
Joint Mobile-Cloud Video Stabilization

Gbolahan S. Adesoye

University of California, Santa Cruz

gadesoye@ucsc.edu

Oliver Wang

Adobe Research

owang@adobe.com

Abstract

In this work we analyze the complex trade-off between

data transfer, computation time, and power consumption

when a multi-stage data-intensive algorithm (in this case

video stabilization) is split between a low power mobile

device and high power cloud server. We evaluate de-

sign choices in terms of which intermediate representations

should be transferred to the server and back to the mobile

device, and present a graph-based solution that can update

the optimal joint mobile-cloud computation separation as

the hardware configuration or user’s requirements change.

The practices we employ in this work can be extended to

other mobile computer vision applications.

1. Introduction

Increasing amounts of visual data is captured, viewed,

analyzed, and shared directly on mobile devices. However,

these devices are limited in terms of memory and computa-

tional power, and are unable to perform many state-of-the-

art computer vision and computer graphics algorithms. One

way to overcome these limitations is to perform such ex-

pensive algorithms on cloud-based servers. However, there

is an inherent trade-off in terms of latency, power consump-

tion, bandwidth, and connectivity requirements when trans-

ferring data to and from cloud servers. In this work, we an-

alyze this trade-off as it applies to the application of video

stabilization, and present an optimal division of labor be-

tween mobile and cloud computation for a variety of real

world configurations.

While mobile devices are becoming more and more pow-

erful, the disparity between mobile and cloud based systems

is likely to exist for the foreseeable future due to inherent

power and size constraints. In fact, algorithms that split

computation across devices are likely to become increas-

ingly useful, as always-on connectivity becomes the norm,

and mobile bandwidth and data limits improve. New appli-

cations of neural networks show impressive results in many

domains, but often require powerful GPUs for computation.

Applications that take advantage of large databases, will

also benefit from a joint mobile-cloud framework. Cloud

servers have an additional benefit in that they can provide

power computation independent of the mobile device, so

even if a large portion of the world’s population is operat-

ing on less powerful mobile devices, cloud-based solutions

can enable computationally complex applications to have a

wider reach.

In this work, we look at the problem of video stabiliza-

tion as a case study for analyzing different ways to split pro-

cessing between mobile and cloud computation. We choose

video stabilization as it is an important application – hand

held mobile video capture is playing an increasingly signifi-

cant role in our culture, and in most cases, users do not have

the luxury of steady-cams or dolly shots for creating smooth

motion. As a result, nearly all video sharing platforms of-

fer software-based stabilization as a service, and more and

more cameras (iPhone for example) perform software stabi-

lization on every video captured. In addition to the practical

significance, video stabilization is a multi-part process with

high data requirements, making the division of labor non-

trivial.

We present a system that splits the algorithm into a

client-server architecture, with the entire pipeline imple-

mented in its entirety on both systems. This allows us to

transmit various levels of intermediate data, and make a di-

rect comparison between computation time, bandwidth, and

power consumption. The client performs the data acquisi-

tion, and is also the target device for consumption of the

stabilized video (e.g., viewing and sharing), meaning that

the entire video must start and end on the client. While we

consider mobile phones as our client, the same technique

could be applied to any connected low power compute de-

vice, such as wearable cameras. In order to address dif-

ferent hardware setups, we propose a graph-based formu-

lation which can interactively compute the optimal distri-

bution of computation based on the current hardware setup

and users preferences. We show that the optimal splitting

can in fact be somewhat counter-intuitive, for example, it

may be preferable to send the entire input video rather than

extract features locally under certain configurations.

The main contribution of this work is a description of

1 36

a system for splitting the computation of a state-of-the-art

video stabilization method between a mobile device and

cloud server, using a graph formulation to compute optimal

distributions of work for different scenarios. We explain in

detail how we measure the various cost functions to evalu-

ate the trade-off, and provide analysis for different quality

levels and hardware configurations. These techniques could

be applied to any complex algorithm that we would like to

jointly compute on low power mobile devices and a high

powered cloud computer. We plan to release our Android

test source code which can be used as a framework to im-

plement the same methodology in other problem domains.

2. Related Work

We first discuss prior work related to video stabilization

and then existing works on joint mobile-cloud computation.

Video Stabilization Software-based video stabilization

is becoming an increasingly important preprocessing step

for user created video. Initial solutions to video stabiliza-

tion [22, 9] modeled motion with a rigid 2D transform,

which are fast to compute, but cannot handle real 3D scenes

with motion parallax.

When significant compute power is available, video sta-

bilization methods have shown good results by first recon-

structing the scene in 3D and then smoothing the result-

ing 3D camera trajectory. Once this virtual camera path

is computed, the result can be rendered either as a warped

mesh [18], or using a MRF to select different parts of the

input video sequence [15]. While these methods show im-

pressive quality results, the 3D reconstruction step is com-

putationally expensive and fragile.

As a result, the above two methods have both been ex-

tended to operate directly in the image domain, for example

by smoothing a subspace of 2D features trajectories [19], or

joint frame selection and stabilization [13].

Other fast stabilization methods include approaches that

perform a linear programming optimization to find an opti-

mal set of similarity transforms [11], a variation of which

is used in the cloud-based Youtube stabilizer. It has also

been shown to be possible to use the phone’s onboard in-

ertial sensors [14] for the analysis stage, as is used in the

Instagram Hyperlapse app.

In fact, some of these above approaches have been im-

plemented to run entirely on the mobile device. This has a

number of obvious advantages, most importantly the ability

to operate in the absence of a network connection. However,

these approaches achieve this by limiting the quality in one

way or another, most often by restricting the motion models

to low-degree of freedom transforms (such as similarity or

affine), which means that they cannot correct for things like

parallax or rolling shutter effects. As connectivity is rapidly

improving, and “offline”-devices become more rare, we fo-

cus this work on a joint cloud/mobile solution to achieve a

higher quality stabilization.

As a compromise between these global motion models

and full 3D reconstruction, a number of works have pro-

posed spatially varying homograpy transforms, which are

smoothly interpolated over the image [21, 10]. Similar

mesh-warping methods have been shown to be a power-

ful way of distorting images and videos while preserving

realism, and have been successfully used in the past for re-

targeting [31], perspective correction [3], stereo modifica-

tion [16], and 360 degree stitching [17]. We choose to im-

plement a recent state-of-the-art approach called Bundled

Camera Paths (BCP) [21], which is able to handle some de-

gree of parallax due to the mesh-based warping approach,

and demonstrates good results in difficult stabilization cases

without requiring a potentially fragile 3D reconstruction.

However, we note that many of the conclusions we draw

could be easily extend to other approaches and applications.

Joint Mobile/Cloud Processing The rise of mobile de-

vices and cloud compute services such as Amazon’s EC2

has lead to the creation of an entirely new research area

called mobile cloud computing (MCC). While MCC has re-

ceived increasing amounts of coverage and interest recently

(please refer to the recent surveys [1, 4, 27, 26], there have

been relatively few works that describe in detail practical

systems for computer vision applications.

Some similarity exists in other domains, for example,

[5] describes algorithms that compute compressed feature

representations to perform cloud computation, for example

audio fingerprinting for song recognition (e.g., Shazam), or

compressing images before sending them to the mobile web

browser to save bandwidth.

In terms of graphics applications, Ferzli et al. [6] de-

scribe a method where entire images are sent to a server for

basic image processing routines. Prior work has also looked

at gaming and proposes an adaptive approach which varies

the rendering quality based on available bandwidth [30]. As

opposed to this we look at the benefits of jointly performing

different stages of the pipeline on mobile and cloud devices.

Similar to us, Gharbi et al. [8] present an approach

where a highly compact low resolution image representa-

tion is sent to a server where photometric enhancements

are applied and the transform is returned to the mobile de-

vice which renders the final output image. Our method

is inspired by this approach, and addresses a different set

of transformations which allow for geometric warping of

video data rather than photometric image transforms.

3. Method

The input video (I) originates on the mobile device,

and the output stabilized video (O) is viewed or shared di-

rectly on the mobile device as well. All other steps can be

37

I F H M O

F ′ H ′ M ′ O′

IF

IF ′

FH

FH ′

F ′H

F ′H ′

HM

HM ′

H ′M

H ′M ′

MO

M ′O

M ′O′

O′O

Figure 1: An example cloud-mobile computation graph, in

this case for video stabilization. Nodes encode steps of the

algorithm, where for example, A indicates mobile and A′

indicates cloud computation (for definition of node labels,

see Sec 3). Edges, e.g., AB, encode the cost of computing

B and transferring the previous state from A to B. We show

one example of an optimal computation path for a specific

hardware configuration in red.

distributed across mobile and cloud computation devices.

Most video stabilization routines operate with a similar set

of distinct steps. Feature tracks (F) are computed in the in-

put videos, which are then mapped to a motion model (H),

which is then smoothed over time and a deformation model

(M) is used to rendered the output video (O).

We consider each of these intermediate steps as nodes in

a directed graph, where edges encode the associated costs

(Figure 1). The cost of an edge AB is defined as:

AB = λpEenergy(A,B)+λtEtime(A,B)+λdEdata(A,B)
(1)

Where each error function encodes the cost of computing

B, and the cost of transmitting the result of A to the plat-

form that computes B. Eenergy measures the consumption,

Etime measures the computation time and Edata measures

the data transfer, and λ# are application specific weights.

This representation allows us to find an optimal computa-

tion distribution by searching for shortest paths in this graph

from I to O for different hardware configurations and pref-

erences.

We now present a brief overview of each step as it applies

to Bundled Camera Paths (BCP) [21] but refer readers to the

original paper for full details.

3.1. Bundled Camera Paths

First, features are tracked from frame-to-frame using

Lucas-Kanade feature tracking [2]. This produces a set of

features F where Fi(t) = [x, y, x′, y′] is the ith feature cor-

respondence at frame t that indicates the pixel at coordi-

nates (x, y) gets mapped to (x′, y′) in frame t+ 1.

In BCP, the motion model H consists of a global homog-

raphy warp and a subsequent grid of local homographies

which model the residual motion, allowing the method to

correct for parallax. Without loss of generality, these can be

Figure 2: The deformed grid H (white), and features F
(red).

combined into a single homography grid where Hj(t) is the

jth homography at time t. Fig 2 shows H and F overlaid

on an image. From Fig 3, it is clear that the center of the

grids follow paths.

Each grid of homographies H(t) is computed by solving

a system of linear equations with 4|j| ∗ 2 unknowns, where

|j| is the number of grid cells. This linear system minimizes

the error E(H(t)) = Ed(H(t), F (t)) +αEs(H(t)), where

Ed is the data term encouraging homographies to match the

feature correspondences, Es is the smoothness term which

encourages similar deformation between neighboring ho-

mographies, and α is a weighting term.

Once the per-frame motion (H) has been estimated, a

second optimization procedure is performed which solves

for a new set of local homographies Ĥ which are smoothed

both spatially (across t) and temporally (across j).

O(Ĥ) = Eh(H, Ĥ) + λtEt(Ĥ) + λoEo(Ĥ)) (2)

Where Eh = |H(t) − Ĥ(t)|2 encourages the deformed

homographies to stay near the measured ones. For each

frame t and nearby frame r, Et = |Ĥ(t) − Ĥ(r)| enforces

temporal smoothness in the output path. For each grid

cell m and all its neighbor n, the spatial smoothness term

Eo = |Ĥm(t)−Ĥn(t)|
2 ensures that neighboring homogra-

phies are similar. This linear system of equations is solved

over all frames simultaneously, and involves 4|j||i| ∗ 2 un-

knowns where |i| is the number of frames.

Improvements over BCP We additionally describe a cou-

ple small improvements over BCP that we found to improve

result quality, and may be useful for re-implementation.

In [21], the similarity constraint is written as:

Es(T, T̂) =
∑

t̂

|t̂−t̂1−τR90(t̂0−t̂1)|
2, R90 =

[

0 1
−1 0

]

(3)

for each triangle T in the mesh, where τ is a constant based

on T , and t̂, t̂0, t̂1 form the deformed triangle T̂ . One issue

is that this term leads to a degenerate case; t̂ = t̂0 = t̂1

38

Figure 3: Top: Bundled camera paths overlaid on an input

frame. Red paths show un-stabilized trajectories and blue

the stabilized ones. The lower figures show all trajectories

projected into the middle, which demonstrate that different

grid cells require different transformations.

yields zero error. We instead use the distortion energy pro-

posed in Zhang et al. [32], which is defined between an in-

put and deformed quad Q, Q̂ as,

Es(Q, Q̂) = mins∈S

4
∑

i=1

|s(qi)− q̂i|
2 (4)

where S is the set of all similarity transforms. This equation

has a closed form solution, for a full derivation please refer

to prior work [32].

Finally, in the original work, after computing final loca-

tions Ĥ there is no guarantee of C0 or C1 continuity be-

tween neighboring homographies, so small gaps were filled

by bilinear interpolation [21]. However, we found this ap-

proach to be brittle, as it often produces artifacts in-between

grid cells. Instead, we simply re-mesh the warped homogra-

phy grid, where each vertex is the average of all of the ver-

tices of the neighboring homographies. This yields a mesh

M which can be used to render the warped output video O.

3.2. Implementation

We develop an equivalent video stabilization system on

both mobile and cloud systems, which allows us to eas-

ily interchange components. Both systems use OpenCV

3.1.0 and FFmpeg 3.0.3 for video encoding and decoding,

OpenGL for rendering after re-meshing, and Eigen for ma-

trix computations. We use libcurl to initiate and handle

HTTP requests on the mobile, and Abyss server on the

server to respond to these requests. In addition, we use

FastCV to extract feature points on the client.

On the server side, we run our code on a 16GB RAM, In-

tel core i7-4980HQ Quad core processor Ubuntu 16.04LTS

machine which is capable of 3.7GHZ on each cores. For the

mobile, we use a 2GB RAM Motorola Moto G, 4th gener-

ation device which has a Octa-core processor (4x1.5 GHz

Cortex-A53 and 4x1.2 GHz Cortex-A53) and Adreno 405

GPU, running on android 6.0. We believe that these spec-

ification capture the average specifications of smartphones

today. For profiling the client, we use App Tune up Kit

(ATK) [28] and Trepn [25] which are android applications

capable of giving real time information on power consump-

tion and data usage for a particular application. Our system

was tested on a WiFi, T-mobile LTE and T-mobile 3G net-

work with average bandwidth values shown in table 3.

The final video was compressed using an MJPEG Codec.

Feature points were transferred as packed 32bit floats with

accompanying packed 16bit integers for indexing. We also

use packed 32bit floats to represent the mesh and optimized

homographies.

To cover a wide range of input scenarios, we tested our

system on a dataset of videos obtained from different smart

phones (Nexus 5X, iPhone 5C, BLU WinLTE, Nexus 7 and

Motorola Moto G4), most of which range from 10-20 sec-

onds, and averaged the results over this dataset. The results

reported in table 3 show the average values per frame over

this dataset. We include the input videos and output stabi-

lizations in the supplemental material.

Data. Given a video with p frames, and a setup

that uses m × n grid cells and maximum of o fea-

ture points, we can estimate the resulting sizes in bytes:

Fdata = (8× o× p)+(2× o), Hdata = (8× p×m× n),
Mdata = (2× p×m× n), and the size of the compressed

video gives the values for uploading/downloading the full

video. We split the results into upload and download data

Edata(A,B) = Edata u(A,B)+Edata d(A,B), which can

then be computed by adding up the above quantities We ver-

ified these measurements experimentally through ATK as

well. Because of the limitation of the test device, we set m
and n to 12.

Time. Etime(A,B) can be measured for each edge on

the client and server separately and summed afterwards.

We make use of the high resolution time library defined

under std::chrono in C++. Again, for paths that require

data transfer, we note that Etime(A,B) is a function of

not only the compute power but also the data transfer rate,

which usually fluctuates. We therefore split Etime(A,B)
into computation and data transfer time, Etime c(A,B) +
Edata u(A,B)/γu + Edata d(A,B)/γd where γu,d are av-

erage download speed and upload speeds, as shown in Table

1. The values in this table were obtained from [24] and [23].

Energy. Similar to computing Etime, we split the con-

39

3G 4G

(Mbps) Tmobile Verizon Sprint AT&T Tmobile Verizon Sprint AT&T

Download 3.48 0.66 0.64 2.22 21.02 21.11 15.04 18.91

Upload 1.91 0.27 0.10 0.79 11.59 8.22 4.70 6.77

Table 1: Average data speed for the four major carriers

estimated from [23] and [24] at the time of submission.

sumption into data and computation related: Eenergy =
Eenergyc

(A,B) + τuEdatau
(A,B) + τdEdatad

(A,B). To

compute Eenergyc
(A,B), we perform multiple runs of the

application on our device for each edge on different videos,

and report the average power consumption used for that

stage as measured by ATK [28]. We note that ATK only

allows us to measure the power for the entire applica-

tion, thus, to measure the energy consumption of a partic-

ular edge say HM , we simply measure the energy for the

path, IFHM and then subtract the energy we measured for

IFH . The values obtained were also cross checked with

Trepn [25]. τu and τd correspond to the average power con-

sumption per up- and downloaded MB. We compute this for

different connection types (e.g., LTE and 3G) empirically,

by measuring the energy consumption of file upload and

download at different locations, and averaging out over the

entire result, see Table 2. While these measurements are

rough, and will not capture the exact energy consumption,

which is a function of many uncontrolled variables, such

as temperature, packet-loss, and background processes, we

found the numbers we obtain are sufficient for computing

the splits in computation that we require.

Upload (mJ/MB) Download (mJ/MB)

3G 19386.38 4031.95

LTE 7288.81 3628.66

WiFi 15775.13 2148.18

Table 2: Estimated energy consumed in millijoules per

megabyte

3.3. Graphbased Solution

After the different cost functions are evaluated as de-

scribed above, our graph-based representation allows for the

user to interactively adjust the importance of different cri-

teria, for example varying the weights based on how much

power consumption vs computation time they are willing to

expend. This flexibility allows our method to be used in

a wide range of application scenarios, with even adaptive

computation splitting based on the current state of the de-

vice, for example when transitioning from a WiFi to a 3G

connection.

0 5 10

100

200

300

400

500

Number of Grid Cells

T
o

ta
l

R
u

n
n

in
g

T
im

e
(m

s)

IFHMO

IFH→M→O

I→FHM→O

I→FHMO→O

I→FH→MO

Figure 4: This plot shows how the running time changes for

a number of different paths through the cloud-mobile com-

pute graph as the algorithm parameters are adjusted. The

effect of the distribution of work largely dominates algo-

rithmic settings, but cloud processing helps reduce the time

growth, allowing for more motion parallax correction.

For the results that we present below, we set λp = λt =
1, λd = 10, which gives us the best trade-off with our avail-

able hardware setup, and encode a roughly equal penalty on

each modality. On the other hand, when we set the param-

eters to be λp = 10, λt = λd = 1, for example when we

want to run in a power-saver mode, we get a completely

different path. These resulting paths are shown in Fig 5.

These results indicate that fully local, or fully cloud based

computer vision solutions are only a subset of the various

paths between input and output of the graph, and are of-

ten sub-optimal. We note that due to caching, there may be

slight differences in total time when compared to the indi-

vidually computed parts. If more precise measurements are

required, it is possible to directly evaluate the performance

of the entire path on the graph.

4. Results

Table 3 enumerates all of the choices for which com-

putation to perform on the mobile device and which to

perform on the cloud, along with their measurements. In

particular, we find that the paths IF → HM → O and

IFH → M → O to provide a nice balance between run-

ning time, data, and energy usage, depending on the hard-

ware configurations. A final production ready optimized

system could correspond to different values for each of

the edges in our graph, yielding absolute runtime improve-

ments, and possibly a different final path, but the overall

process to compute it would be the same.

As the method is largely resolution independent (most

computations are performed on the dimensions of the grid),

we vary the complexity of the grid (e.g., increasing the

number of homographies per frame |k|). This allows us to

smoothly vary between a single global motion model, and

a method that allows for more complex deformations of the

40

Moto G4, T-mobile LTE Moto G4, WiFi

Mobile → Cloud → Mobile Time (ms) Total Data (kB) Energy (mJ) Time (ms) Total Data (kB) Energy (mJ)

IFHMO - - 450.54 0 1301.7 450.54 0 1301.7

IFH M O 325.03 4.81 899.35 1133.8 4.81 303.24

IF H MO 451.67 14.26 1350.56 443.76 14.26 1004.66

IF HM O 322.45 20.55 910.48 124.64 12.15 376.63

I FHM O 135.13 160 1166.2 128.3 81.35 1433.85

I FHMO O 292.25 81.35 1211.5 98.7 160 1264.9

I FH MO 421.47 83.46 1651.58 417.82 83.46 1892.93

I F HMO 435.37 90.8 1720.15 431.88 90.8 2341.14

Table 3: This table shows some paths through our joint mobile-computation graph and the costs associated with them, per

frame. We present two sets of hardware configurations, including a Motorola Moto G4, operating on T-mobile Cellular LTE

data and Moto G4 operating on WiFi (Upload and download speed of 23.86Mbps and 23.06Mbps respectively).

I F H M O

F ′ H ′ M ′ O′

I F H M O

F ′ H ′ M ′ O′

Figure 5: The graph above shows the optimal paths ob-

tained from Moto G4 LTE data, with parameters λp = λt =
1, λd = 10. The graph below is for the Moto G4 Wifi data,

with parameters λp = 10, λt = λd = 1. Data can be found

in Table 3

scene. Figure 4 shows the effect of varying this parameter

on computation time, and it can be seen that the choice of

path plays a much larger role than any of the algorithm set-

tings. We note that the mobile devices we tested on were not

able to operate on grids larger than 12× 12 due to memory

reasons.

Of course, the edge weights in the graph are depen-

dent on the hardware. In the results above, we use the de-

fault hardware configuration (Moto G4 LTE and WiFi data),

however, the optimal settings may vary with different avail-

able bandwidth. Figure 5 shows two different paths through

our graph, showing how the work gets redistributed based

on hardware configurations and user preferences for exam-

ple.

5. Conclusions

The main drawback of joint cloud-mobile systems is that

it requires a connection to the mobile device in order to

work. In many places this requirement is still unrealistic.

However, as connectivity grows, situations where cloud-

based computation are not possible will likely become

rarer. Furthermore, most user-created content is shared with

friends, which also requires a network connection, so at

some point before sharing cloud-based computation will be

possible. Despite this, in cases of limited connectivity one

solution could be to have a low-quality proxy computed lo-

cally which is then updated with the improved version when

the phone gets network access.

Similar to prior work addressing photometric modifica-

tions [8], we have presented an evaluation of only one appli-

cation, and while we feel that this is an important applica-

tion, many of the findings in this work are restricted to sim-

ilar feature-based image warping approaches, such as 360

degree panorama stitching, image retargeting, and stereo

mapping. This is somewhat unavoidable, as each set of al-

gorithms operates on different data, however we hope that

the basic graph structure and parameter exploration steps

will encourage other joint mobile-cloud applications.

Mobile cloud computing is an emerging area, and we be-

lieve there is substantial possibilities for follow up work in

regards to vision applications. A recent follow-up work to

BCP includes structure from motion (SfM) for better per-

formance in cases with large amounts of parallax[20]. Due

to the highly non-convex optimization problem, SfM can

be very expensive, and our joint approach should provide

substantially more benefits in these scenarios, especially as

reconstruction must often be performed on low power mo-

bile robotics devices.

41

Many vision methods involve feature extraction, where

the underlying representation has substantially less infor-

mation. Despite this, the optimal distribution of computa-

tion can be somewhat counter-intuitive, so a principled way

to determine the best splitting based on the current parame-

ters is a useful feature.

Another family of approaches are those that require

databases that are too large to store on mobile devices.

These have been used for example, to drive hole filling

methods [12]. In particular, deep learning approaches have

shown a number promising applications, however most

of these approaches require powerful GPUs in order to

work. For example, in the popular style transfer applica-

tion [7, 29], feature maps are extracted from input images,

which are then used to constrain a costly optimization pro-

cedure. We believe that these approaches are particularly

well suited to joint mobile-cloud computation.

References

[1] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan.

Advancing the state of mobile cloud computing. In

Proceedings of the third ACM workshop on Mobile

cloud computing and services, pages 21–28. ACM,

2012. 2

[2] J.-Y. Bouguet. Pyramidal implementation of the affine

lucas kanade feature tracker description of the algo-

rithm. Intel Corporation, 5(1-10):4, 2001. 3

[3] R. Carroll, M. Agrawal, and A. Agarwala. Optimizing

content-preserving projections for wide-angle images.

In ACM Transactions on Graphics (TOG), volume 28,

page 43. ACM, 2009. 2

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey

of mobile cloud computing: architecture, applications,

and approaches. Wireless communications and mobile

computing, 13(18):1587–1611, 2013. 2

[5] N. Fernando, S. W. Loke, and W. Rahayu. Mobile

cloud computing: A survey. Future Generation Com-

puter Systems, 29(1):84–106, 2013. 2

[6] R. Ferzli and I. Khalife. Mobile cloud computing ed-

ucational tool for image/video processing algorithms.

In Digital Signal Processing Workshop and IEEE Sig-

nal Processing Education Workshop (DSP/SPE), 2011

IEEE, pages 529–533. IEEE, 2011. 2

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style

transfer using convolutional neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2414–2423, 2016. 7

[8] M. Gharbi, Y. Shih, G. Chaurasia, J. Ragan-Kelley,

S. Paris, and F. Durand. Transform recipes for effi-

cient cloud photo enhancement. ACM Transactions

on Graphics (TOG), 34(6):228, 2015. 2, 6

[9] M. L. Gleicher and F. Liu. Re-cinematography: Im-

proving the camerawork of casual video. ACM Trans-

actions on Multimedia Computing, Communications,

and Applications (TOMM), 5(1):2, 2008. 2

[10] M. Grundmann, V. Kwatra, D. Castro, and I. Essa.

Calibration-free rolling shutter removal. In Computa-

tional Photography (ICCP), 2012 IEEE International

Conference on, pages 1–8. IEEE, 2012. 2

[11] M. Grundmann, V. Kwatra, and I. Essa. Auto-directed

video stabilization with robust l1 optimal camera

paths. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 225–232.

IEEE, 2011. 2

[12] J. Hays and A. A. Efros. Scene completion using mil-

lions of photographs. In ACM Transactions on Graph-

ics (TOG), volume 26, page 4. ACM, 2007. 7

[13] N. Joshi, W. Kienzle, M. Toelle, M. Uyttendaele, and

M. F. Cohen. Real-time hyperlapse creation via opti-

mal frame selection. ACM Transactions on Graphics

(TOG), 34(4):63, 2015. 2

[14] A. Karpenko, D. Jacobs, J. Baek, and M. Levoy. Dig-

ital video stabilization and rolling shutter correction

using gyroscopes. CSTR, 1:2, 2011. 2

[15] J. Kopf, M. F. Cohen, and R. Szeliski. First-person

hyper-lapse videos. ACM Transactions on Graphics

(TOG), 33(4):78, 2014. 2

[16] M. Lang, A. Hornung, O. Wang, S. Poulakos,

A. Smolic, and M. Gross. Nonlinear disparity map-

ping for stereoscopic 3d. ACM Transactions on

Graphics (TOG), 29(4):75, 2010. 2

[17] J. Lee, B. Kim, K. Kim, Y. Kim, and J. Noh. Rich360:

optimized spherical representation from structured

panoramic camera arrays. ACM Transactions on

Graphics (TOG), 35(4):63, 2016. 2

[18] F. Liu, M. Gleicher, H. Jin, and A. Agarwala. Content-

preserving warps for 3d video stabilization. ACM

Transactions on Graphics (TOG), 28(3):44, 2009. 2

[19] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala.

Subspace video stabilization. ACM Transactions on

Graphics (TOG), 30(1):4, 2011. 2

[20] S. Liu, B. Xu, C. Deng, S. Zhu, B. Zeng, and M. Gab-

bouj. A hybrid approach for near-range video stabi-

lization. 2016. 6

[21] S. Liu, L. Yuan, P. Tan, and J. Sun. Bundled camera

paths for video stabilization. ACM Transactions on

Graphics (TOG), 32(4):78, 2013. 2, 3, 4

[22] C. Morimoto and R. Chellappa. Fast 3d stabiliza-

tion and mosaic construction. In Computer Vision

and Pattern Recognition, 1997. Proceedings., 1997

IEEE Computer Society Conference on, pages 660–

665. IEEE, 1997. 2

42

[23] ookla. Speedtest Market Report, United States

. http://www.speedtest.net/reports/

united-states/, 2016. [Online; accessed 11-

November-2016]. 4, 5

[24] OpenSignal. State of Mobile Networks:

USA (February 2016) . http://www.

opensignal.com/reports/2016/02/usa/

state-of-the-mobile-network/, 2016.

[Online; accessed 11-November-2016]. 4, 5

[25] I. Qualcomm Technologies. Trepn Power Pro-

filer. https://developer.qualcomm.com/

software/trepn-power-profiler. [Online;

accessed 11-November-2016]. 4, 5

[26] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and

N. Venkatasubramanian. Mobile cloud computing: A

survey, state of art and future directions. Mobile Net-

works and Applications, 19(2):133–143, 2014. 2

[27] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya. Het-

erogeneity in mobile cloud computing: taxonomy and

open challenges. IEEE Communications Surveys &

Tutorials, 16(1):369–392, 2014. 2

[28] Q. Technologies. App Tune-up Kit. https:

//developer.qualcomm.com/software/

app-tune-up-kit. [Online; accessed 11-

November-2016]. 4, 5

[29] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lem-

pitsky. Texture networks: Feed-forward synthe-

sis of textures and stylized images. arXiv preprint

arXiv:1603.03417, 2016. 7

[30] S. Wang and S. Dey. Adaptive mobile cloud com-

puting to enable rich mobile multimedia applications.

IEEE Transactions on Multimedia, 15(4):870–883,

2013. 2

[31] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P.

Seidel. Motion-aware temporal coherence for video

resizing. ACM Transactions on Graphics (TOG),

28(5):127, 2009. 2

[32] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Mar-

tin. A shape-preserving approach to image resizing. In

Computer Graphics Forum, volume 28, pages 1897–

1906. Wiley Online Library, 2009. 4

43

http://www.speedtest.net/reports/united-states/
http://www.speedtest.net/reports/united-states/
http://www.opensignal.com/reports/2016/02/usa/state-of-the-mobile-network/
http://www.opensignal.com/reports/2016/02/usa/state-of-the-mobile-network/
http://www.opensignal.com/reports/2016/02/usa/state-of-the-mobile-network/
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/app-tune-up-kit
https://developer.qualcomm.com/software/app-tune-up-kit
https://developer.qualcomm.com/software/app-tune-up-kit

