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Abstract

In this paper, we introduce Key-Value Memory Networks

to a multimodal setting and a novel key-addressing mecha-

nism to deal with sequence-to-sequence models. The pro-

posed model naturally decomposes the problem of video

captioning into vision and language segments, dealing with

them as key-value pairs. More specifically, we learn a se-

mantic embedding (v) corresponding to each frame (k) in

the video, thereby creating (k, v) memory slots. We pro-

pose to find the next step attention weights conditioned on

the previous attention distributions for the key-value mem-

ory slots in the memory addressing schema. Exploiting this

flexibility of the framework, we additionally capture spa-

tial dependencies while mapping from the visual to semantic

embedding. Experiments done on the Youtube2Text dataset

demonstrate usefulness of recurrent key-addressing, while

achieving competitive scores on BLEU@4, METEOR met-

rics against state-of-the-art models.

1. Introduction

Generating natural language descriptions for images and

videos is a long-standing problem, in the intersection of

computer vision and natural language processing. Solv-

ing the problem requires developing powerful models ca-

pable of extracting visual information about various objects

in an image, while deriving semantic relationships between

them in natural language. For video captioning, the models

are additionally required to find compact representations of

the video to capture the temporal dynamics across image

frames.

The recent advances in training deep neural architectures

have significantly improved in the state-of-the-art across

computer vision and natural language understanding. With

impressive results in object detection and scene understand-

ing, Convolution Neural Networks (CNNs) [22] have be-

come the staple for extracting feature representations from

images. Recurrent Neural Networks (RNNs) with Long

∗denotes equal contribution

Figure 1. Our model employs a temporal attention mechanism on

the visual features to identify key frames in the video. These are

mapped to semantic features in the language domain for better

context to the language model, which then generates the output

sequence. Previously attended frames and generated words iden-

tify the key frames for generating the next word.

Short Term Memory (LSTM) [15] units or Gated Recur-

rent Units (GRUs)[10], have similarly emerged as gener-

ative models of choice for dealing with sequences in do-

mains ranging from language modeling, machine transla-

tion to speech recognition. Advancements in these funda-

mental problems make tackling challenging problems, like

captioning [16, 44], dialogue [31] and visual question an-

swering [1] more viable.

Despite the fundamental complexities of these problems,

there has been an increasing interest in solving them. A

common underlying approach in these proposed models is

the notion of ”attention mechanisms”, which refers to se-

lectively focusing on segments of sequences [3, 46] or im-

ages [34] to generate corresponding outputs. Such atten-

tion based approaches are specially attractive for captioning

problems, since they allow the network to focus on patches

of the image conditioned on the previously generated tokens

[44, 16], often referred to as spatial attention.

Models with spatial attention, however cannot be read-

ily used for video description. For instance, in the

Youtube2Text dataset, a video clip stretches around 10 sec-

onds, or around 150 frames. Applying attention on patches

in these individual frames provides the network with local

spatial context. This however, does not take ordering of

the frame sequence or events ranging across frames, into

consideration. To incorporate this temporal attention into

the model, [46, 48, 26] extend this soft alignment to video
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captioning. Most of these approaches, treat the problem

of video captioning in the sequence-to-sequence paradigm

[36] with attentive encoders and decoders. This requires

finding a compact representation of the video, which is

passed as context to the RNN decoder.

However, we identify two primary issues with these ap-

proaches. First, applying attention sequentially provides the

model with local context at the generative decoder [45]. As

a result the decoder would be unable to deal with long-term

dependencies while captioning videos of longer duration.

Secondly, these models jointly learn the multimodal em-

bedding in a visual-semantic space [27, 48] at the RNN de-

coder. With the annotated sentences being the only supervi-

sory signal, learning a mapping from a sequence of images

to a sequence of words is difficult. This is specially true for

dealing with video sequences, as the underlying probability

distribution is distinctively multimodal. While [27] tries to

address this issue with an auxiliary loss, the model suffers

from the first drawback.

To address the aforementioned issues, we introduce a

model which generalizes Key-Value Memory Networks

[24] to a multimodal setting for video captioning. At the

same time, the framework provides an effective way to

deal with the complex transformation from the visual to

language domain. Using a pre-trained model to explicitly

transform individual frames (keys) to semantic embedding

(values), we construct memory slots with each slot being

a tuple (key, value). This allows us to provide a weighted

pooling of textual features as context to the decoder RNN,

which is closer to the language model. The proposed model

naturally tackles the problem of maintaining long-term tem-

poral dependencies in videos, by explicitly providing all im-

age frames for selection at each time step. We also propose

a novel key-addressing scheme (see Section 4), allowing us

to find the new relevance scores conditioned on the previous

attention distribution. It keeps track of previous attention

distribution and provides a global context to the decoder.

This allows us to exploit the temporal dependencies in the

recurrent key-addressing and in the language decoder.

In summary, our key contributions are following:

• We generalize Key-Value Memory Networks (KV-

MemNN) in a multimodal setting to generate natural

descriptions for videos, and more generally deal with

sequence-to-sequence models (Section 3).

• We propose a novel key-addressing schema to find the

attention weights for key-value memory slots condi-

tioned on the previous attention distribution (Section

4).

• The proposed model is evaluated on the YouTube

dataset [7], where we outperform strong baselines

while reporting competitive results against state-of-art

models (Section 5.6).

2. Related Work

Following the success of end-to-end neural architectures

and attention mechanisms, there is a growing body of lit-

erature for captioning tasks, in images and more recently

videos. To deal with the multimodal nature of the prob-

lem, classical approaches relied on manually engineered

templates [19, 11]. And while some recent approaches in

this direction show promise [13], but the models lack gen-

eralization to deal with complex scenes, videos.

As an alternative approach, [14, 18] suggest learning

a joint visual-semantic embedding, effectively a mapping

from the visual to language space. The motivation of our

work is strongly aligned with [30], who generate semantic

representations for images using CRF models, as context

for the language decoder. However, our approach signifi-

cantly differs in the essence that we capture spatio-temporal

dynamics in videos while generating the text description.

Building on this, and Encoder-Decoder [3, 9] models

for machine translation , [41, 40] develop models which

compute average fixed-length representations (for images,

videos respectively) from image features. These context

vectors are provided at each time step to the decoder lan-

guage model, for generating descriptions. The visual repre-

sentations for the images are usually transferred from pre-

trained convolution networks [32, 37].

A major drawback of the above approach is induced by

mean pooling, where context features across image frames

are collapsed. For one, this looses the temporal structure

across frames by treating them as ”bag-of-images” model.

Addressing this, [36] propose Sequence-to-Sequence mod-

els for accounting for the temporal structure, and [39] ex-

tend it to a video-captioning setting. However, passing a

fixed vector as context at each time step, creates a bot-

tleneck for the flow of gradients using Backpropagation

Through Time (BPTT) [42] at the encoder.

The notion of visual attention has a rich literature in Psy-

chology and Neuroscience, and has recently found applica-

tion in computer vision [25] and machine translation [3].

Allowing the network to selectively focus on the patches of

images or segments of the input sequences, representative

works [44, 46, 16, 4, 48, 26, 27] have significantly pushed

the state-of-the-art in their domain. The issues of fixed

length representation and gradient bottleneck are largely ad-

dressed by selectively conditioning the decoder outputs on

encoder states:

p(yi|yi−1, ..., y1, x) = g(yi−1, si, ci) (1)

where, yi is the readout, ci is the context from the encoder

and si = f(si−1, yi−1, ci), is the hidden state of decoder

RNN (See [3] for details).

However, as discussed in Section 1, sequential attention

provides the decoder with local context [45]. Addition-

ally, providing a semantic input which is closer to language
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Figure 2. The video is considered as a sequence of image frames {I1, ..., In}. The memory is filled with key-value pairs (ki, vi) that

capture the relationships between visual features and textual descriptions. The αt

i corresponds to the attention weights associated with the

memory slots (ht−1, ht, ...) being the hidden states of the decoder RNN. The memory is then queried over and over again to produce a

weighted sum of the values to be decoded using a standard LSTM RNN decoder into a word in the description.

space, as context to the decoder significantly improves on

the capability of the model [47]. Our work closely brings

these advances together in a Memory Networks framework

[43, 35, 20]. While we introduce Key-Value Memory Net-

works [24] in a multimodal setting, there are several other

key differences from previous works. For one, to our knowl-

edge this is the first work which introduces video caption-

ing in light of Memory Networks. This automatically deals

with problems of maintaining long-term dependencies in

the input stream by explicitly storing image representations.

Meanwhile we also tackle the ”vanishing gradient problem”

typical with training RNN Encoder-Decoder modules for

long input sequences.

Key-Value MemNNs [24] were originally proposed for

QA task in the language domain, providing the last time-

step hidden state, as input to the classifier. In this work,

we address a more complex problem of video captioning by

proposing a novel key-addressing scheme (details in Sec-

tion 4) and (key, value) setup for exploiting the spatio-

temporal structures. The model tracks the attention distri-

bution at previous time steps, thereby providing a strong

context on where to attend on the complete video sequence.

This implicitly provides a global temporal structure at each

readout. While similar in motivation to [47, 29], the model

architecture and domain of application, especially on cap-

turing global temporal dynamics in videos as opposed to

images or entailment, is significantly different.

3. Key-Value Memory Networks for videos

Our work is based on the encoder-decoder framework

[9, 3, 44, 41, 17], in a Memory Networks [43, 24] set-

ting to generate descriptions of videos. The encoder net-

work learns a mapping from the input sequence to a fixed-

length vector representation, which is passed to the decoder

to generate output sequences. Similar to standard Encoder-

Decoder with soft attention mechanism, our model (see Fig.

2) comprises an encoder module, key-value memories and

a decoder module.

3.1. Encoder

The encoder network E maps a given input sequence of

images in a videoX = {I1, ..., IT } of length T to the corre-

sponding sequence of fixed size context representation vec-

tors. As we are dealing with videos (sequence of images),

we define two different encoders to achieve the mapping.

CNN Encoder: Given an input image Ii ∈ R
NxM , the

CNN encoders learn a mapping f from image Ii to context

representations of size D given by f : RNxM → R
D. The

output of either fully-connected layers[32] or feature maps

of convolutional layers[46] of standard ConvNet architec-

tures is considered.

RNN Encoder: The RNN encoder processes the fea-

tures extracted from CNN Encoder of the frames sequen-

tially, generating hidden states hei at each time step which

summarizes the sequence of images seen so far, where

hei = g(f(Ii), h
e
i−1) (2)

While maintaining temporal dependencies, this allows us to

map variable length sequences to fixed length context vec-

tors. In this work, we use modified version of LSTM [15]

unit, as proposed in [49] to implement g. The RNN En-

coder allows the model to capture the temporal variation

between frames and take the ordering of actions and events

into consideration. Implicitly, this also helps in preserving

high level information about motion in the video [4]. We

extract the features from the CNN Encoder, and pass these

extracted feature vectors through the RNN Encoder.

3.2. Key­Value Memories

The model is built around a Key-Value Memory

Network [24] with memory slots as key-value pairs
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(k1, v1), ..., (kT , vT ). The keys and values serve the pur-

pose of transforming visual space context into language

space, and effectively capture the relationships between the

visual features and textual descriptions. The memory defi-

nition, addressing and reading schema is outlined below:

Keys (K): Using CNN Encoder, visual context ki is

generated for each frame Ii of the video. These appear-

ance feature vectors are passed through a RNN Encoder to

incorporate sequential structure (video being a sequence of

images), and hidden state hei at each timestep is extracted as

key ki, given by ki = hei .

Values (V ): For each image frame Ii, a semantic em-

bedding vi representing the textual meaning of a particular

frame/key is generated. It is difficult to jointly learn visual-

semantic embedding in Encoder-Decoder models, with su-

pervisory signal only from annotated descriptions [47]. To

mitigate this, we explicitly precompute semantic embed-

dings corresponding to individual frames in the video. In

our case, we obtained vi from a pretrained model ψ which

jointly models visual and semantic embedding for images

[44, 16, 41], given by vi = ψ(Ii). Now, for each frame Ii
in the video, we have a key-value memory slot (ki, vi).

Key Addressing: This corresponds to the soft-attention

mechanism deployed to assign a relevance probability αi

to each of the memory slots. These relevance probabilities

are used for value reading. We have introduced a new Key

Addressing scheme which is described in Section 4.

Value Reading: The value reading of the memory slots

is the weighted sum of the key-value feature vectors: φt(K)
and φt(V ) at each time step. φt(K) is used for key address-

ing at the next time step(details in Section 4) and φt(V ) is

passed as input to the decoder RNN for generating the next

word.

φt(K) =

T∑

i=1

α
(t)
i ki, φt(V ) =

T∑

i=1

α
(t)
i vi (3)

3.3. Decoder

Recurrent Neural Networks is used as decoder because

they have been widely used for natural language generation

tasks like machine translation, image captioning and video

description generation. Since, vanilla RNNs are difficult to

train for long range dependencies as they suffer from the

vanishing gradient problem [5], Long Short Term Mem-

ory(LSTM) [15] is used. The LSTM units are capable of

memorizing context for longer period of time using con-

trollable memory units.

The LSTM model has a memory cell ct in addition to the

hidden state ht in RNNs, which effectively summarizes the

information observed up to that time step. There are pri-

marily three gates which control the flow of information i.e

(input, output, forget). The input gate it controls the cur-

rent input xt, forget gate ft adaptively allows to forget old

memory and output gate ot decides the extent of transfer of

cell memory to hidden state. The recurrences at the decoder

in our case are defined as:

it = σ(Wiht−1 +Uixt +Aiφt(V ) + bi) (4)

ft = σ(Wfht−1 +Ufxt +Afφt(V ) + bf ) (5)

ot = σ(Woht−1 +Uoxt +Aoφt(V ) + bo) (6)

c̃t = tanh(Wcht−1 +Ucxt +Acφt(V ) + bc) (7)

ct = it ⊙ c̃t + ft ⊙ ct−1 (8)

ht = ot ⊙ ct (9)

where ⊙ is an element wise multiplication, σ is the sig-

moidal non-linearity. Wx,Ux,Ax and bx, are the weight

matrices for the previous hidden state, input, value context

and bias respectively.

Following standard sequence-to-sequence models with

generative decoders, we apply a single layer network on

the hidden state ht followed by softmax function to get the

probability distribution over the set of possible words.

pt = softmax(Up[ht, xt, φt(V )] + bp) (10)

Here pt is the probability distribution over the vocabulary

for sampling the current word and [...] denotes vector con-

catenation. Sentences with high probability are found using

Beam Search[36].

4. Key Addressing

Soft attention mechanism have been successful in im-

age captioning[44] and video captioning [46] because

they focus on the most important segments, and weights

them accordingly. Previous work based on soft attention

mechanism[46] use the decoder’s hidden state ht to find at-

tention weights of each memory unit. We propose a new

key addressing mechanism which looks at the previous at-

tention distribution over keys in addition to ht to select rel-

evant frames for generating the next word. The attention

distribution over keys denotes the importance of frames at-

tended so far and the hidden state of the decoder summa-

rizes the previously generated words. This allows us to take

into consideration the previously generated words, the at-

tention distribution at previous time steps and the individual

key representations ki’s to find relevance score for keys.

We experiment with two different Key-Addressing meth-

ods. In first method, we use the previous weighted sum of

the keys φt−1(K) directly to find next step attention distri-

bution. In second method, we have a Key-Addressing RNN

(referred to as Memory LSTM in Fig. 3) which takes previ-

ous value read over keys φt−1(K) as input.

hk
t = fk(φt−1(K), hkt−1) (11)

where fk is the recurrent unit. For first method, hkt is es-

sentially φt−1(K). The next step attention weights αt
i are

28



Figure 3. The key addressing LSTM is shown here. The memory

LSTM updates its hidden state using the last attention distribution

over keys. The new hidden state is used with decoder’s last hidden

state to get new relevance scores which are combined with values

and passed to the decoder to generate the next word.

obtained using the hidden state hk
t of this RNN-LSTM. The

hidden state of Key-Addressing RNN at initial time step is

the mean-pooled average of all the keys.

The query vector q is a weighted combination of the de-

coder and key-addressing hidden states. It summarizes the

frames seen so far and the generated outputs.

q =Wkh
k
t +Wdht−1 (12)

For obtaining the attention weights, the relevance score eti
of i-th temporal feature ki is obtained using the decoder

RNN hidden state ht−1, key addressing RNN hidden state

hkt and the i-th key vector ki:

eti = wt tanh(q+Uaki) (13)

where wt, Wd, Wk and Ua are parameters of the model.

These relevance scores are normalised using a softmax

function to obtain the new attention distribution αt, where:

αt
i = exp{eti}/

N∑

j=1

exp{etj} (14)

The segregation of the vision and language components

into key-value pairs provides a better context for the RNN

decoder. Also, the explicit memory structure provides ac-

cess to the image frames at all time steps allowing the model

to assign weights to the key-frames without losing informa-

tion.

5. Experimental Setup

5.1. Dataset

Youtube2Text The proposed approach is benchmarked

on the Youtube2Text[7] dataset which consists of 1,970

Youtube videos with multiple descriptions annotated

through Amazon Mechanical Turk. The videos are gener-

ally short (9 seconds on an average), and depict a single

activity. Activities depicted are open domain ranging from

everyday objects to animals, scenarios, actions, landscapes.

etc. The dataset consists of 80,839 annotations with an aver-

age of 41 annotations per clip and 8 words per sentence re-

spectively. The training, validation and test sets have 1,200,

100 and 670 videos respectively which is exactly the same

splits as in previous work on video captioning [46, 4, 26].

Key-Value Memories We select 28 equally spaced

frames and pass them through a pretrained VGG-16[32]

and GoogleNet[37] because of their state of the art per-

formance in object detection on Imagenet[12] database.

For an input image of size WXH , visual features with

shape (⌊W
16 ⌋, ⌊

W
16 ⌋, C) with C as 512 are extracted from

the conv5 3 layer of VGG-16. We simply average over the

feature maps which results in a feature vector of size C.

The visual features extracted from the pool5/7x7 s1 layer

of GoogLeNet is a 1024 dimensional vector. The feature

vectors are either directly used as keys or are passed to en-

coder RNN to generate keys as described in Section 3.

The values are generated from a pre-trained Densecap

[16] model, which jointly models the task of object local-

ization and textual description. The model identifies salient

regions in an image and generates a caption for each of

these regions. We extract the output of Recognition Net-

work which is encoded as region codes of size BxD, where

B is the number of salient regions or boxes, and D is the

representation with dimension 4096. Along with the fea-

tures, a score S is assigned to each of the regions which

denotes its confidence. A weighted sum of features of top 5

scores is calculated to get values.

Preprocessing: The video descriptions are tokenized us-

ing the wordpunct tokenizer from the NLTK toolbox[23].

The number of unique words were 15,903 in the

Youtube2Text dataset.

5.2. Model Specifications

We test on four different variations of the model which

help us identify changes in architecture that lead to large im-

provements on the evaluation metric. VGG-Encoder uses

features encoded from the last convolution layer in VGG-

16 [32] network, and GoogLeNet-Encoder uses features ex-

tracted from GoogLeNet[37] as input to the model. There is

no Key Addressing in the above two models which means

attention weights are obtained using last hidden state of de-

coder. t-KeyAddressing extends the GoogLeNet-Encoder

by addressing keys using the previous attention distribution

over keys. Finally, m-KeyAddressing addresses keys using

key addressing RNN instead of using the last attention dis-

tribution.
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Table 1. Experiment results on the Youtube2Text Dataset.

Model BLEU@4 METEOR CIDEr Feat. Fine

VGG-Encoder 0.404 0.295 0.515 No No

GoogLeNet-Encoder 0.427 0.303 0.534 No No

t-KeyAddressing 0.436 0.308 0.545 No No

m-KeyAddressing (Memory LSTM) 0.457 0.319 0.573 No No

Enc-Dec Basic(Yao et al. [46]) 0.3869 0.2868 0.4478 No No

GoogLeNet + HRNE(Pan et al. [26]) 0.438 0.321 . No No

LSTM-E(VGG + C3D)(Pan et al. [27]) 0.453 0.310 . No No

C3D(Yao et al. [46]) 0.4192 0.2960. 0.5167 Yes No

VGG + C3D + p-RNN(Yu et al.[48] 0.499 0.326 - Yes No

S2VT(Venugopalan et al. [39]) - .298 - Yes No

GRU-RCN(Ballas et al. [4]) 0.490 0.3075 0.5937 Yes Yes

5.3. Model Comparisons

We compare the model performance with previous state

of the art approaches and some strong baselines. Pan et

al. [27] explicitly learn a visual-semantic joint embed-

ding model for exploiting the relationship between visual

features and generated language, which is then used in a

encoder-decoder framework. Yao et al.[46] utilizes a tem-

poral attention mechanism for global attention apart from

local attention using 3-D Convolution Networks. Ballas et

al.[4] proposed an encoder to learn spatial-temporal fea-

tures across frames, introducing a variant GRU with con-

volution operations (GRU-RCN). In the current state-of-art

Yu et al. [48] models the decoder as a paragraph generator,

describing the videos over multiple sentences using stacked

LSTMs.

5.4. Evaluation Metrics

We evaluate our approach using standard evaluation

metrics to compare the generated sequences with the hu-

man annotations, namely BLEU [28], METEOR [21] and

CIDEr[38]. We use the code accompanying the Microsoft

COCO Evaluation script [8] to obtain the results reported in

the paper.

5.5. Training Details

The model predicts the next output word conditioning on

previously generated words and the input video. Thus, the

goal is to maximize the log likelihood of the loss function:

L =
1

N

N∑

i=1

|yi|∑

j=1

log p(yij |y
i
<j ,x

n, θ) (15)

where N is the total number of video-description pairs and

length of each description yi is |yi|. Here xn refers to

the input video provided as context to the decoder. We

train our network parameters θ through first order stochastic

gradient-based optimization with an adaptive learning rate

using the Adadelta [50] optimizer. The batch size is set

to be 64 and we optimize hyper-parameters, which include

number of hidden units in Decoder LSTM, key addressing

LSTM, learning rate and word embedding dimension for

the log loss using random search [6].

5.6. Results

In the first block of Table 5.1, we present the per-

formances of different variations of the model followed

by results of prior work in subsequent lines. The VGG-

Encoder model outperforms S2VT [39] and the Basic Enc-

Dec model [46] on all three metrics, which shows that it

is beneficial to use Key-Value Memory Networks in a mul-

timodal setting. We observe that using features from pre-

trained GoogleNet further improves the results. Using our

approach, we further outperform the Enc-Dec model [46].

Results on t-KeyAddressing and m-KeyAddressing shows

further boost in performances on all the metrics demonstrat-

ing the effectiveness of using Key Addressing scheme. m-

KeyAddressing outperforms Pan et al. [27] by a significant

margin on BLEU@4. While the improvements on ME-

TEOR are significant compared to t-KeyAddressing, [26]

performs slightly better. In the current setting, our model

is unable to outperform Yu et al.[48] and Ballas et al.[4]. It

must be noted that using more sophisticated regularizers for

training the decoder, as proposed in [2] and using a better

encoder[4] should lead to increased evaluation scores.

In Table 5.1 we also provide comparison on whether the

models use finetuning on the CNN encoder (represented by

Fine) or if they use external features, like on action recogni-

tion, optical flow (represented by Feat). It is to be noted,

that we do not finetune the encoderas compared to [4],

which finetunes the encoder CNN on UCF101 action recog-

nition set[33]. Also, no additional features are extracted for

gaining more information about motion, actions etc. as in

[48], [4], [39].

Fig 4 shows examples of some of the input frames and

generated outputs, along with ground truths. Some of the
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Figure 4. Samples generated on the Youtube2Text dataset.

examples demonstrate that the model is able to infer the ac-

tivities from the video frames, like ”swimming”, ”riding”

and ”flying” which is distributed across multiple frames.

6. Conclusion

We demonstrate the potential of Memory Networks,

specifically Key-Value Memory Networks for video cap-

tioning task by decomposing memory into visual and lan-

guage components as key-value pairs. This paper also pro-

poses a key addressing system for dealing with sequence-

to-sequence models, which considers the previous attention

distribution over the keys to calculate the new relevance

scores. Experiments done on the proposed model outper-

form strong baselines across several metrics. To the best

of our knowledge this is the first proposed work for video-

captioning in a Memory Networks setting, and does not

rely heavily on annotated videos to generate intermediate

semantic-embedding for supporting the decoder. Further

work would be exploring the effectiveness of the model on

longer videos and generating fine-grained descriptions with

more sophisticated decoders.
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F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using rnn encoder–decoder for statistical ma-

chine translation. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing

(EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014. Asso-

ciation for Computational Linguistics. 2, 3

[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical

evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555, 2014. 1

[11] P. Das, C. Xu, R. F. Doell, and J. J. Corso. A thousand frames

in just a few words: Lingual description of videos through la-

tent topics and sparse object stitching. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2634–2641, 2013. 2

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 5

[13] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng,

P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt, et al. From

captions to visual concepts and back. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1473–1482, 2015. 2

[14] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

T. Mikolov, et al. Devise: A deep visual-semantic embed-

ding model. In Advances in neural information processing

systems, pages 2121–2129, 2013. 2

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 1, 3, 4

[16] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully

convolutional localization networks for dense captioning.

arXiv preprint arXiv:1511.07571, 2015. 1, 2, 4, 5

[17] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3128–3137, 2015. 3

[18] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying

visual-semantic embeddings with multimodal neural lan-

guage models. arXiv preprint arXiv:1411.2539, 2014. 2

[19] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi,

A. C. Berg, and T. L. Berg. Babytalk: Understanding and

generating simple image descriptions. IEEE Transactions

31



on Pattern Analysis and Machine Intelligence, 35(12):2891–

2903, 2013. 2

[20] A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce,

P. Ondruska, I. Gulrajani, and R. Socher. Ask me anything:

Dynamic memory networks for natural language processing.

arXiv preprint arXiv:1506.07285, 2015. 3

[21] M. D. A. Lavie. Meteor universal: language specific transla-

tion evaluation for any target language. ACL 2014, page 376,

2014. 6

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[23] E. Loper and S. Bird. Nltk: The natural language toolkit. In

Proceedings of the ACL-02 Workshop on Effective Tools and

Methodologies for Teaching Natural Language Processing

and Computational Linguistics - Volume 1, ETMTNLP ’02,

pages 63–70, Stroudsburg, PA, USA, 2002. Association for

Computational Linguistics. 5

[24] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and

J. Weston. Key-value memory networks for directly reading

documents. arXiv preprint arXiv:1606.03126, 2016. 2, 3

[25] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of vi-

sual attention. In Advances in Neural Information Processing

Systems, pages 2204–2212, 2014. 2

[26] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical

recurrent neural encoder for video representation with ap-

plication to captioning. arXiv preprint arXiv:1511.03476,

2015. 1, 2, 5, 6

[27] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly model-

ing embedding and translation to bridge video and language.

arXiv preprint arXiv:1505.01861, 2015. 2, 6

[28] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a

method for automatic evaluation of machine translation. In

Proceedings of the 40th annual meeting on association for

computational linguistics, pages 311–318. Association for

Computational Linguistics, 2002. 6
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and P. Blunsom. Reasoning about entailment with neural

attention. arXiv preprint arXiv:1509.06664, 2015. 3

[30] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and

B. Schiele. Translating video content to natural language

descriptions. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 433–440, 2013. 2

[31] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and

J. Pineau. Building end-to-end dialogue systems using gener-

ative hierarchical neural network models. In Proceedings of

the 30th AAAI Conference on Artificial Intelligence (AAAI-

16), 2016. 1

[32] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 2, 3, 5

[33] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, 2012. 6

[34] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber.

Deep networks with internal selective attention through feed-

back connections. In Advances in Neural Information Pro-

cessing Systems, pages 3545–3553, 2014. 1

[35] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end mem-

ory networks. In Advances in neural information processing

systems, pages 2440–2448, 2015. 3

[36] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In Advances in neural infor-

mation processing systems, pages 3104–3112, 2014. 2, 4

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1–9, 2015. 2, 5

[38] R. Vedantam, C. Lawrence Zitnick, and D. Parikh. Cider:

Consensus-based image description evaluation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4566–4575, 2015. 6

[39] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,

T. Darrell, and K. Saenko. Sequence to sequence – video to

text. In Proceedings of the IEEE International Conference

on Computer Vision (ICCV), 2015. 2, 6

[40] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,

R. Mooney, and K. Saenko. Translating videos to natural

language using deep recurrent neural networks. In NAACL

HLT, 2015. 2

[41] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3156–3164, 2015. 2, 3, 4

[42] P. J. Werbos. Backpropagation through time: what it does

and how to do it. Proceedings of the IEEE, 78(10):1550–

1560, 1990. 2

[43] J. Weston, S. Chopra, and A. Bordes. Memory networks.

arXiv preprint arXiv:1410.3916, 2014. 3

[44] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-

dinov, R. S. Zemel, and Y. Bengio. Show, attend and

tell: Neural image caption generation with visual attention.

CoRR, abs/1502.03044, 2015. 1, 2, 3, 4

[45] Z. Yang, Y. Yuan, Y. Wu, R. Salakhutdinov, and W. W. Co-

hen. Encode, review, and decode: Reviewer module for cap-

tion generation. arXiv preprint arXiv:1605.07912, 2016. 2

[46] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,

and A. Courville. Describing videos by exploiting temporal

structure. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4507–4515, 2015. 1, 2, 3,

4, 5, 6

[47] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Im-

age captioning with semantic attention. arXiv preprint

arXiv:1603.03925, 2016. 3, 4

[48] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video

paragraph captioning using hierarchical recurrent neural net-

works. arXiv preprint arXiv:1510.07712, 2015. 1, 2, 6

[49] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neu-

ral network regularization. arXiv preprint arXiv:1409.2329,

2014. 3

[50] M. D. Zeiler. Adadelta: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012. 6

32


