after combining the cascaded CNN regressor

method with 3DMM, in which CNN-based regressors are

used to estimate camera projection matrix and 3D shape pa-

rameters while face alignment is seen as a 3DMM fitting

problem. Also, Zhu et al. [45] present a 3D solution for

this issue, in which an iterative manner through a single C-

NN is explored. In [3], the face alignment is treated as a

two-step processing. The first facial part detection provides

confidence scores of each landmarks, which is seen as a lo-

cal evidence, while the following regression networks are

aggregated to produce final prediction, which is a global re-

gression. Therefore, both the part details and global context

information are fully explored.

3. The Proposed Method

3.1. Overview

Figure 2 is an overview of the proposed method. It is

made up of two main steps. The first step focuses on su-

pervised face transformation, which aims at reducing the

overall variations from rigid transformations of the dataset-

s. This is much inspired by the characteristics of training

datasets, we find that there are some faces with large view

angles (in Figure 1), adding the difficulty of accurate align-

ment, mainly because alignment algorithms are sensitive to

initialisation. The second step of the proposed method is

a deep convolutional networks consisting of four stacked

Hourglass Networks. The Hourglass Network is capable

of extracting multi-scale discriminative feature in a human

face, and also functions as a regressor to locate the final

landmarks. The following sections will describe the above

steps in detail.

3.2. Supervised Face Transformation

In our experiments, we have found that faces with large

view angles will deteriorate the model during the learn-

ing period. These images are common in face alignment

datasets, shown in Figure 1.

In our system, a face detector [9] trained on 400K face

images is firstly used to detect the five semantic facial land-

marks, simply named as 5L. Chen et al. [9] incorporate the

Supervised Transformer Network into the cascade convolu-

tional neural network to deal with the large pose variations

faced in the task face detection. The 5L is used to rotate,

rescale the training sample to the mean shape, in order to

relieve the rigid transformation, shown in Figure 1. Specif-

ically, we use the following formula (Eq 2) to define a sim-

ilarity transformation via Procrustes Analysis:

[
mx

my

]
=

[
a b

−b a

] [
xi

yi

]
+

[
tx
ty

]
(2)

According to the value of a and b, it is easy to compute

the rotating angle and scale factor. The original images are

rotated and rescaled based on the parameters of the trans-

formation.

Then, we use the facial landmark detector in [2] to de-

tect the nineteen semantic facial landmarks, simply named

as 19L to further remove the influence from rigid transfor-

mation. The UMDfaces is a large dataset, which contains

367,920 face annotations of 8501 subjects. In addition, this

dataset is diverse from the aspect of head pose, occlusion,

and quality. Ankan et al. [2] have trained a network after

adapting the VGG-Face architecture, and have publicised

it on https://www.umdfaces.io. In our experiment, we use

this ready-made model to predict 19L. 19L further helps to

provide alignment friendly initialisation, in which the face

is copped with size (256 × 256), and the face is located at

the centre of the image. The cropped images are fed to the

following stacked Hourglass Network as training set.

3.3. Stacked Hourglass Network

Next, the state-of-the-art architecture Hourglass network

proposed in [27] is employed to estimate the location of

each landmark. The component in Figure 2 is a single Hour-

glass, as shown in Figure 3. It is a four level structure, based

on the residual network [18]. The residual module is able to

extract high level feature based on the convolutional opera-

tion, at the same time, it can retain the original information

with the skip route. It only changes the depth of the data

without changing the size of data. Therefore, it can be seen

as an advanced convolution layer.

The structure of Hourglass in Figure 3 is a symmetric

topology, so it is able to capture and consolidate informa-

tion from different scales and resolutions. Before down-
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Figure 2. The proposed method in this paper includes two parts: a supervised transformation to decrease the regression target and a Stacked

Hourglass Model to increase the capacity of the regression model.

Figure 3. The structure of the Hourglass.

sampling operation, it separates a single route to retain the

information in the current size. Before upsampling opera-

tion, it adds the maps with the same size from the original

layer. Between the processing of two downsampling oper-

ations, it uses three residual modules. After adding the two

maps, another residual module is employed to extract the

feature.

These local evidence is essential for identifying each se-

mantic landmark in a human face. The person’s poses, ex-

pressions, and the relationships of the individual landmarks

are better explored at different scales in an image. Also, the

heatmaps cover both the coordinate and confidence infor-

mation. As is discussed in [4], the confidence of the occlud-

ed parts is lower than that of the visible ones. Therefore, it is

able to estimate the occluded points by taking the contextu-

al information into consideration. We stack four Hourglass

Networks in the Menpo challenge competition. After the

fourth Hourglass Network, we can directly obtain the face

shape. Then the inverse supervised face transformation is

used to obtain face shape on original image.

Empirically, we determine that a value of 5px to be opti-

mal for a face size of 256 × 256. We train our facial land-

mark localisation with the following L2 loss:

ℓ2 =
1

N

N∑

i=1

∑

jk

∥x̂i(j, k)− x
∗

i (j, k)∥
2, (3)

where x̂i(j, k) and x
∗

i (j, k) represent the predicted and the

ground truth confidence maps at pixel location (j, k) for ith

part, respectively.

4. Experiments

4.1. Datasets

In this paper, the training data are only from the Menpo

Benchmark [30] [31], which contains 2300 profile images

with 39 points and 6679 images with 68 points. The face

images are in arbitrary poses, and cover both (near) frontal,

as well as profile faces in the wild.

We evaluate the proposed methods on public datasets

(COFW, IBUG, 300W indoor and outdoor).

COFW [5] [16] focuses on occlusion. Commonly, there

are 845 faces from LFPW training set and extra 500 faces

with heavy occlusion in training set. The testing set is made

up of 507 images that are heavily occluded. The dataset

contains internet photos depicting a wide variety of more

difficult poses and includes a significant amount of occlu-

sion. We conduct evaluations on 68 points [17].

300W [33] is short for 300 Faces in-the-wild. Note that

challenging subset is extremely difficult as its images have

large variations in face poses, expressions and illumination-

s. Here, We only conduct evaluations on 68 points on chal-

lenging subset (IBUG). Besides, evaluation are also per-

formed on the newly updated 300W indoor and outdoor

database [32] that consists of 300 Indoor and 300 Outdoor

in-the-wild images. It covers a large variation of identi-

ty, expression, illumination conditions, pose, occlusion and

face size.

Menpo Benchmark Testset The test data of the Menpo

Benchmark includes 4253 profile faces and 12006 frontal

faces. We submit the predictions by Deep Yang and get the

result from the organiser.
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4.2. Baseline Methods

The supervised transformation is able to decrease the

shape variances and increase the capacity of the regressors.

We recomplement two CSR-based algorithms to make com-

parisons between handcraft features, learning features and

convolutional features. The methods we recomplement are

named as LBF Yang and SDM Yang.

LBF Yang: We present a fast model based on JDA [10]

and LBF [29]. In [29], Ren et al. have proved that align-

ment friendly face rectangle (bounding box) is beneficial

to the cascade shape regression in face alignment. Based

on the insight, we construct a fast face alignment system in

android mobile phone based on the JDA face detector [10]

and LBF face alignment model [29]. The whole model in

mobile phone is about 45MB in total, consisting the face

detection model (10MB), the tracking model and the detec-

tion model (30MB). It runs at about 400fps in HuaWei P10

plus. Different from the common routine that uses the J-

DA as face detector, we use the five landmarks predicted by

JDA to produce a face rectangle estimation.

SDM Yang: In addition, we also implement the SD-

M [39] algorithm with some alterations. First, we use the

multi-scale SIFT feature whose dimension is 128 for each

landmark. Besides, instead of using the shape residual as

the regression goal, in our SDM, we employ the normalised

shape residual as the regression target. That is to say, we

normalise the current shape and target shape to the mean

shape, then the difference between the normalised shapes

are the new learning target. By doing so, the shape residual

from the rigid transformation can be removed, our learning

algorithm will pay more attention to the non-rigid transfor-

mations from other factors like pose variations, occlusions,

and to name a few. Furthermore, the initial shape in our

algorithm is from the five points provided by JDA. This al-

gorithms runs at about 30fps in computer. The model size

is approximate 20MB.

4.3. Evaluation Metric

Fitting performance is usually assessed by the normal-

ized mean error. In particular, the average Euclidean point-

to-point error normalized distance is used. The normalized

mean error over all landmarks,

Ei =

1

n

n∑
j=1

|xi,j − x̂i,j |2

|lti − rbi|2
, (4)

where n is the number of landmarks, xi,j is the prediction,

x̂i,j is the ground truth. lt and rb are the positions of the

left top point and right bottom point of the bounding box of

ground-truth shape. The normalization is able to make the

performance measure independent of the actual face size or

the camera zoom factor.

The cumulative distribution function (CDF) of the nor-

malized root mean squared error (NMSE) is employed for

performance evaluation.

4.4. Evaluations on Public Benchmarks

Figure 4(a), 4(b), 4(c), 4(d) show the quantity evalua-

tion on the public face alignment datasets. Table 1 record-

s the failure rate, which computes the percentage of im-

ages whose NMSE is larger than 0.08, and the mean error,

which represents the performance of the algorithms to a cer-

tain extent. On COFW, NMEs of Deep Yang, SDM Yang,

LBF Yang are 1.8%, 2.2%, 2.6% respectively. Deep Yang

ranks 1st, because it benefits from the heatmap which in-

structs the whole network to pay more attention to the fea-

ture with high confidence in an explicit manner, increas-

ing its robustness to occlusion. On the other three datasets,

Deep Yang obtains the best performance, which shows that

deep feature increases the model capacity when faced with

large pose variations.

Overall, We find that the deep model ranks 1st in al-

l above datasets. This illustrates that the deep features from

the convolutional layers are more informative. The discrim-

inative multi-scale features extracted from the Hourglass

Networks, which are able to cover the important informa-

tion needed in landmark localisation. Besides, as is listed

in Table 1, the overall failure rate is low because the super-

vised face transformation based on efficient face detector

boosts algorithms’ capacity.

Although the CSR-based methods do not achieve supe-

rior performance, they still gain a comparatively excellent

performance. They have advantages over deep model from

at least two aspects. On the one hand, model size of SDM

can be compressed, [23] has compressed the model to sev-

eral MBs. By comparison, the deep model is large in size

about hundreds of MBs. On the other hand, LBF Yang,

which runs at thousands frames per second in computer and

also can run hundreds frames per second on mobile phone.

In comparison, when deep model is used to predict facial

landmarks, it takes few seconds per frame.

4.5. Menpo Benchmark Competition

Our deep model has been evaluated independently by the

organizers using their own ground truth which are not dis-

closed to the participants. Figure 5(a) and 5(b) illustrate

that our deep model yields better performance in both the

semifrontal and profile testing datasets. Also, our algorith-

m can be applied to the facial landmark tracking system as

in [42].

Besides, we also show some examples on the testing

datasets in the Menpo Benchmark in Figure 6(a) and Fig-

ure 6(b). We find that our deep model can deal with the

challenges like illumination, pose, occlusion well.
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(a) COFW (b) IBUG (c) 300W indoor (d) 300W outdoor

Figure 4. Validation experiments on COFW, IBUG, 300W indoor and outdoor data sets.

COFW IBUG 300W Indoor 300W Outdoor

Method NME(%) FR (%) NME(%) FR (%) NME(%) FR (%) NME(%) FR (%)

Deep Yang 1.8/4.0/5.6 0 1.9/4.9/7.0 0 1.8/4.1/6.1 0 1.7/4.0/5.8 0

SDM Yang 2.2/4.8/6.8 0.4 2.2/5.7/8.2 0 2.1/4.9/7.2 0 2.1/5.0/7.2 0

LBF Yang 2.6/5.7/8.0 1.8 2.8/7.2/10.4 0.7 2.5/5.9/8.6 1 2.5/5.9/8.5 0

Table 1. Landmark localisation results on four public test sets using 68 points. Accuracy is reported as the Normalised Mean Error (NME)

and the Failure Rate (FR). To facilitate comparison with other methods on these datasets, we give mean error normalised by the diagonal

of the ground truth bounding box, the out eye corner distance and the eye centre distance.

(a) Semifrontal

(b) Profile

Figure 5. Evaluation on the test sets of Menpo Benchmark.

5. Conclusion

We have performed an experimental comparison of the

proposed three methods based on two popular framework-

s for face alignment. We hope this will help practitioners

choose an appropriate method when deploying face align-

ment system in the real world. We have also present a tech-

nique for improving face alignment algorithms by super-

vised face transformation.
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