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Abstract

Recent advances in video understanding are enabling in-
credible developments in video search, summarization, au-
tomatic captioning and human computer interaction. At-
tention mechanisms are a powerful way to steer focus onto
different sections of the video. Existing mechanisms are
driven by prior training probabilities and require input in-
stances of identical temporal duration. We introduce an
intuitive video understanding framework which combines
continuous attention mechanisms over a family of Gaussian
distributions with a hierarchical based video representa-
tion. The hierarchical framework enables efficient abstract
temporal representations of video. Video attributes steer
the attention mechanism intelligently independent of video
length. Our fully learnable end-to-end approach helps pre-
dict salient temporal regions of action/objects in the video.
We demonstrate state-of-the-art captioning results on the
popular MSVD, MSR-VTT and M-VAD video datasets.

1. Introduction

Automatically describing videos with natural language
text enables more efficient search and retrieval. It can aid vi-
sual understanding in the medical, security, and military ap-
plications, and can even be used to describe pictorial content
to the visually impaired. Recent advances in image classi-
fication [[16, [10]], object detection [26], semantic segmenta-
tion [[18], image captioning [7, 113} |36]], and localized image
description [12] tasks have fostered dramatic improvements
in image understanding. Spatial [36], temporal [38} 21} 40|
and attribute [39]] based attention models strive to localize
objects in image frames, actions in videos or attend to spe-
cific word attributes. These attention mechanisms helped
fuel recent progress, but our ability to understand how well
temporal attention works on video is limited given that most
datasets are comprised of short videos.

Current methods for generating attention weights are de-
termined by temporal trends in the training data, not by vi-
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Figure 1. Overview of the Steered Gaussian Attention Model for
video captioning. The attention filter is learned by training statis-
tics (center), temporal features (left), and a video summary (right).

sual concepts. For example, if training videos often end
with a human falling down, the model may learn to asso-
ciate end of video as it predicts the words “falls down”.
If a video and corresponding caption are “Woman scares
man skateboarding and he falls down”, the attention model
would perform as expected. But if the caption is “man
falls down and then does great skateboard trick”, the trained
attention parameters would perform poorly as the model
would seek attention over the wrong temporal location in
the video. Figure[I|shows a high level overview of our pro-
posed model. To steer the attention mechanism to the proper
region in the video, our model extracts frame-wise visual
concepts across the length of the video. This enables the
model to correlate specific concepts such as woman, man,
and skateboarding, with region-specific locations across the
video.

As attention weights are learned parameters, and param-
eters need to be fixed at train time, attention models are
constrained such that all samples have equivalent number
of regions. To enable the attention mechanism to be inde-
pendent of video duration, we present a Gaussian attention
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model which learns a continuous function.

Our steered Gaussian attention model uses an intuitive
video2vec latent encoding. When applied to variable length
videos in a hierarchical fashion, we form an elegant archi-
tecture which can obtain state-of-the-art captioning results
on the MSR-VTT [35]], MSVD [6] and M-VAD [31] video
captioning datasets. Our two main contributions are the in-
troduction of length agnostic Gaussian attention models and
temporal steering of these models:

Gaussian parametric attention. Soft attention models
have an intrinsic limitation that all input buffers need to be
of the same duration. This is because the attention vector
is associated with a learnable, but fixed dimension weight
matrix. For videos, this requires reducing longer videos or
padding shorter videos. The proposed parametric Gaussian
attention model removes this limitation by applying a con-
tinuous, rather than discrete weight distribution.

Temporal steering. Existing attention models are guided
by temporal features of the training data. For example,
when the phrase “winning goal” occurs, the attention might
jump towards the end of video. The introduced temporal
attention steering mechanism uses frame level visual con-
cepts to guide attention based on current video properties
(detection of objects, activities, etc.) and not on training
data trends.

2. Related Work

Success of deep learning in the still image domain
has influenced research in the video understanding domain
[15,4]. Early work on video captioning relied on extracting
semantic content such as subject, verb, object, and asso-
ciating it with the visual elements [30, [37]]. For instance,
[30] form a Factor Graph Model to obtain the probability
for the semantic content and then use a search based op-
timization to combine a subject, verb and object to fit in a
sentence template. With availability of large video-sentence
pair datasets with rich language information, recent studies
[33L7]] have demonstrated use of neural networks to directly
model language conditioned on video.

Initial works that introduced Recurrent Neural Networks
(RNNs) for video captioning used a mean pooled feature
as the video representation [33]. An alternate approach
uses an encoder-decoder [29] framework that first encodes
f frames, one at a time to the first layer of a two layer Long-
Short-Term Memory (LSTM), where f can be of variable
length. S2VT [34] encodes the entire video, then decodes
one word at a time.

Attention mechanisms were initially proposed in [2] and
used in video captioning context by [38]]. They allow the
focus of relevant temporal segments of a video conditioned
on the text-generating recurrent network. Spatial atten-
tion over parts of an image is shown by [36]. They also
present a hard-attention mechanism equivalent to reinforce-

ment learning with the reward for selecting the image re-
gion proportional to the target sentence. Semantic atten-
tion over word attributes has been shown to enhance image
captioning by [39]. Similarly, [8] and [41]] included video
attributes or tags to help generate improved captions. More
recently, video captioning was extended to paragraph gener-
ation using independent recurrent networks at the word and
sentence level [40]. Hierarchical recurrent networks have
also been used to encode the video in an embedding before
generating words [21]].

Knowledge transfer from independent language and im-
age data for image captioning was demonstrated by [L1].
Our work is loosely inspired by this study because we want
to use sentence independent visual features to improve the
generated captions. Our work is additionally inspired by
the soft attention model for video captioning presented in
[38]. We augment it by parameterizing the attention mecha-
nism with a Gaussian distribution over the video length and
then further guide the attention using independent tempo-
ral “concepts” of the video inspired by the word attributes
from [39]. Gaussian attention filters are discussed in [24]
but the application is limited to activity classification and
their equally spaced attention filters limit the use of atten-
tion for word generation. Our model is length agnostic since
each Gaussian learns normalized mean and sigma values
from the distribution.

2.1. Soft Attention

A simple way to encode video features is by averag-
ing pixels or features across all frames in the video. Most
commonly, features are the output of a frame passed into
an ImageNet pre-trained CNN. Soft Attention (SA) uses a
weighted combination of these frame-level features, where
the weights are influenced by the word decoder. Soft atten-
tion was first used in the context of video captioning in [38]].
They computed a frame relevance score egt) for each frame
1 of video vy, vg, ..., v, at decoder time step ¢.

egt) = WTtanh(Waht,l + Uyv; + ba) (1

Where, h;_1 is the hidden state at the previous time step
of the decoder, v; is the frame feature vector representation
of the " frame, and w, Wa, Ug, b, are learned parame-
ters. This can be interpreted as an alignment between the
encoder and decoder sequence. It allows the video encoder
to selectively emphasize relevant parts of the video. As the
frame relevance score is computed using fixed dimension
weight matrices, it restricts the exact number of frames in
the video. Moreover, given that the average length of videos
is a few seconds in most datasets, it seems counter intuitive
to have strong localized attention in such a short duration.
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3. The Steered Gaussian Attention Model

This section describes the main components of our
model- Gaussian Attention, steering and Video2Vec repre-
sentation.

3.1. Gaussian Attention

We define the Gaussian Attention (GA) to remove re-
strictions with the generic soft attention mechanism. The
relevance score that weighs the input sequence is modeled
with a Gaussian distribution. At each time step, the decoder
observes a filtered/weighted encoder sequence. GA weights
the input sequence based on the temporal location and the
shape of the distribution modeled by the mean and standard
deviation, respectively. We adapt the function to compute
a continuous relevance score e’ across the entire input se-
quence X = (x1,x2,...,xp) at decoder time step ¢ as-

N
e = mN(X|pf, ) @)

k=1

Where, each GA N (X |ut, %) is a Gaussian distribu-
tion with its unique mean y}, and covariance matrix X} at
time ¢, IV is the number of Gaussians and 7, is the mixing
coefficient. The mixing coefficients are normalized to sum
to one. The input features X € RP*F*M where D is the
number of input modalities, F' is the length of the each se-
quence, and M is the dimension of each feature. For exam-
ple, if the two input modalities of spatial domain and tempo-
ral domain are used, we can learn a unique set of Guassians
for each modality by setting D = 2. By varying mixing
coefficients, mean and covariance of basic Gaussians, the
superposition can approximate any continuous function by
using sufficient number of Gaussians. Hence with correct
parameters, a GA model can achieve the same function as
soft attention. We choose to model independent Gaussians,
and replace X}, with a scalar standard deviation, o}, at each
time .

Computing the parameters allows the filter to temporally
adapt to decoder decisions. With loss back-propagated at
each time step, the mean value of the Gaussian learns to
control focus on relevant locations of the sequence. Simi-
larly, the standard deviation can learn to extract information
from a longer or shorter segment. Thus, the GA formula-
tion makes it adaptive both in terms of location and range.
Resource utilization can be optimized as the decoder need
not necessarily compute attention over the entire input se-
quence. The mean and standard deviation are computed as:

w=pW,hi—1 + U, X +b,) 3)

ol = |Wyhi_1 +Us X + b, | 4
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Figure 2. Illustration of the parameterized Gaussian attention
model for steering the temporal alignment between the video and
word sequence. The caption is generated using a recurrent neu-
ral network. For a video, the mean and standard deviation of the
distribution is computed based on the outputs of the previous time
steps (dotted lines). The curves depict change in the attention over
the video based on the word generated in the caption generator.

Where, W,,, W5, U,, Us, b,, b, are learned weights.
We use the activation p(s) = |s|/(|s| 4+ ¢) for the mean
values to scale to range [0,1] as the input sequence is nor-
malized temporally. The normalization allows the model
to compute attention over sequences of varying length. It
also reduces the number of learnable weights from R"*"
to R"*N where h is hidden dimension size of decoder and
N < h. Similar to soft attention, the attention weights oz';
at time ¢ for input X are obtained by normalizing the rele-
vance scores. The input to the decoder is a weighted sum of
the input X using the attention at time ¢.

ot empled) .

F
' Zj:l exp(e?)

F
(X)) = al (6)
=1

Modeling the attention filter with a parametric distribu-
tion allows the decoder to view inputs with varying duration
and hence it is better at exploiting the temporal structure of
an input sequence. The parametric attention has the capa-
bility to sense the complete encoder sequence if required.
This is important in a translation like task where the gen-
erated word may hold relevance throughout the video. For
example, after the word man in Figure[2] the model learns to
expand the attention to allow the caption generator to view
the entire input as the associated visual feature of man ap-
pears in the entire video.
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3.2. Attention Steering

Traditional attention models are associated with a set of
weight matrices that are learned during training. During
test time, the weight matrices guide the attention and hence
limit the attention mechanisms by prior temporal statistics.
We introduce temporal attention steering that guides the at-
tention based on the visual features of a test video. The
temporal features across the video are normalized over all
frames. The resulting matrix is a temporal map that trans-
lates feature relevance to frame relevance. At each LSTM
time step, the model computes an updated frame relevance
vector. For example, if the network computes that “apple”
is an important feature for the next word prediction, the rel-
evance factor of the feature “apple” will be higher. The tem-
poral feature map in Figure 3] would then translate the rele-
vance factor of “apple” to the center/end of the video. This
provides a way to steer the attention without increasing the
number of inputs to the system.

We further investigate the use of word label embeddings
of objects present in video frames as temporal visual fea-
tures. We use an ImageNet classifier trained on 4k classes
[20] represented using a Glove [23]] word embedding. Rep-
resenting a large number of objects is important for “in-the-
wild” videos. A bottom-up grouping strategy [20] is applied
to the categories to deal with the problems of over-specific
classes. In reality, a sentence is described by both the ob-
jects and the whole scene as the context. Distinguishing
individual objects from others in a scene, especially when
there are multiple objects of different categories, can be
highly challenging. Hence, EdgeBox is used [42]] to ob-
tain proposal bounding box regions within each frame of a
video. The Glove word embeddings of bounding box class
labels are mean pooled to obtain a frame-level represen-
tation. We discover that the mean pooled class label em-
bedding is rich in semantic information and is closer to the
words in the ground truth sentence. As a complementary
or alternative approach to temporal word embeddings, one
could use frame CNN features directly.

3.3. Video2Vec Representation

In addition to the steering mechanism, an embedded vec-
tor representation of the entire video is input into the cap-
tioning model (right input in Figure[I)). To learn powerful
action and motion representations, we use a recent activ-
ity classification dataset- ActivityNet [S)], on human activ-
ity understanding that covers a wide range of complex daily
activities. It is comprised of 849 video hours in over 200
activity classes. As these videos were collected from on-
line video sharing sites they are excellent to transfer learned
features for MSVD and MSR-VTT datasets which are also
based on Youtube videos. The labeled videos are used to
train a standard video-based activity classifier. We utilize
two independent models with RGB (3- color channels) and
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Figure 3. Attention steering using normalized temporal feature rel-
evance. Frame level features are weighted based on the relevance
map and assists in guiding attention to video regions. W; and
W;_1 are words at times t and ¢t — 1, h;_1 is RNN hidden state.

Optical Flow (OF) inputs. Features before the loss layer are
used as Video2Vec-Activity representation.

4. Captioning Framework

The video captioning framework has three main
components- Attention Steering, Video2Vec encoder and
Gaussian attention based sentence generator as shown in
Figure|l|(left, right and center). The recently proposed hier-
archical neural encoder [21] technique efficiently captures
temporal dependencies in videos. Hence, we integrate it
by replacing soft attention with Gaussian attention between
all recurrent layers and term it as Hierarchy over Gaussian
Attention (HGA). The sentence generation engine takes in
input from all three to generate word sequences. Recurrent
Neural Networks (RNN) are a natural choice for generating
sequences such as natural language sentences. However,
RNNs suffer from vanishing and exploding gradient prob-
lems when learning long sequences. To solve this, we use
the LSTM variant of RNNs to learn sentence generation as
it is known to learn sequences with both short and long tem-
poral dependencies [7].

The model is trained using stochastic gradient descent by
learning parameters 6 for the sentence wy, ws...,w,. The
words loss for a video is 105S¢qption- The log-likelihood is
optimized by minimizing the loss for video V' with word
embeddings V. and Video2Vec embedding 5.

T7+1
0" = mgxtz_;log(wm Sy, Veswp-1560) (1)

where wqy and w1 are special tokens for start and end
of sentence. During testing, the model is input with the
token for beginning of sentence and it generates words until
the end of sentence token is generated.

Inspired by the work in [9] on multi-modal embedding
between text and visual inputs, we compute the cosine simi-
larity between the mean pooled video level word embedding
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(V,) and Gaussian attention weighted video vector (®v/).
This similarity measure is added to the caption generation
loss for the entire video:

VIoy

_— 8
vamer ®

l0s5yideo = losscaption +

5. Results and Discussion
5.1. Training Details

Each video frame is passed through the 152-layer
ResNet CNN model [10] pre-trained on ImageNet data,
where the [1 x 2048] vector from the last pooling layer-
pool5 is used as frame feature representation. In our HGA
model, the inputs to the first hierarchical layer are 12 frame
clips and the output at the last time step is the input to the
second hierarchy layer. We use the PTBTokenizer in the
Stanford CoreNLP tools [19] to pre-process all words in
captions. This involved converting all text to lower case, re-
moving punctuation and tokenizing the sentences. We use
captions only from the training and validation set to gener-
ate the vocabulary. A one-hot vector encoding of the vo-
cabulary is used to represent each word as a vector. For
MSR-VTT video categories, we use 300-dimension Glove
embedding [23]] to obtain word vector representations.

During training, ADAM optimization is used to mini-
mize the negative log likelihood loss. The learning rate
is 2 x 107* and we use decay parameters (3; = 0.9,
B2 = 0.999) as reported in [14]]. The hidden dimension
of LSTM layers in HGA is 1024 and for the sentence gen-
eration layer is 384. We employ a Dropout [28]] of 0.5 on
the output of all LSTM layers. The mini-batch size is 100
and all models are trained for 40 epochs. Hyperparameters
are selected by running tests on the validation set.

5.2. Dataset Description

We choose the Microsoft Video Description Dataset
(MSVD) [6]], the newly released Microsoft Research -
Video to Text (MSR-VTT) [35] and the movie descrip-
tion datset M-VAD [31], to evaluate the proposed model.
Standard train, validation and test splits were used for all
datasets. Detailed statistics are listed in Table [11

Table 1. Video-sentence pair dataset statistics.

MSVD MSR-VIT M-VAD

#sentences 80,827 200,000 54,997
#sent. per video ~42 20 ~1-2
vocab. size 9,729 24,282 16,307
avg. length 10.2s 14.8s 5.8s
#train video 1,200 6,513 36,921
#val. video 100 497 4,651
#test video 670 2,990 4951

5.3. Evaluation Metrics

Quantitative evaluation was performed using the Mi-
crosoft COCO caption evaluation tool [1] to make our re-
sults directly comparable with other studies. For evalua-
tion, we use standard metrics- BLEU [22]], METEOR [3]
CIDEr [132]] and ROUGE [[17] to score a predicted sentence
against all ground truth sentences. Typically, the generated
sentence correlates well with a human judgment when the
metrics are high as they measure the overall sentence mean-
ing and fluency. We report all scores as percentages (MET
is METEOR and B-n is n-gram BLEU).

5.4. Performance on MSVD

Table [2] reports current captioning results (top half) vs.
variations on our model (bottom half) on the MSVD dataset.
Our baseline model (Baseline GA-5) is a Gaussian atten-
tion with five Gaussians. The addition of a hierarchical
model (+HGA) shows significant improvement. The HGA
model learns powerful motion features that a simple atten-
tion is unable to capture. As recommended in [40], we test
a HGA variant with BLEU-4 score included in the caption
loss (BLEU reg). The BLEU score is computed on the val-
idation set and regularized with the loss after each mini-
batch. Though it significantly improves BLEU scores, other
scores are not much affected and we notice that sentence
fluency degrades as well.

The addition of Video2Vec-Activity (+RGB,OF) further
helps with METEOR scores due to importance of motion
features. The highest METEOR score that we achieve is
33.1% which matches the state-of-the-art. We achieve a
high BLEU-1 score with the baseline model and the hier-
archy seems to hurt the n-gram metric. Our implementation
of HRNE [21] yields a 31.7 Meteor indicating that more
frames (we use 120 frames with hierarchy 8 x 15 in place
of 160 frames with hierarchy 8 x 20), addition of Maxout
in word prediction, and inclusion of test captions in vocab-
ulary may be beneficial.

Table 2. MSVD caption evaluation results on the held out test set.

| Method | MET | B-1 [ B2 [ B-3 | B4 |

MP [33] 29.1 [ - - - [333
S2VT [34] 298 | - - - -

SA [38] 296 | - - - 419
p-RNN [40] 32.6 | 81.5 [ 70.4 | 60.4 | 49.9
HRNE Att [21] | 33.1 [ 792 [ 66.3 | 55.1 | 4338
Bascline GA-5 | 31.5 [ 804 [ 66.6 | 54.5 [ 42.8
+HGA 32.8 [ 79.1 [ 65.8 | 54.8 | 439
BLEU reg 308 | 81.6 [ 68.3 [ 552 | 424
+RGB, OF 331 [ 775 [ 641|534 [43.0
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Table 3. Performance evaluation with number of Gaussian filters
for attention on the MSVD test set.
| # Gaussians | MET | B-1 [ B-2 [ B-3 | B4 |

1 30.7 | 763 | 62.3 | 50.3 | 39.0
3 312 | 77.6 | 64.1 | 53.0 | 42.1
5 315 | 80.4 | 66.6 | 54.5 | 42.8

5.4.1 Analysis of Gaussian Attention

Since GA allows the model to focus on segments of the in-
put, we train baseline GA models with 1, 3 and 5 Gaussians.
Results are reported in Table[3] More attention curves allow
the model to view specific but multiple regions of the input
by increasing the number of learnable parameters. We ob-
served exploding gradient problems with higher number of
Gaussians as standard deviation starts to approach zero.

HGA: a woman is adding water into a pot
Ground Truth: a woman pours water onto mushrooms

woman adding water pot

> - o o | n—
Input «» p ‘Q’ Y— %“‘“
s

Video

HGA: a man is dicing an onion
Ground Truth: a chef is slicing an onion

man dicing onion

Figure 4. Gaussian attention visualization for sample videos from
MSVD. Distribution focuses on relevant video segment based on
key words (bold) in the sentence. For the word “adding”, relevant
activity is in the starting of video, hence the mean of the distribu-
tion is close to 0. X-axis ranges from 0 — 1 normalized temporal
video location and Y-axis is normalized attention weight a:f.

Figure [] shows words from generated sentences along
with the temporal Gaussian attention distributions gener-
ated on sample test MSVD videos. The distribution shows
the adaptable nature of Gaussian attention. Even though the
videos are short, at certain times the model needs to attend
to different parts of the video. We anticipate that with longer
and more complex videos, a higher number of Gaussians
would be required. More broadly, these results indicate that
the Gaussian attention is not restricted by the video duration
since the videos are normalized temporally.

5.5. Performance on MSR-VTT

Caption evaluation scores for our models on the MSR-
VTT dataset are reported in Tables ] and 5] Each model is
trained end-to-end and we compare our approach with re-

cent results. A single layer GA performs better than the
mean pooled video frame input features. The HGA model
adds hierarchy features to a single layer GA model and
hence is better at learning temporal dependencies. The sig-
nificance of Gaussian attention is shown by comparison of
HGA with and without attention. This has better perfor-
mance than a weighted average through an attention mech-
anism. To study the importance of temporal steering (STE)
and Video2Vec-Activity (RGB and OF) features, we also
input these as features to the captioning model. All of these
inputs have positive impacts on the evaluation metrics. The
addition of activity features show clear improvement over
the baseline HGA. The OF features yield slightly improved
scores over RGB. This indicates that motion/activity fea-
tures from the ActivityNet dataset generalize well to other
datasets.

Table 4. HGA results on the held out MSR-VTT test set.

[ Method | MET | B-4 | CIDEr | ROUGE-L |
Only GA I-layer | 25.6 | 346 | 374 574
HGA (wioatt) | 266 | 36.0 | 389 584
HGA 274 | 388 | 434 59.1

Across all features we observe that the scores did not
change significantly when trained without word features
loss from (§). However, it helped the model to converge
faster. While generating the vocabulary from the training
captions, we note that out of total 24,282 words, 10,155
words appear just once and 3,211 words twice. From the
vocabulary, 4,716 words were not part of the Glove 400K
dictionary. Such issues add to challenges of the language
model. Similar trends appear in other datasets as well.

Fusion based models — Although the METEOR score
does not improve with a combination of RGB and optical
flow features, all other metrics show improvement. It also
indicates that either of the features are sufficient to capture
the activity information. We also use the Glove embedded
video category label (CAT) available for all videos. The
combined model is trained by concatenating the features be-
fore input to the LSTM. We note that the categories are the
ground truth labels that are part of the original dataset and
hence are better than any features generalized from an an-
other dataset.

5.5.1 Gaussian Attention in Different HGA Layers

Experiments are run on the HGA model to compare soft and
Gaussian attentions. The HGA-only model can be inter-
preted as a three layer LSTM with the first two hierarchical
layers as the video encoder and the last layer as the sentence
generator or word decoder. We replace soft attention with
GA at multiple layer combinations. Results are reported in
Table[6] Adding GA at more layers seem to help focus on
relevant inputs and features. Attention on the middle HGA
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Table 5. MSR-VTT results on the held out test set. We compare with recent entries in the MSR Video to Language Challenge.

Method ‘ METEOR | BLEU-1 | BLEU-2 | BLEU-3 | BLEU4 | CIDEr | ROUGE-L
Dong et al. [8]] 26.9 - - - 39.3 45.9 58.3
Multimodal (only visual input) [25]] 27.0 - - - 38.3 41.8 59.7
Shetty and Laaksonen [27] 217.7 - - - 41.1 46.4 59.6
Mean pool 254 75.3 60.4 46.4 34.1 35.8 57.7
HGA 274 79.7 64.8 511 388 | 434 50.1
+ STE 27.6 79.8 64.4 50.1 379 434 59.2
+RGB 27.6 79.7 64.6 50.8 38.6 42.8 58.9
Ours +OF 27.7 79.5 64.8 50.9 39.0 43.8 59.6
+RGB, OF 27.7 79.9 64.9 51.0 39.2 43.5 59.2
+RGB, OF, CAT 28.2 80.3 66.1 52.5 40.5 45.3 60.4
layers can be viewed as the weighted sum of the encoded Acknowledgement

outputs of video clips input to the first layer. Attention is
most important at the word decoder (layer 3) as it not only
finds relevant segments in the video but also relevant HGA
encoded features based on generated words.

Table 6. Comparing Gaussian attention at different layers for
MSR-VTT test set. Adding GA show clear improvement over SA
and attention is most important at the word generation layer. MET
is METEOR and B-1 to B-4 are n-gram BLEU scores.

Layer replacing | MET | B-1 | B-2 | B-3 | B4
SA with GA

None 26.7 | 7777 | 62.6 | 48.4 | 36.1
3 273 | 789 | 63.6 | 49.8 | 38.1
3,2 274 | 793 | 645 | 50.8 | 38.8
3,2,1 (HGA) 274 | 79.7 | 64.8 | 51.1 | 38.8

5.6. Performance on Movie Description Dataset

We present results of the HGA model on the M-VAD
movie description dataset. This is a very challenging dataset
as the videos are not specific activities but are movie scenes
with complex sentences. We obtain a METEOR score of
6.9%, which is an improvement over the HRNE (6.8%) [21]]
and S2VT (6.7%) [34]] models. The Bleu scores are 17.3%,
6.0%, 2.7%, 1.0% for 1,2,3,4 — grams, respectively.

6. Conclusion

We introduce a general purpose Steered Gaussian Atten-
tion Model for video understanding. Rather than use fixed
training priors, we use video attributes as features along the
length of the video to smartly steer the attention. When
these temporal video features are bundled with a video sum-
mary vector, a semantically rich latent representation con-
tinuously feeds the captioning engine. A Gaussian paramet-
ric descriptor adds a degree of freedom to the input videos.
The usage of hierarchical recurrent models are both efficient
and robust. We demonstrate state-of-the-art captioning re-
sults on multiple video datasets.

We would like to thank NVIDIA for donating some of
the GPUs used in this research.
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