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Abstract

We present in this paper a technique for Loitering de-

tection based on the analysis of activity zones of the mon-

itored area. Activity zones are learnt online employing a

soft computing-based algorithm which takes as input the

trajectory of object mobiles appearing on the scene. Statis-

tical properties on zone occupancy and transition between

zones makes it possible to discover abnormalities without

the need to learn abnormal models beforehand. We have

applied this approch to the PETS2017 IPATCH dataset and

addressed the challenge on detecting skiff boats loitering

around a protected ship, which eventually is attacked by the

skiffs. Our results show that we can detect the suspicious

behaviour on time to trigger an early warning.

1. Introduction

The beginning of the 21st century has seen a resurgence

of maritime piracy. According to the International Mar-

itime Bureau’s (IMB) Piracy Reporting Center, piracy has

been rising steadly for years [22]. Some regions in the Gulf

of Aden, West Africa, South East Asia and South America

have turned into dangerous places for commercial ships. It

is of utmost importance for ships in high risk areas to detect

piracy threats as early as possible so that the ship master can

initiate countermeasures while they are still effective.

Several events are useful indicators of an early warning

of a maritime threat. We can cite among them: ‘boat speed-

ing up’, the sudden acceleration of the mobile object; ‘boat

loitering’, the detected object stands/moves slowly in the

same area; ‘boat with anomalous direction’, an object has a

trajectory deviating from normal paths. While some other

works have addressed some of these events [4, 7, 21, 23],

loitering remains still to be characterised/exploited in the

maritime domain.

In this work we focus on the detection of Loitering

events, as set in the PETS2017 challenge on the maritime

IPATCH dataset. The proposed approach works by first de-

tecting Activity zones. Activity zones are learnt on-line

employing a soft computing-based algorithm which takes

as input the trajectory of detected mobile objects. Statis-

tical properties on zone occupancy and transition makes it

possible to discover abnormalities without the need to learn

abnormal models beforehand.

The remainder of this paper is organised as follows. The

next section gives a short overview of the related work. The

general system description is presented in Section 3. In Sec-

tion 4, it is explained how the boat loitering behaviour is ad-

dressed. Section 5 presents the main results and evaluation.

Finally, Section 6 draws the main conclusions and includes

our future work.

2. Related work

Maritime surveillance has become a subject of utmost

importance as the beginning of the 21st century has seen

a resurgence of maritime piracy. According to the Interna-

tional Maritime Bureau’s (IMB) Piracy Reporting Centre,

piracy has been rising steadily for years [22]. Some regions

in the Gulf of Aden, West Africa, South East Asia and South

America have turned into dangerous places for commercial

ships.

Different threats have been searched in the literature.

Most works are based on the analysis of vessel trajec-

tory provided by AIS and/or radar. Clustering methods

have been popular to detect ship traffic-related abnormali-

ties (deviating from normal routes; travelling in an anoma-

lous direction; travelling in a sea lane but at an anoma-

lously high speed; crossing the main sea lane at an anoma-

lous location; stopping in a prohibited anchoring location)

[4, 7, 21, 23, 20] or learning contextual areas at sea, such as

fishing areas or high piracy risk areas [5]. Detecting piracy

attacks has been the subject of some specific works. Garcia,

et al. [22] looks to build a reliable surveillance picture based

on matching boat tracking information with an ontology and

using Belief Theory [24]. The boat features analysed for

the threat are speed, direction, type and flag state. Boue-

jla et al. [3] have addressed piracy attacks against offshore

oil infrastructure (oil platforms or oil tankers); the param-

eters employed to characterise the asset in danger include
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the threat itself (the type of ship used by the attackers, its

speed and their weapons) and the environmental conditions

(the time of day, visibility, sea state, etc.). Lane et al. [13]

have employed Bayesian networks to detect threatening be-

haviours such as ‘close approach’ or ‘unexpected activity’

based on location, speed and heading of the suspicious boat.

Dabrowski, et al. [6] classify vessels as pirate vessels, fish-

ing vessels or transport vessels based on the tracked trajec-

tory of the vessel.

Loitering itself has been acknowledged to be important

for detection of a maritime threat [19]. Loitering refers to a

boat spending abnormally long time on the same area or per-

forming slow movements around a bigger area but still with-

out displacing itself a significant distance. This behaviour

has been studied extensively in its land-case counterpart as

loitering is a suspicious behavior that might lead to abnor-

mal situations, such as pickpocketing, attack to a person or

to a valuable asset [2, 11, 9, 17].

However, Loitering has generally been addressed as de-

tecting an object on the scene for a period of time that ex-

ceeds a given threshold [15, 14, 12]. This means that man-

ual adjustments on setting the threshold have to be done

according to the dynamics of the scene under scrutiny. In-

stead, we propose in this work to learn statistical properties

on zone occupancy that will allow automatic detection of

Loitering behaviour without the need of setting temporal

thresholds beforehand. Our system would then start by ex-

tracting the activity zones of the scene. Such zones would

be analysed at several resolutions to allow for detection of

Loitering on small or larger areas. Our contribution to the

literature is thus a methodology for loitering detection ap-

plied to the maritime domain, which is based on learning

statistical properties on zone occupancy without the need of

setting thresholds.

3. System description

In this work we propose an extension to the behaviour

analysis framework given in [18]; which is based on Se-

mantic modelling and trajectory analysis. In such frame-

work, the system can learn activity zones (context zones)

that characterise the scene dynamics. We extend that sys-

tem by extracting temporal statistics of object mobiles at

each zone to detect the abnormal behaviour of an object

Loitering.

The system is composed of three modules applied se-

quentially. In the first module, Tracklet calculation process

(Extraction of points of interest), we study the trajectory

speed and direction variations in order to distinguish be-

tween the object mobile in a stationary state (stop points)

or moving state; between the object mobile in a straight di-

rection or changing direction. The second module is a Zone

learning module where we aim here to automatically dis-

cover activity zones of the scene. In a first step, points of

interest obtained from the previous calculation process are

clustered together to obtain a first set of zones. In a sec-

ond step zones are refined with a zone merging procedure.

Indeed, It is possible that some discovered activity zones

are partially overlapping. When this is the case, both re-

gions are most certainly part of a bigger activity zone. Our

algorithm will attempt to merge those overlapping activity

zones. The third module is the Event Detection module:

Statistical confidence levels are applied on zone occupancy

measures to discover object mobiles spending suspiciously

long periods on a given zone. Note that the system requires

a detection and tracking algorithm that delivers trajectories

of each mobile object on the scene. The hypothesis is thus

that such a system is operational. In this work we employ

for our study the trajectories made available on the PETS

IPATCH dataset.

Figure 1. Processing chain for the proposed approach. Note that

this work includes only modules displayed in the lower raw. A

detection and tracking algorithm is assumed but not considered in

this work.

4. Boat Behaviour Analysis

Loitering detection is based on the analysis of activity

zones of the monitored area. Statistical properties on zone

occupancy and transition between zones makes it possible

to discover abnormalities without the need to learn abnor-

mal models beforehand. In our work, activity zones are

learnt on-line employing as input the trajectory of object

mobiles appearing on the scene. Two essential procedures

in our work are thus the trajectory processing and the dis-

covery (learning) of activity zones, which are explained

next.

4.1. Trajectory Processing

In order to detect boats abnormally staying long periods

of time around the protected ship, we analyse the monitored

boats speed profile. We aim to extract indicators of move-

ment such as speeding up or staying still in the vicinity of

the ship in order to distinguish loitering. We analyse the
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boat direction to complement with points of interest indi-

cating a direction change of the boat, and if the boat still

remains in the vicinity of the ship this may be a further indi-

cation of loitering. Figure 2 shows an example of extracted

speed points of interest.

Figure 2. speed-related points of interest are extracted from the

analysis of the mobile trajectory

Each mobile trajectory is defined as the set of points

[xj(t), yj(t)] corresponding to their position on the ground

on the t-th frame. The instantaneous speed for that mobile

at point [xj(t), yj(t)] is then v (t) =
(

ẋ (t)
2
+ ẏ (t)

2
)

1
2

,

and the direction θ that the mobile takes at that point is

θ (t) = arctan (ẏ (t) /ẋ (t)).

Each of these two time series is analysed in the frame

of a multiresolution analysis [16] with a Daubichis Haar

smoothing function, ρ2s (t) = ρ (2st), to be dilated at dif-

ferent scales s.

In this frame, the approximation A of v (t) by ρ is such

that As−1 (v) =
∫

v (t) ρ
(

2s−1t− b
)

dt is a broader ap-

proximation of Asv and correspondly for As−1 (θ) and

Asθ. The analysis is performed through six dyadic scales.

Speed changing points and direction changing points cor-

respond to those important discontinuities which remain

present across scales.

4.2. Zone Learning

Activity zones are computed having inputs of track speed

and direction changing points calculated as explained in

Section 4.1. These points are first clustered by a fast par-

titioning algorithm (the Leader algorithm [8, 10]), allow-

ing to quickly create an initial set of zones Zn. In a second

step the partition is corrected leading to the final activity

zones. To correct the initial partition, different relationships

between initial zones Zn are taken into account. For this

step, soft computing techniques are employed.

4.2.1 Soft computing relation clustering

Let us consider two different fuzzy binary relations, R1 and

R2, linking different sets X, Y, and Z :

• R1 = x is relevant to y

• R2 = y is relevant to z

It is then possible to find to which extent x is relevant to z

by employing the extention principle (noted R = R1oR2):

µR=R1◦R2 (x, z) = max
y

min [µR1 (x, y) , µR2 (y, z)]

µR1 and µR2 being the membership functions defin-

ing R1 and R2. The resulting relation, R, is symmetric,

R (x, y) = R (y, x), reflexive R (x, x) = 1; R is also a

transitive relation. R (x, y) is a transitive relation if ∃ z ∈
X, z ∈ Y/R (x, y) > max

z
min [R (x, z) , R (z, y)]. R can

be made furthermore closure transitive following the next

steps

Step1. R′ = R ∪ (R ◦R)
Step2. If R′ 6= R, makeR = R′ and go to step1

Step3. R = R′ Stop.

(1)

R is the transitive closure where

R ◦R (x, y) = max
z

min (R (x, z) , R (z, y)) (2)

4.2.2 Initial zone learning partition

For the first step, the clustering Leader algorithm is em-

ployed. It has the advantage of working on-line without

needing to specify the number of clusters in advance. In

this method, it is assumed that a threshold T is given. The

algorithm constructs a partition of the input space (defining

a set of clusters) and a leading representative for each clus-

ter, so that every object in a cluster is within a distance T

of the leading object. The first pattern is assigned to a clus-

ter. Then the next pattern is assigned to an existing cluster

or to a new cluster depending on the distance between the

pattern and the cluster leading representative. The process

is repeated until all patterns are assigned to clusters.

In this application, when a point is designed as cluster

leader (or leading representative), L, the cluster influential

zone, Zn, is defined by a radial basis function (RBF) cen-

tered at the position L; and the membership of a new point

p(x,y) to that zone is given by:

Zn(L, p) = φ(L, p) = exp(−‖p− L‖2T 2) (3)

The RBF function has a maximum of 1 when its input

is p=L and thus acts as a similarity detector with decreasing

values outputted whenever p strides away from L. An object

element will be included into a cluster if Zn(L, p) > 0.5.

The cluster receptive field (hypersphere) is controlled by the

learnt parameter T. In this work we employ the same set-

tings as in [18]
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4.2.3 Final zone learning partition

The final activity areas are found by merging similar initial

zones Zn. They are established by the fulfilment of different

relations between zones Zn. This procedure is achieved by

setting soft computing relationships between zones.

The first relation indicates if zone Zni overlaps zone

Znj . This relation is defined as follows:

R1ij : Zone Zni overlaps Zone Znj

R1ij =
3

∑

k=1





∑

p(x,y)∈(Xik,Yik)

Znj(Lj , p(x, y))



 (4)

and (Xik, Yik) =
{

(k+1)
3 T cos (θ) + Li

}

with θ = 0, ..., π

8 , ..., 2π

That is, points (x, y) ∈ (Xik, Yik) belonging to Zni

centered at Li are tested to verify the overlap/similarity be-

tween Zni and Znj .

Similar relations that we have introduced are as follows:

R2tij : zone Zni and zone Znj are destination zones for

mobiles departing from the the same activity zone Znk

R3tij : zone Zni and zone Znj are origin zones for mo-

biles arriving at the the same activity zone Znk

R4tij : zone Zni and zone Znj have about the same num-

ber of detected mobiles stopping at the zone

R5tij : zone Zni and zone Znj have about the same mo-

bile interaction time. The mobile interaction time is the

mean time a mobile spends in that zone.

All relations can be aggregated employing a soft com-

puting aggregation operator such as

R = R1 ∩ R2 ∩ R3 ∩ R4 ∩ R5 =
max (0, R1 +R2 +R3 +R4 +R5− 4) and made

transitive with the formulae given in Equation 1.

R then indicates the strength of the similarity between

Zni and Znj . If we define a discrimination level α in the

closed interval [0,1], an α− cut can be defined such that

Rα (x, y) = 1 ⇔ R (x, y) > α (5)

From the classification point of view, Rα induces a

new partition πα with a new set of clusters πα =
{

AZnα
1 , · · · , AZnα

k , · · · , AZnα
|πα|

}

such that cluster

AZnk
α is made of all initial zones Zni which up to the

alpha level fulfil the relations set above and can thus be

merged to form the final activity zone AZnα
k .

4.3. Boat loitering detection

Loitering detection corresponds essentially, in this work,

to measuring the amount of time boats may stay stationary

on a given area (activity zone), and determine whether it is

significantly different from the normal amount of time boats

usually stay around the protected ship. More specifically,

we want to establish an statistical measure indicating a boat

‘Unusually (abnormally) stays long at any zone’ around the

protected ship. The decision on abnormality is based on the

calculation of statistical confidence levels.

This statistics-based methodology is based on the idea

that ‘normal’ data objects follow a generating mechanism,

e.g. some given statistical process (distribution model).

‘Abnormal’ objects deviate from this generating mecha-

nism.

Such statistical measure is mathematically defined with

the following equation:

CL = 1.96 ∗
(

σ√
n

)

(6)

where σ is the standard deviation of the measured pa-

rameter, µ, and n is the number of observations of such

parameter. The confidence level can be interpreted as hav-

ing 95% confidence that the true value of µ lies between

[µ− CL, µ+ CL]. Such statistical bounds are employed

as a reference to decide whether a measurement could be

considered suspicious by comparing whether it lies inside or

outside such statistical bounds. The abnormality of a given

measurement is graded depending on how far it lies from

these statistical bounds.

It is assumed in this work a normal distribution of the

data for abnormality detection, that is, it is assumed ‘nor-

mal activities’ (‘staying in a zone’, ‘undertaken path fre-

quencies’) can be characterised by a mean value and sym-

metrical tolerance intervals around it. Furthermore, the cen-

tral limit theorem states that even if the population distribu-

tion is unknown, the sampling distribution of the mean will

be approximately normally distributed if the sample size is

large.

Let stayinZntime(trj , AZnα
k ) be the time a mobile

spends in the given activity zone AZnα
k . A mobile trajec-

tory is considered to suspiciously stay long in that activity

zone at resolution α if its stayinZntime measure lies

outside the confidence values; grading the abnormality by

calculating the ratio

R =
stayinZntime(trj , AZnα

k )

stayinZntime
(

∑

j trj , AZnα
k

)

+ CL
(7)

5. Experimental Results

We have addressed the challenge set in PETS2017 [1]

regarding the Loitering behaviour recognition of a boat in

the vicinity of a protected ship. As such, we have evaluated

the two sequences from the PETS dataset containing this

behaviour. The two test sequences are namely Sc3 Tk1 and

Sc3 Tk3. Scenario 3 corresponds in the dataset to a slow

approach from two skiffs to a protected ship equipped with
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Figure 3. Sc3 Tk1 of the IPATCH-PETS dataset. A) The schematic representation of the scenario indicates two skiffs loitering before

speeding up to attack a vessel. B) Two skiffs observed stationary (Loitering) by one of the ship cameras. C) The two skiffs observed

speeding up for an attack against the vessel.

Figure 4. Sc3 Tk1 of the PETS-IPATCH dataset. The two skiffs

have a loitering period before performing an attack to the ship.

Red points indicate boat decreasing speed. Green points indicate

boat increasing speed.

cameras to monitor the close range space. The skiffs first

remain long periods stationary, simulating being fishermen,

before speeding up to attack the ship. These two sequences

are appropriate for test as they contain long periods of sta-

tionary not far from the protected ship that can be consid-

ered as loitering activity. Figure 3 shows the schematic

interpretation of scenario 3 and provides some examples of

the skiffs captured by one of the ship cameras, first in sta-

tionary state (Loitering) and then approaching the ship at

high speed to perform an attack.

Our results to detect the Loitering state are summarised

in Table 1 respectively for scenarios Sc3 Tk1 and Sc3 Tk3.

Visual validation is used to verify if the result is a True Pos-

itive (TP), False Positive (FP), True Negative (TN) or False

Negative (FN). The real trajectories for the corresponding

sequences are shown in Figures 4 and 5 for each of the pro-

cessed sequences together with the detected loitering event.

Note that although in the figures the loitering event is de-

Figure 5. Sc3 Tk3of the PETS-IPATCH dataset. The two skiffs

have a loitering period before strongly speeding up to attack the

ship. Red points indicate boat decreasing speed. Green points

indicate boat increasing speed.

picted at the end of the stationary state, the system assess-

ing the situation around the ship continously and giving the

likelihood of loitering as calculated from equations 6 and

7. In Table 1, it can be observed that loitering events are

given with gradual levels of warning. It could be argued

that possibly when the threat or warning level is low (prob-

ably less than 50%) no event warning should be given and

as such we have marked produced events under 50% con-

fidence as FP and could probably not be forwarded to the

end user. The remaining of the produced events are marked

as definite True Positives as they carry a high level of con-

fidence and can be visually validated.

6. Conclusions

In this work we have addressed the challenge set on

PETS 2017 regarding loitering detection of boats around
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Sequence trackid eventhhmmss event Visual Evaluation

Sc3 Tk1 Boat 2 21/04/15 12:00:00 mobile 228 at 28% suspicsously staying long FP

Sc3 Tk1 Boat 1 21/04/15 12:00:00 mobile 227 at 28% suspicsously staying long FP

Sc3 Tk1 Boat 1 21/04/15 12:00:40 mobile 227 at 87% suspicsously staying long TP

Sc3 Tk1 Boat 2 21/04/15 12:00:40 mobile 228 at 87% suspicsously staying long TP

Sc3 Tk1 Boat 1 21/04/15 12:01:20 mobile 227 at 100% suspicsously staying long TP

Sc3 Tk1 Boat 2 21/04/15 12:01:20 mobile 228 at 100% suspicsously staying long TP

Sc3 Tk1 Boat 1 21/04/15 12:01:36 mobile 227 at 100% suspicsously staying long TP

Sc3 Tk1 Boat 2 21/04/15 12:01:36 mobile 228 at 100% suspicsously staying long TP

Sc3 Tk3 Boat 1 21/04/15 12:16:45 mobile 230 at 28% suspicsously staying long FP

Sc3 Tk3 Boat 2 21/04/15 12:16:45 mobile 231 at 28% suspicsously staying long FP

Sc3 Tk3 Boat 1 21/04/15 12:17:17 mobile 230 at 75% suspicsously staying long TP

Sc3 Tk3 Boat 2 21/04/15 12:17:17 mobile 231 at 75% suspicsously staying long TP

Sc3 Tk3 Boat 1 21/04/15 12:17:57 mobile 230 at 100% suspicsously staying long TP

Sc3 Tk3 Boat 2 21/04/15 12:17:57 mobile 231 at 100% suspicsously staying long TP

Sc3 Tk3 Boat 1 21/04/15 12:18:37 mobile 230 at 100% suspicsously staying long TP

Sc3 Tk3 Boat 2 21/04/15 12:18:37 mobile 231 at 100% suspicsously staying long TP

Table 1. Recognised behaviours in the PETS-IPATCH dataset.

a protected ship. The approach is based on the analysis of

real trajectories provided in the IPATCH dataset. First, ac-

tivity zones are learnt online employing a soft computing-

based algorithm which takes as input the trajectory ‘change

of speed’ or ‘change of direction’ points, extracted from the

object trajectories. Statistical properties on zone occupancy

will allow automatic detection of Loitering behaviour. Con-

trasting with state of the art algorithms, we can perform loi-

tering detection without the need of setting temporal thresh-

olds beforehand. The results obtained on the PETS2017

IPATCH dataset are encouraging and to our knowledge this

is a pioneering work on loitering detection on the maritime

domain. Our future work will include the analysis of tracks

fusing different sensors such as Radar, AIS and camera

tracking.
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