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Abstract

This paper presents a framework for saliency estima-

tion and fixation prediction in videos. The proposed frame-

work is based on a hierarchical feature representation ob-

tained by stacking convolutional layers of independent sub-

space analysis (ISA) filters. The feature learning is thus

unsupervised and independent of the task. To compute the

saliency, we then employ a multiresolution saliency archi-

tecture that exploits both local and global saliency. That is,

for a given image, an image pyramid is initially built. Af-

ter that, for each resolution, both local and global saliency

measures are computed to obtain a saliency map. The inte-

gration of saliency maps over the image pyramid provides

the final video saliency. We first show that combining lo-

cal and global saliency improves the results. We then com-

pare the proposed model with several video saliency models

and demonstrate that the proposed framework is capable of

predicting video saliency effectively, outperforming all the

other models.

1. Introduction

Visual saliency is the quality of an item, e.g., an ob-

ject, region or superpixel, standing out relative to its neigh-

bors. Visual saliency is often considered a fast bottom-up,

feed-forward process, which sometimes can be overridden

by top-down and task-driven factors. In computer vision,

saliency detection techniques are favored as a preprocess-

ing step to curtail the immense amount of visual information

and to speedup algorithms. Saliency techniques have hence

been employed in applications such as signal compression

[12], object detection [16], object recognition [11], object

tracking [2, 26], unsupervised background subtraction [25],

and video summarization [20], where efficiency is a con-

cern.

Motivated by the wide range of applications (see [22] for

a review), there has been an increasing interest in the topic

of saliency prediction. In computer vision community, the

saliency research has followed two main tracks: (1) fixation

prediction, and (2) salient object detection [1]. The first

one deals with predicting the locations a human observer

will be looking at in images, while the second deals with

segmentation of the most salient object. Although the two

problems are highly related, the formulation and evaluation

criteria are different. In this paper, we address the saliency

estimation problem as fixation prediction in natural videos.

2. Related Work

The saliency prediction problem is widely studied for

still images [3]. The video saliency has been, however,

overlooked in comparison to image saliency. In this section,

for brevity, we briefly review some of the video saliency

methods and refer the readers to existing surveys [9].

An early method of video saliency prediction is [8],

which extends [15] by incorporating a foveation mecha-

nism, motion and flicker features. Itti and Baldi [14] es-

timate video saliency based on Bayesian surprise, which

quantifies the saliency by measuring the differences be-

tween posterior and prior beliefs of the observers. The fast

and efficient saliency model [23] is extended to video by

employing a spherical structure, where a Bayesian center-

surround is used [24]. A Bayesian approximation is also

derived by [28] using self-resemblance features in order to

predict saliency in videos.

Inspired by the information maximization model of at-

tention [4], a technique based on temporal and spatial decor-

relation is proposed in [31]. It extracts maximum change

over time by using principal component analysis (PCA) to

compute temporal saliency while non-negative matrix fac-

torization (NMF) is used to extract the spatial saliency. The

two cues are merged in order to infer the final saliency.

Mancas et al. [7] compute saliency in terms of the rarity

of features, where motion amplitude and direction are used

as a temporal feature in the video domain.

There exists some recent works using deep learning tech-

niques. Chaabouni et al. [5] employed transfer learning

to adapt a previously trained deep network to the task of

saliency prediction in natural videos. Their motivation for

transfer learning is the relatively small corpus of video
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Figure 1: General overview of the saliency prediction

databases with human fixations for the training of a deep

network. Alternatively, to get around the limited amount

of training data in end-to-end learning pipelines, we em-

ploy an approach based on unsupervised greedy layer-wise

learning of features from natural image statistics, which ap-

proximates deep learning techniques [18]. While such a

representation may not be optimal, it has been proven ap-

propriate and efficient for action recognition in videos [17].

The most relevant prior work to the current framework is

our previous unsupervised hierarchical model (UHM) [30]

for saliency prediction in still images. In essence, we are

here extending UHM for video stimuli. To achieve this

end, we learn a spatio-temporal feature representation. In

learning features from image statistics, contrary to the hand-

crafted features, temporal properties are explicitly learned

from data in an unsupervised process.

To summarize, our contributions are: (1) extending the

UHM model for video, (2) reformulating the model to in-

clude spatial prior information, and (3) assessing the per-

formance of the proposed model using a standard saliency

benchmark [27] for video stimuli.

3. Method

Figure 1 illustrates an overview of the proposed fixation

prediction framework. For a series of video frames, we first

form a pyramid representation. On each scale, the video

frames are processed using the proposed saliency predic-

tion pipeline, based on stacked ISA networks. The saliency

pipeline computes both global and local saliency, which are

fused to obtain a unique conspicuity map at each scale. The

intermediate maps are eventually averaged to derive the fi-

nal saliency map, which can be further enhanced using a

spatial prior (e.g. a center bias).

3.1. Saliency Estimation

We define the saliency, Sal as

Sal = P (S|F,X) = P (S|F )P (S|X), (1)

where S is a random variable indicating saliency, F repre-

sents an RGB image, X is the spatial locations, P (S|X)
determines the spatial prior, and

P (S|F ) =
1

m

m
∑

γ=1

Sl(F, γ)Sg(F, γ), (2)

which defines the saliency from the image, γ indicates

scale, Sl(·, ·) and Sg(·, ·) are the functions estimating local

and global saliency at a given scale, respectively.

Local saliency. To measure local saliency, we employ

Shannon’s self-information measure in small image patches

via a sliding window procedure. That is, a window sweeps

the image and Sl(F, γ) is evaluated for each patch and

mapped to the central pixel of the patch. This process pro-

duces the local saliency for all the pixels in the image. We

thus define local saliency of an image patch, p, as:

Sl(F = p, γ) = − log(P (fγ)) = −
n
∑

i=1

log(P (fγi )) (3)

fγ = ISAnet(p, γ),

where fi is the i-th feature of the n-dimensional feature

vector f , obtained by employing the ISA network, denoted

by the function ISAnet(·, ·). We will discuss the ISA net-

work in full details later. Under the normality assumption,

fγi ∼ N (0, 1), the local saliency is obtained by

Sl(F, γ) = α+
1

2

n
∑

i=1

(f
γ

i )
2, (4)

where α is a constant. It is worth noting that the local

saliency as formulated above corresponds to the amount

of self-information in the center of the fovea given a small

neighbourhood.

Global saliency. In the proposed method, the global

saliency is modeled in terms of the equilibrium distribution
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of a random walk on an ergodic Markov chain, a chain in

which it is possible to go from every state to every state.

Thus, a graph-based representation is adopted where each

pixel in the image is a node in the graph and a state in the

random walk. That is, given an image consisting of sev-

eral patches, denoted F = {pi, i = 1, · · · , q}, the global

saliency of the image consists of the saliency of the individ-

ual patches as

Sg(F = {pi, i = 1, · · · , q}, γ) = {e
−1
kπi ; i = 1, · · · , q}

πA = π (5)

A = ψ(F, γ),

where πi is the i-th element of the eigenvector π corre-

sponding to the equilibrium distribution, k is a smoothing

factor set to the maximum dimension of the image, and A

is a stochastic transition matrix computed by a transition

function ψ(·, ·) as follows:

ψ(F = {pi, i = 1, · · · , q}, γ) =







e
−D(f

γ
i

,f
γ
j )

∑
z e

−D(f
γ
i

,f
γ
z )
, i 6= j

0, i = j

(6)

f
γ
i = ISAnet(pi, γ),

where D(·, ·) is a distance function. We are employing 1−ρ
as the distance, where ρ is the Spearman’s rank correlation

coefficient between two given vectors. Given image patches

and their corresponding feature scale γ, the transition func-

tion ψ(·, ·) computes the probabality of transition between

all the patches as a transition matrix.

Spatial prior. Spatial priors can be used to boost the per-

formance, particularly in a top-down attention model where

a task-specific model is considered [21], e.g., in the task of

detecting cars. While top-down models can exploit a prior

based on the locations of specific items, bottom-up models

follow a simpler prior based on the fact that many interest-

ing items are located in the center of images. In other words,

they exploit center-bias phenomenon [29]. Thus, we define

P (S|X) as a two-dimensional Gaussian distribution, i.e.,

P (S|X) ∼ N (µ,Σ), (7)

where µ = (h/2, w/2), with h and w denoting the height

and width of the image plane, and Σ = diag(σ1, σ2) is a di-

agonal covariance matrix. We choose σ1, σ2 through cross-

validation.

3.2. ISAnet: Network of Independent Subspace
Analysis

In this section, we explain the feature representation

using stacked layers of independent subspace analysis

Figure 2: ISAnet architecture.

(ISA) [30]. Figure 2 illustrates the inner architecture of

an ISA network (ISAnet) unit. Each ISAnet unit receives

a video patch and produces a neural response, i.e., a fea-

ture representation of the patch. As depicted, the vectorized

video patch is passed through two stacked layers of ISA,

where the concatenation of layer responses produces the fi-

nal feature representation. The ISAnet is a fast feed-forward

network that is easy to employ in saliency estimation after

learning the weights of the network. This network is trained

in a greedy layer-wise unsupervised manner. To continue

with the explanation of the training procedure, we first re-

view the basic principles of ISA.

Independent Subspace Analysis (ISA). Independent

subspace analysis is an unsupervised learning algorithm

mimicking a neural network consisting of a hidden and an

output layer [13]. The neural interpretation of ISA is illus-

trated in Figure 3. As depicted, ISA consists of a fully con-

nected layer and a pooling layer and each output of the net-

work is a non-linear function of the inputs and the weights

of the layers expressed as

oi(x;W,V) =

√

√

√

√

s
∑

z=1

Viz(

n
∑

j=1

Wzjxj)2, (8)

where x is an n-dimensional input vector, W ∈ R
s×n is the

matrix of input weights, and V ∈ R
l×s indicates the matrix

of pooling weights, and n, s, l, are the input dimensionality,

and the number of simple and pooling units, respectively.

In ISA, the pooling weights V are typically fixed. Thus,

the training procedure boils down to estimation of W via

the following minimization for a set of q′ unlabelled and

whitened samples, {xt, t = 1, ..., q′}:

minimize
W

q′
∑

t=1

l
∑

i=1

oi(xt;W,V), (9)

s.t. WWT = I
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Figure 3: Independent subspace analysis as a neural architecture with a subspace of size 2, each pooling neuron looks at two

simple neurons in the previous layer.

Training the ISAnet. The training of an ISAnet is done

layer-wise, where one ISA neural unit is learned in each

layer. The procedure is depicted in Figure 4 and has two

phases. That is, batches of video patches of size s1 × s1 ×
c× t1, where s1 is the spatial resolution, c number of image

channels, and t1 the temporal length, are flattened and the

weights of the first ISA unit, denoted as W1, are estimated

using (9). To train the second ISA in an efficient way, akin

to [17], slightly bigger video patches are sampled and the

response of the first ISA unit is calculated since the W1 is

known and fixed. The responses of the first ISA layer are

flattened to a vector and dimensionally reduced by principal

component analysis (PCA) and used as input to the second

ISA unit. Thus, the second ISA unit weights in W2 are

obtained using (9), where the inputs are based on the re-

sponses of the first ISA. The first ISA unit filters extract the

low-level features and the second ISA filters are represent-

ing richer contextual information such as long-term frame

dependencies in the temporal domain [17].

Figure 5 visualizes some exemplar filters learned for

each layer. While visualizing the W1 filters is straight-

forward, to visualize W2, we employed activation maxi-

mization method [10] which finds the input pattern that can

maximally activate each output of a neuron in the second

ISA unit.

Feature extraction using ISAnet. The feature extraction

is performed using the ISAnet, depicted in Figure 2. Having

the weights, W1 and W2 determined, akin to [30], we em-

ploy a sliding window approach. For each video patch, the

ISAnet response is computed and used to obtain the saliency

for the central pixel of the middle frame in the saliency

pipeline. It is worth noting that we use the same ISAnet

with different video resolutions.

4. Experiments

We evaluated the proposed model using the AS-

CMN [27] dataset. ASCMN consists of five video cat-

egories, including, abnormal, surveillance, crowd, mov-

ing, and noise, where human fixations are provided as the

ground-truth. The diversity of video types helps us to obtain

a better understanding of the performance of the saliency es-

timation methods. Furthermore, ASCMN tries to establish

a benchmark, which makes comparison to various methods

easy. We thus compare the proposed model to Mancas [19],

Culibrk [6], Seo [28], SUN [32], and vFES [24].

The comparison is carried out using the area under the

curve (AUC) of receiver operating characteristic (ROC)

curve as the performance measure as recommended by [27].

That is, the values of the estimated saliency map are treated

as a classification score where the classification task is to

determine if a pixel is a fixation or not. The positive samples

are fixation locations and the negative samples are picked

randomly from non-fixation points. To compute the met-

ric, we use the toolbox provided in ASCMN, which makes

comparison with other methods easy.

4.1. Model Parameters

The training of ISAnet was done by random sampling

of approximately one million video patches from training

videos, which were randomly picked from YouTube. The

resolution of each video was adjusted to 640 × 360. After-

wards, W1 and W2 were learned as described in the pre-

vious section. V1 and V2 were set to form subspaces of

size 4, i.e., l = 4. The parameters, including, the temporal

width of patches in both layers (t1, t2), the multi-resolution

scales (γ), and (σ1, σ2) for the spatial prior, were chosen

through repeated 5-fold cross-validation, where validation

and test sets come from the ASCMN database. We en-

sured each fold of validations contained at least one video of

each category and no overlap between videos of the folds.

The parameter values are t1 = t2 ∈ {5, 7, 9, 11}, σ1 =
σ2 ∈ {0.01, 0.05, 0.1}, and the scale sets for construct-

ing videos at multiple resolutions are γ ∈ {{0.5, 0.7, 1},

{0.7, 1, 1.4}}. The spatial size of the fovea was fixed at

24 × 24. Nonetheless, using the fast implementation trick
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(a) Training ISA. (b) Training the second ISA unit in ISAnet.

Figure 4: Training phases of stacked convolutional ISA for videos in ISAnet. Two ISA units are trained, where first ISA unit

learns W1 and the second one learns W2 meanwhile the W1 is fixed fixed. (a) Learning of W1 is similar to any ISA by

sampling video patches. (b) learning of W2 has three steps, (1) some bigger patches are sampled, (2) the responses of W1 to

interior patches are calculated and linearized, (3) the W2 are learned from the patches of linearized responses.

(a) First ISA unit filters (W1) (b) Second ISA unit filters (W2)

Figure 5: Exemplar filters of the first and second ISA units

in an ISAnet. Visualization of W2 is carried out by the

activation maximization method [10].

of [17], we sampled 32 × 32 patches for the second ISA in

the training phase of the ISAnet architecture.

4.2. Performance Analysis and Discussion

The performance of the proposed model is summarized

in Table 1. We report the individual performance of the lo-

cal and global pipelines. While on the average the global

pipeline outperforms the local one, it falls short in terms

of noise and crowd categories in comparison to the local

pipeline. This indicates that for an input stimuli where the

elements of interest are relatively numerous and small (e.g.

people in crowd), the local self-information is a better mea-

sure of saliency. Nonetheless, computing the saliency using

the product of the global and local saliencies, i.e. the full

pipeline, improves the overall performance on all the cat-

egories, except crowd, achieving average performance of

0.66. It is worth noting that crowd category seems the most

difficult stimuli for the proposed framework. The global

pipeline and local pipeline achieve the average performance

of 0.64 and 0.62, respectively.

Spatial prior. Incorporating a spatial prior improves the

performance of the proposed model significantly. On aver-

age an improvement of 21% is obtained by employing the

Figure 6: The effect of center bias prior on the crowd

videos. In each row, from left to right: estimated saliency

with no center prior, estimated saliency with center prior,

and human fixations overlaid on the images.

center-bias. The largest improvement is 41% for the crowd

category. This can be an indicator that salient motions are

present in the center of crowd videos. Figure 6 depicts ex-

amples of the crowd videos and the effect of center bias on

the prediction of saliency in them. Further examples from

each category are provided in Figure 7. As depicted, the

output is more similar to the ground-truth once the spatial

prior is employed, i.e., the responses are re-weighted.

Comparison. Comparing the proposed model and other

saliency methods, we learn that the proposed model outper-

forms all the other methods. It is worth noting that this is

achievable with the help of the spatial prior. Otherwise, the

proposed model without such a prior outperforms the other

models only in the category of abnormal videos. This sug-

gests that the proposed model detects the saliency far from

the center more effectively than the saliency in the center,

examples of such responses can be seen in Figure 6. By

reweighing the saliency map to emphasize the central area,

this deficiency is, however, addressed. It is worth noting
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Table 1: Performance of the proposed model, local pipeline, global pipeline, and full pipeline with and without spatial prior

in comparison with other models. The scores of other models are extracted from the relevant publications. The AUC score is

reported.

Model
abno-

rmal

survei-

llance
crowd moving noise mean

Proposed (local) 0.71 0.69 0.56 0.55 0.65 0.62

Proposed (global) 0.73 0.69 0.54 0.66 0.60 0.64

Proposed (full, no prior) 0.76 0.71 0.55 0.68 0.64 0.66

Proposed (full) 0.82 0.80 0.79 0.83 0.76 0.80

vFES [24] 0.75 0.77 0.74 0.79 0.75 0.76

Mancas [19] 0.74 0.80 0.65 0.60 0.67 0.68

Culibrk [6] 0.73 0.72 0.68 0.63 0.65 0.67

SUN [32] 0.68 0.68 0.60 0.59 0.62 0.65

Seo [28] 0.71 0.65 0.61 0.63 0.60 0.63

that the role of spatial prior is multiplicative and re-weights

the detected saliency. This necessitates correct detection

of salient regions compared to additive spatial prior which

boosts both salient and non-salient areas.

5. Conclusion

This paper presented a method based on unsupervised hi-

erarchical feature learning for predicting fixations in videos.

The features are extracted using a hierarchy of independent

subspace analysis networks, consisting of two stacked ISAs,

in multiple resolutions. To predict fixations, global and lo-

cal saliency are computed and combined in each resolution.

The final saliency is obtained by averaging the saliency over

multiple resolutions. Our evaluations revealed that the pro-

posed model significantly improves over the other meth-

ods. Nonetheless, the spatial prior plays an important role

in the results. This indicates that: (1) while the proposed

model detects the salient areas, it fails to weight them cor-

rectly, and (2) there is potentially a strong center bias in

the database. The second phenomenon is less investigated

in videos and it needs to be studied further. Future studies

will investigate deeper models and different techniques for

feature learning from natural image and video statistics.
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