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Abstract

Modelling of facial dynamics, as well as recovering of

latent dimensions that correspond to facial dynamics is of

paramount importance for many tasks relevant to facial

behaviour analysis. Currently, analysis of facial dynam-

ics is performed by applying linear techniques, mainly, on

sparse facial tracks. In this, paper we propose the first, to

the best of our knowledge, methodology for extracting low-

dimensional latent dimensions that correspond to facial dy-

namics (i.e., motion of facial parts). To this end we de-

velop appropriate unsupervised and supervised deep auto-

encoder architectures, which are able to extract features

that correspond to the facial dynamics. We demonstrate

the usefulness of the proposed approach in various facial

behaviour datasets.

1. Introduction

One of the most important, yet understudied problems

in automatic understanding of facial behaviour, is the au-

tomatic analysis of facial dynamics [35]. Facial dynamics

are important, since they are required for precise detection

of onsets, offsets, and the temporal envelope of facial emo-

tional displays [35, 2, 25].

Automatic analysis of facial dynamics includes prob-

lems such as automatic discovering of latent dimensions

that not only identify which parts of the face have moved in

an expressive sequence but how they moved. That is, these

dimensions can be used for (a) measuring how fast/slow a

particular facial motion is, (b) segmenting the various tem-

poral modes of facial motion (e.g., onset, offset, apex [25]

etc.) and (c) for temporal alignment of behavioural se-

quences [36].

The current line of research on the unsupervised ex-

traction of latent dimensions of facial dynamics revolves

around linear deterministic and probabilistic methodologies
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Figure 1: Some of the latent variables of the proposed unsu-

pervised Deep Slow Feature Auto Encoder (SFDAE) which

can be used in order to disentangle the dynamics of the fa-

cial expression (first two rows). Last row is the output fea-

tures of the supervised SFDAE for predicting the AUs acti-

vations.

[33, 32, 31, 13]. In particular, various general or special

Linear Dynamical Systems (LDS) have been proposed for

the task in [33, 13], as well as various extensions of deter-

ministic Slow Feature Analysis (SFA) [31, 34]. In the recent

past the supervised methodologies used to capture the tem-

poral segments of facial behaviour mainly revolved around

the use Hidden Markov Models (HMMs) [23, 18].

In this paper, we take a different direction and propose

the first, to the best of our knowledge, non-linear deep

methodologies for learning features that are able to describe

the facial dynamics in behavioural sequences. In particular,

we propose a novel deep unsupervised auto-encoder for the

task. Then, in order to exploit the data labels that are avail-

able in some datasets, e.g. DISFA [12], we proposed a su-
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pervised version of the above auto-encoder that can be used

in order to predict the dynamics of the motion of individ-

ual facial muscles, i.e., Facial Action Units (FAUs). Please

see Fig. 1 for a motivation of the proposed approach. Sum-

marising the contributions of the paper are:

• A novel slow-feature auto-encoder that can be used to

extract the facial behavioural dynamics in an unsuper-

vised manner.

• A novel slow-feature auto-encoder that can capitalise

on the availability of labels (e.g., intensity of FAUs),

which can be used for semi-supervised learning of be-

havioural dynamics. This auto-encoder can be used for

predicting the dynamics of FAUs in image sequences.

2. Background

2.1. Slow Feature Analysis

Slow Feature Analysis (SFA) [29] is an unsupervised

component analysis technique which is principle consist

of identifying slowly moving/changing factors in tempo-

ral/spatial data. Specifically, given an D-dimensional tem-

poral sequence (e.g., T vectorized video frames) X ∈
R

D×T , SFA seeks for a low-rank projection matrix V ∈
R

D×M with M ≪ D that extracts slowly varying features

from the rapid varying input sequence X by solving the fol-

lowing optimization problem:

argmin
V

tr[VTAV], s.t.VTBV = I. (1)

where A is the covariance matrix of the first-order temporal

derivative of X and B is the data covariance matrix. That

is,

A =
1

T − 1
ẊẊT =

1

T − 1
XLXT , B =

1

T
XXT , (2)

where L = PPT and P is an T × (T − 1) matrix with

elements pi,i = −1 and pi+1,i = 1. The solution of (1)

is found by the Generalized Eigenvalue Problem AV =
BVΛ, where the columns of the projection matrix V are

the generalized eigenvectors associated with the M lowest

eigenvalues contained in the diagonal matrix Λ.

2.2. Auto Encoders

Auto-Encoder [5, 6] is a special neural network, that

learns to copy its input to its output by using a series of

affine transformations. Specifically, given a set of T frames

stacked as the columns of a matrix X = [x1, . . . ,xT ] ∈
R

D×T , the autoencoder first maps the input X to a fea-

ture representation using an encoder function Z = f(X) ∈
RM×T and then a decoder function G = g(Z) ∈ R

D×T

is used to produce the reconstruction, mapping each hidden

representation zt back to the input space. The most com-

monly employed encoder and decoder functions use deter-

ministic affine mappings as follows

Z = f(X) = sf (WfX+ bf ) (3)

G = g(Z) = sg(WgZ+ bg) (4)

where sf and sg are the encoder and decoder activa-

tion functions and can be non-linear such as Rectified Lin-

ear Units (ReLU), sigmoid, hyperbolic tangent and soft-

max or linear. It is worth mentioning, that in case of

linear activation functions and one layer of encoding and

decoding process the autoencoder is reduced to Principal

Component Analysis (PCA). Having defined the appropri-

ate activation function for the task at hand, the parameters

θ = {Wf ,Wg,bf ,bg} are then optimised by minimizing

the following loss function

θ̂ = argmin
θ

L(X, g(f(X))) (5)

which can be effectively solved by using stochastic gra-

dient descent based backpropagation approaches.

Training an autoencoder to just copy its input to its out-

put may sound useless, since it does not learn something

useful about the data representation. In essence, autoen-

coders are trained in a way that will result in hidden rep-

resentation Z obtaining specific properties as a byproduct

with the input copying task. One common way to increase

the expressive power of the these representations is to con-

strain them to have smaller dimension than the training data

(M < D). These autoencoders are called undercomplete

and even though they learn to extract the most salient fea-

tures of the training data, they fail to learn something useful

about the dataset if the autoencoder is provided with too

much capacity.

To alleviate the aforementioned limitation a bunch of au-

toencoders has been proposed, known as regularized au-

toencoders, that use a cost function forcing the model to

acquire specific properties in addition to the ability to learn

its identity function. To this category belong the Sparse au-

toencoders [15, 9], the Contractive autoencoders [17, 16]

and the Denoising autoencoders (DAE) [26, 27, 28]. Sparse

autoencoders impose a L1 sparsity penalty on the hidden

code Z in addition to the reconstruction error. The extracted

features from these autoencoders are suitable for another

task such as classification. In Contractive autoencoders an

analytic contractive penalty is used, in order to enforce the

derivatives of f to be as small as possible by minimising

∑

t

L(xt, g(f(xt))) + λ||
∂f(xt)

∂xt

||2F (6)

in order to make the representations as resistant as pos-

sible with respect to infinitesimal perturbations in input. Fi-

nally, the Denoising autoencoders receive as input a cor-

rupted version of the data X̃ contaminated by some form
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of noise through a corruption process C(X̃|X). Common

choices include binomial noise (switching pixels or on off)

or uncorrelated Gaussian noise. The autoencoder then is

trained to undo this corruption by first finding the hidden

representation f(X̃) = sf (WfX̃+bf ) and then the recon-

struction of the original input G = g(Z) = sg(WgZ+bg).

Finally, the most recent and relevant to our proposed au-

toencoder is the Graph Regularized AutoEncoder (GAE)

[10] which captures the geometrical structure of the data

by incorporating a graph regularized constraint.

2.3. Convolutional Networks

CNNs are one of the most powerful and popular feature

extractors over the last years, since they have shown ex-

ceptional performance in various computer vision problems

such as image classification [8, 20, 21] and object detection

[4, 3]. The architecture of a convolutional layer consists of

three basic building blocks. In the first block, the layer per-

forms several convolutions in parallel to produce a set of

linear activations, in the second block (detector stage) these

activations run through a nonlinear activation function (eg.

Rectified Linear activation) and in the final block a further

modification of the output is performed of via a pooling op-

eration. Among the pooling operations the most popular

one is the max pooling [19] and reports the maximum output

within a rectangular neighborhood. Finally, the main dif-

ference between convolutional and fully connected layers

is that the former introduce a parameter sharing property,

where the weights are shared among all locations, main-

taining the spatial locality. Therefore, convolution is much

more efficient than dense matrix multiplication in terms of

the memory requirements and statistical efficiency improv-

ing thus the performance of a machine learning system.

3. System Architectures

Here in we introduce our Slow Feature Denoising convo-

lutional Auto-Encoder (SFDAE) and describe the proposed

architectures for the task of temporal segmentation of facial

expressions in both unsupervised and supervised manner.

3.1. Unsupervised Architecture

In Fig. 2 is depicted the detailed configuration

for the entire unsupervised deep network consisting of

four parts, convolution-fully connected-fully connected-

deconvolution. The convolution part is responsible for ex-

tracting the features which are then encoded through the

fully connected layers into low dimensional representations.

For the convolutional and deconvolutional layers we

used the leaky ReLU[11] activation function, in order to al-

leviate the problems we experienced due to the hard 0 acti-

vation of the ReL units. The leaky ReLU activation function

is given by

l(x) =

{

x , x ≥ 0
x
a

, x < 0

where a is a fixed parameter in range (1,∞). Although

the authors in original paper suggest to set a to a large num-

bers (e.g 100), in our task we found that the optimal was

a = 10. Finally, for the fully connected layers we used the

sigmoid activation function as σ(x) = 1/(1 + e−x).

The learning process proceeds by amplifying the in-

put frames with a D-dimensional zero-mean Gaussian-

distributed noise as follows

X̃ = X+N(0, σ2I) (7)

We should point out that the purpose of the corruption

process is not the denoising task, but instead denoising is in-

vestigated as a training criterion for extracting more robust

and stable higher level representations. Then these repre-

sentations are assessed by measuring how well can capture

the temporal dynamics of the facial expressions without su-

pervision. The equations that formulate the four parts of our

auto encoder are given by

H = h(X̃) = lh(Wh ∗ X̃+ bh) (8)

Z = f(H) = σf (WfH+ bf ) (9)

Q = q(Z) = σq(WqZ+ bq) (10)

G = g(Q) = lg(Wg ∗Q+ bg) (11)

where ∗ denotes the convolution operator. In addition to

the denoising effect in order increase the expressive power

of our representations we need to maintain the temporal co-

herence of the input frames. To this end, we introduce a

slowly varying constraint that penalizes the temporal dif-

ference between successive hidden representations. Then

based on (14) - (15) we optimize the SFDAE as follows

∑

t

L(xt, g(q(f(h(x̃t)))))+λ
∑

t

||f(h(x̃t+1))−f(h(x̃t))||
2
F

(12)

where λ is a hyper-parameter that controls the strength

of the slowness. The unsupervised cost function (12) can

be written in a more compact form as follows

argmin
θ

(||X−G||2 + λ tr(ZLZT )) (13)

where L, described in section 2.1, is the matrix coding

the slowly varying properties, tr(.) denotes the trace of a

matrix and the term tr(ZLZT ) is the slow feature regular-

izer.
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Figure 2: Overall architecture for the unsupervised discovery of latent representations. The learning process commences

by corrupting the input which is then transformed into a low dimensional representation through the convolutional and fully

connected layers. Finally, the clean input is reconstructed with a series of fully connected and deconvolutional layers.

40x40x64 20x20x32 10x10x16 10x10x16 20x20x32 40x40x64

1x1x1024 1x1x1024

1x1x12

+

Supervised PartInput

Noise

X~
X

-

frames

.. .

~
p(X) Y

~
Xf( )

~
Xg(f( ))

Figure 3: Overall architecture for the supervised discovery of latent representations. The learning process commences by

corrupting the input which is then transformed into a hidden code f(X̃) through the convolutional layers. Then the hidden

code is transformed into a low dimensional representation that will represent the labels of the input data.

3.2. Supervised Architecture

In this section we describe the architecture that take into

account the label information in cases where an abundance

of labeled data is available. In order to incorporate the label

information, we modify the architecture of Fig. 2 by re-

placing the fully connected parts with one flat vector. Then

this flat vector is reshaped in order to be fed back to the

decoder and is transformed into a low dimensional repre-

sentation P = p(X̃) of size equal to the number of AUs

that each frame is annotated, via two fully connected layers

of the same number of hidden units. This architecture is il-

lustrated in Fig. 3 and the equations of the encoder and the

decoder are given by

Z = f(X̃) = lf (Wf ∗ X̃+ bf ) (14)

G = g(Z) = lg(Wg ∗ Z+ bg) (15)

The aim of the supervised part is to force each one of

the hidden units of the low dimensional representation to

represent the evolution of the temporal events as accurately

as possible by adding the following supervised loss

argmin
θ

(1−
PTY

||P||||Y||
) (16)

More formally, given a set of frames X =
[x1, . . . ,xT ] ∈ R

D×T , with their corresponding labels

Y = [y1, . . .yT ]R
C×T , where C corresponds to the num-

ber of AUs that each frame is annotated, our supervised SF-

DAE minimizes end to end the following loss function

argmin
θ

(||X−G||2+λ tr(ZLZT )+1−
PTY

||P||||Y||
) (17)

which is the complete loss function for the supervised

architecture and can be solved by using gradient or stochas-

tic based methods like (RMSprop[22] or Adam[7] optimiz-
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ers). Finally, our SFDAE does not require weight-tying con-

straint (Wf = WT
g ), therefore we use distinct weights for

encoder and decoder.

4. Experimental Results

In this section, we demonstrate the conducted experi-

mental results in order to validate the performance of our

proposed architectures in both unsupervised and supervised

learning tasks.

4.1. Experiments in Unsupervised Learning

For assessing the performance of the proposed unsuper-

vised architecture we employed the MMI [14, 24] and the

UvA-Nemo Smile (UNS) [1] databases. The MMI con-

sists of videos with deliberate FAUs while the UNS contains

videos with deliberate and spontaneous smiles. Specifically,

the MMI contains more than 2000 where 351 of them are

annotated in terms of FAUs and the temporal segments in

which a subject performs one or more FAUs in terms of

neutral-onset-apex-offset-neutral indicators. We used all of

the 351 videos and we tracked 68 facial landmarks using a

variant of the Supervised Descent Method (SDM) [30]. The

tracked landmarks were used in order to align and scale the

frames to a fixed size template of 80× 80 pixels. The rele-

vant FAUs used for each region of the face are as follows:

• Mouth: Upper Lip Raiser, Nasolabial Deepener, Lip

Corner Puller, Cheek Puffer, Dimpler, Lip Corner De-

pressor, Lower Lip Depressor, Chin Raiser, Lip Puck-

erer, Lip stretcher, Lip Funneler, Lip Tightener, Lip

Pressor, Lips part, Jaw Drop, Mouth Stretch and Lip

Suck

• Eyes: Upper Lid Raiser, Cheek Raiser, Lid Tightener,

Nose Wrinkler, Eyes Closed, Blink, Wink, Eyes turn

left and Eyes turn right

• Brows: Inner Brow Raiser, Outer Brow Raiser and

Brow Lowerer.

UvA-Nemo Smile database contains more than 1000

smile videos (597 spontaneous and 643 deliberate) from

400 subjects. The database does not provide annotations

with regards to temporal segments. Hence, we annotated

100 videos in total, 50 displaying deliberate and 50 dis-

playing spontaneous smiles, in terms of temporal segments.

Furthermore, we used the same algorithm to track 68 facial

landmarks and align the facial images to a fixed size tem-

plate of 80× 80 pixels.

Implementation details. The network (Fig. 2) has in to-

tal 10 hidden layers, from which 6 of them are convolutional

and 4 of them are fully connected. The 3 convolutional lay-

ers use 64, 32 and 16 number of filters, respectively, and

are responsible for downsampling the corrupted frames to a

size of 10x10x16 by using stride of 2, since we do not use

the max pooling operator. On the other hand, the 3 deconvo-

lutional layers are the mirrored version of the convolutional

and are responsible for upsampling the images uncorrupted

back to its original size of 80x80x1. Finally, for all the con-

volutional and deconvolutional layers we used the same fil-

ter size of 5x5. The first 2 fully connected layers receive

as input the output of the convolutional layers as one flat

vector and transform it to a low dimensional representation

of size 1x1x50 by performing successive non-linear dimen-

sionality reductions (1024 → 512 → 50). Then the other 2

fully connected layers transform this representation to one

flat vector, which is then reshaped to a size of 10x10x16 in

order to be used as an input to the deconvolutional network.

In the case of graph regularized methods (GDAE and GAE)

we have tested various approaches to build the graph Lapla-

cian. That is, we used the heat kernel, dot-product kernels,

0-1 weighting etc. and we tested various neighbourhood

sizes. The best was a 5-nearest neighbours graph to cap-

ture the local geometric structure of the data and a 0 − 1
weighting system for defining the weight matrix. Further-

more, for all the regularized autoencoders (SFDAE, GDAE,

SFAE and GAE) we set the hyper-parameter λ that regulates

the contribution of the regularizer to 100 and for the denois-

ing autoencoders (SFDAE, GDAE and DAE) we used gaus-

sian noise of zero mean and 0.1 variance. Finally, we set

the number of epochs to 500, the batch size to 10 and for

learning the weights we employed stochastic optimisation

with Adam[7] with the default hyperparameters, an initial

learning rate of 0.001 with exponential decay of 0.95 every

1.000 iterations.

For the linear component analysis techniques, SFA and

LPP, we considered projections to a subspace of dimension-

ality M = 50 for fair comparisons with the deep architec-

tures. Finally, in order to evaluate to what extend the repre-

sentations learned by different methods, were capable of ac-

curately disentangling the label information of the AUs we

used the cosine similarity as an evaluation metric. Specifi-

cally, in order to facilitate this comparison between the rep-

resentations learned by the tested methods and the ground

truth we map the recover latent space by each method to

the temporal phases of AUs. To do so, we compute the

first order derivative for each obtained hidden represen-

tation and select the one that minimizes: argmini ziLz
T
i

(i = 1 . . . 50). For the SFA based methods (SFA, SFDAE

and SFAE) we simply acquire the first identified latent fea-

ture, which corresponds to the most slowly varying one,

since SFA introduces an ordering to the derived latent vari-

ables sorted by their temporal slowness. In total six vari-

ations of autoencoders were tested (SFDAE, GDAE, DAE,

SFAE, GAE and AE) and compared with their linear coun-

terparts (SFA and LPP).

Evaluation in MMI. We present the experiments in
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Figure 4: Overall results obtained when comparing various deep auto-encoders against linear component analysis techniques

in terms of extracting the temporal dynamics in (a) Mouth-related AUs (b) Eyes-related AUs (c) Brows-related AUs (d) All

the AUs in MMI database

(a) (b)

Figure 5: Overall results obtained when comparing vari-

ous deep auto-encoders against linear component analysis

techniques in terms of extracting the temporal dynamics in

(a) Deliberate and (b) Spontaneous Smiles in UVS Smile

database

MMI according to the region of the face the performed FAU

is related to (i.e., mouth, eyes, and brows related-AUs re-

spectively), as well as overall results from all the AUs. In

the first set of experiments we measured the performance

of the tested methods along the whole performed AU with

respect to the percentage of the videos.1 The evolution of

the performance for each of the tested methods is plotted in

Fig. 4.

From that figure it is immediately obvious that all the

deep autoencoders greatly outperformed the linear ones in

terms of extracting features that can better capture the dy-

namics of the AUs. The second inference of that figure re-

gards the effectiveness of the corruption process. Specif-

ically, as can be observed all the denoising autoencoders

achieved better performance compared with their respective

non-noisy autoencoders. For instance inspect the difference

in the performance by comparing the results between the

AE (red dashed line) and the DAE (red solid line) in Fig.

4(a). The final inference is that the proposed SFDAE (green

solid line) outperforms all other methods in the task of un-

supervised discovery of latent representations that can ef-

1For example a point (60%, 0.8) indicates that 60% of the videos have

cosine similarity less than 0.8 or 40% of the videos have cosine similarity

greater than 0.8.

fectively disentangle the label information. The explanation

of this is attributed to the fact that the slowly varying con-

straint in addition to the denoising effect provides smooth-

ness to the representations and also maintains the temporal

coherence of the input frames.

The second set of experiments, evaluates further the per-

formance of the tested methods by providing the average

cosine similarity for each temporal phase separately and the

results are reported in Table 1. Specifically, this table sum-

marizes the average cosine similarity for the onset, apex and

offset temporal phases along with the overall performance

for the whole performed AU for each region of the face sep-

arately.

Evaluation in UVS. A similar experimental setup was

used in UNS database to evaluate the performance of the

proposed methods (SFDAE and SFAE) against its competi-

tors in deliberate and spontaneous smiles. Fig. 5 plots the

cosine similarity curves versus the percentage of videos for

both deliberate and spontaneous smiles, while Table 2 pro-

vides the average cosine similarity for each temporal phase

separately. The experiments in UVS smile databse demon-

strate once more the usefulness of the denoising process in

the representations and that the proposed methods outper-

form the tested methods in both deliberate and spontaneous

smiles. Specifically, overall the SFDAE achieved on aver-

age the better performance in deliberate smiles while SFAE

achieved on average the better performance in spontaneous

smiles (Table 2 last column).

4.2. Experiments in Supervised Learning

For evaluating the performance of our supervised model

we employed the DISFA[12] database consisting of 27

videos that depict subjects to perform spontaneous facial

activities. Every video contains 4845 frames annotated in

terms of which of the following 12 actions units (AU1,

AU2, AU4, AU5, AU6, AU9, AU12, AU15, AU17, AU20,

AU25, AU26) is activated and in terms of its respective in-

tensity level within a scale of 0 to 5, with 0 corresponding

to the absence of an AU and 5 to the maximum intensity

47



Cosine Similarity

Onset Apex Offset Overall

Method Mouth Eyes Brows Mouth Eyes Brows Mouth Eyes Brows Mouth Eyes Brows All AUs

SFDAE 0.9113 0.9271 0.9332 0.9631 0.9770 0.9773 0.8514 0.8372 0.8030 0.7888 0.6572 0.7697 0.7555

GDAE 0.8623 0.8496 0.8351 0.9743 0.9650 0.9880 0.8050 0.7873 0.7354 0.7028 0.5616 0.6933 0.6602

DAE 0.8916 0.9278 0.9120 0.9415 0.9555 0.9696 0.8288 0.8287 0.7619 0.7542 0.6097 0.7387 0.7183

SFAE 0.8857 0.8989 0.9052 0.9342 0.9477 0.9479 0.8259 0.8121 0.7789 0.7744 0.6465 0.7586 0.7424

GAE 0.8364 0.8241 0.8101 0.9450 0.9360 0.9584 0.7809 0.7637 0.7133 0.6867 0.5029 0.6389 0.6323

AE 0.8648 0.9006 0.8846 0.9131 0.9268 0.9405 0.8040 0.8038 0.7637 0.7268 0.5960 0.7320 0.6966

SFA 0.8670 0.9003 0.8776 0.9531 0.9703 0.9611 0.8135 0.7935 0.7438 0.6608 0.5364 0.6339 0.6283

LPP 0.8851 0.9165 0.8910 0.9704 0.9710 0.9693 0.8235 0.8176 0.7517 0.6814 0.5503 0.6438 0.6461

Table 1: Average performance of various deep auto-encoders against linear component analysis techniques in terms of dis-

entangling the label information from Actions Units related to mouth, eyes and brows, evaluated on all AU temporal phases

in MMI database.

Onset Apex Offset Overall

Method Deliberate Spontaneous Deliberate Spontaneous Deliberate Spontaneous Deliberate Spontaneous

SFDAE 0.8753 0.8588 0.8992 0.8874 0.8394 0.8202 0.8308 0.7806

GDAE 0.8176 0.8242 0.8899 0.8781 0.8317 0.8260 0.7776 0.7577

DAE 0.8721 0.8721 0.8895 0.8806 0.8187 0.8336 0.8065 0.7903

SFAE 0.8686 0.8552 0.8909 0.8885 0.8215 0.8505 0.8210 0.7967

GAE 0.8267 0.8668 0.8879 0.8860 0.8262 0.8193 0.7652 0.7851

AE 0.8721 0.8177 0.8795 0.8814 0.8181 0.8357 0.8060 0.7680

SFA 0.7787 0.7755 0.8847 0.8698 0.7374 0.7379 0.7631 0.7518

LPP 0.7753 0.7724 0.8791 0.8576 0.7379 0.7341 0.7534 0.7463

Table 2: Average performance of various deep auto-encoders against linear component analysis techniques in terms of dis-

entangling the label information from deliberate and spontaneous smiles, evaluated on all AU temporal phases in UVS smile

database.

level. Finally, this database provides 66 landmarks points

where we used them in order to align and scale the frames

to a fixed size template of 80x80 pixels.

Implementation details. The network used for this task

(Fig. 3) has in total 8 layers, from which 6 of them are con-

volutional and 2 are fully connected. The 3 convolutional

and the 3 deconvolutional layers use the same configuration

described in sec. 4.1, while each one of the 2 fully con-

nected have 1024 hidden units and use ReLU activations.

These layers form the supervised part and are responsible

for transforming the hidden code f(X̃) into a low dimen-

sional representation P of size 1x1x12, where 12 is the

number of AUs that each frame is annotated to, in order

minimize the cosine distance between this representation

and the given labels Y. Finally, in order to avoid overfit-

ting we used dropout which was set to 0.5 during training

and 1 during testing. The rest of the settings are the same

with the ones described in the previous section.

Evaluation in Disfa. For the purpose of this experiment

we used 60% of the videos for training and 40% for testing.

Therefore in total we used 78.489 frames during the train-

ing phase and for 52.326 frames for testing. Similarly to

the unsupervised task, in order to evaluate how accurately

the learnt representations were able to predict the dynam-

ics of the AUs we used the cosine similarity as evaluation

metric. Finally for this experiment we evaluate the perfor-

mance only of the deep auto encoders since SFA and LPP

are unsupervised methodologies.

Table 3 reports the obtained results for each AU sepa-

rately in both training and testing phases. The results show

that in most of the AUs the proposed SFDAE outperform

all others in both training and testing evaluation with an

average score of 0.5792 for all the AUs, while the second

best score was 0.5351 achieved by the DAE. In addition, as

we can observe we did not experience overfitting during the

learning process since the results indicate that our models

learned to generalize quite well the supervised task.

Finally for better inspection of the performance of the

tested methods we provide in Fig. 6 a qualitative experi-

ment of disentangling the label information from a subject

performing AU25 (Lips Part) in a video sequence of 4845

frames. Specifically, this figure plots the low dimensional

representations for each of the tested methods and after

training them to extract the label information (blue parts) we

tested them by evaluating their ability to predict the rest of

the AU activations (red parts). As can be observed the rep-

resentation learnt by the proposed method (Fig. 6 (a)) were

capable of better predicting the dynamics of the AU25 since

it provides smoother and more accurately features which in

turn matches better with the true label information (green

curve).

48



Figure 6: Disentangling the temporal changes from AU25 by applying the SFDAE, GDAE, DAE, SFAE, GAE and AE on a

video sequence from the DISFA database. The blue curves correspond to the representations obtained during training while

the red curves correspond to the predicted representations obtained during testing. The green curve indicate the annotated

ground truth from the AU25.

Cosine Similarity

SFDAE GDAE DAE SFAE GAE AE

Action Unit Train Test Train Test Train Test Train Test Train Test Train Test

AU1 0.7320 0.5441 0.5048 0.4705 0.7010 0.4996 0.7147 0.5076 0.7162 0.4837 0.6862 0.4888

AU2 0.6132 0.4627 0.4559 0.4409 0.5479 0.4142 0.6419 0.4192 0.6298 0.3977 0.5994 0.4182

AU4 0.9034 0.7191 0.6610 0.5797 0.8859 0.7192 0.8492 0.5736 0.8660 0.5710 0.8770 0.5190

AU5 0.4112 0.2903 0.2873 0.2525 0.5122 0.2946 0.4536 0.3122 0.4707 0.3160 0.5099 0.3024

AU6 0.9144 0.5783 0.7304 0.5003 0.9023 0.5139 0.8959 0.5302 0.8988 0.5389 0.8914 0.5346

AU9 0.5422 0.4440 0.4897 0.4053 0.5418 0.3878 0.6255 0.4223 0.6292 0.4251 0.6476 0.4073

AU12 0.9310 0.6673 0.8621 0.5099 0.9336 0.5772 0.9356 0.5263 0.9257 0.5371 0.9347 0.5224

AU15 0.6716 0.4576 0.5465 0.3813 0.6701 0.3591 0.6540 0.3922 0.6634 0.3993 0.6512 0.3775

AU17 0.8824 0.6743 0.6738 0.5117 0.9096 0.6377 0.7424 0.5687 0.7217 0.5206 0.7515 0.5173

AU20 0.6113 0.4158 0.5387 0.3894 0.5859 0.4051 0.5304 0.4159 0.5570 0.3821 0.5377 0.2744

AU25 0.9280 0.9073 0.8839 0.7790 0.9048 0.8772 0.9643 0.8531 0.9661 0.8482 0.9648 0.7947

AU26 0.9064 0.7896 0.7468 0.6061 0.9013 0.7367 0.8771 0.6779 0.8713 0.6258 0.8753 0.6167

Average 0.7538 0.5792 0.7150 0.4855 0.7497 0.5351 0.7403 0.5166 0.7429 0.5037 0.7440 0.4811

Table 3: Average performance of different supervised auto-encoders in terms of disentangling the label information in all 12

AUs in DISFA database.

5. Conclusions

In this paper, the SFDAE and SFAE have been proposed

in order to learn robust and stable representations capable of

describing the evolution of the temporal events in unsuper-

vised and capable of predicting the label information in a

supervised manner. We showed that by combing the slowly

varying properties with the non-linear capabilities of de-

noising autoencoders we can extract abstract features which

can represent faithfully the facial behavioural dynamics.
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