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Abstract

Currently, the only mass-market service robots are floor

cleaners and lawn mowers. Although available for more

than 20 years, they mostly lack intelligent functions from

modern robot research. In particular, the obstacle detection

and avoidance is typically a simple collision detection. In

this work, we discuss a prototype autonomous lawn mower

with camera-based non-contact obstacle avoidance. We de-

vised a low-cost compact module consisting of color cam-

eras and an ARM-based processing board, which can be

added to an autonomous lawn mower with minimal effort.

On the software side we implemented a color-based obsta-

cle avoidance and a camera control that can deal with the

challenging outdoor lighting conditions. For testing our

system, we conducted a field test with 20 prototype units

distributed in eight European countries with a total mowing

time of 3,494 hours. The results show that our proposed sys-

tem is able to work without expert interaction for a full sea-

son and strongly reduces collision events while still keeping

the good mowing performance. Furthermore, a question-

naire with the testers revealed that most people would favor

the camera-based mower over a non-camera-based mower.

1. Introduction

Autonomous lawn mowers are on the verge of a major

market in the lawn and garden segment. Currently, the seg-

ment is still small with an installation volume of 103k units

in 2015 [11]. However, autonomous mowers are becoming

increasingly popular (market growth +25% in 2015 [11])

due to an increase of leisure time and good cutting results.

Currently, autonomous cleaning robots [6, 10, 23] and

autonomous lawn mowers [12, 6] are the most promising

entry points for robots at home. While high-end research

robots for household tasks are typically too expensive and

not robust enough for 24/7 application, autonomous clean-

ing and autonomous lawn mowers have become a robust

and stable platform. Unfortunately, autonomous lawn mow-

ers still lack intelligent functions known from state-of-the-

art research like object recognition, obstacle avoidance, lo-

calization, dynamic path planning or speech recognition. In

contrast, for cleaning robots there is an active research for

vision SLAM [14, 16, 17], however, publications on other

topics like visual obstacle avoidance is also scarce.

In order to operate, most autonomous lawn mowers use

an area wire emitting an electromagnetic field for boundary

definition and for homing to the charging station. Naviga-

tion inside the wire is typically random, which is simple

and robust but takes longer for a full coverage of the lawn

than systematic movement. Obstacles within the mowing

area are detected by a collision sensor or just by wheel slip

after collisions. These collisions can cause damage to ob-

stacles and lawn as well as scratches on the outer shell of the

mower, which leads to an unpleasant image after some time.

While this simple obstacle avoidance works, it may require

an adaptation of the garden environment to the robot rather

than vice versa.

In this work, we investigated the possibility of installing

a low-cost camera and processing module on autonomous

lawn mowers. The challenge was primarily to achieve ro-

bustness for weather-proof robots that can run 24/7, includ-

ing operation in very diverse environments and difficult out-

door lighting conditions.

2. Related Work

Publications specifically on autonomous lawn mowers

are very limited. A major activity in the past was the annual

Robotic Lawn Mower Competition that has been hosted by
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the Institute of Navigation (ION) from 2004 to 2012. While

some of the robots showed good results in mowing coverage

and obstacle avoidance, the prototype machines were not

built under the consideration of price, weather-proofness or

manufacturing constraints. In particular, most participants

use costly sensors like D-GPS [21] or laser scanners [4, 3].

In contrast, in this work we target a small, low-cost, low-

energy solution which limits the choice of sensors and more

importantly also the available computing resources.

Apart from cheap internal sensors like accelerometers,

cameras provide rich information about the environment

and are cheaper than most active sensors. However, cost

limitations lead to low available computing resources which

excludes most modern classification algorithms like [2].

Schepelmann et al. [25, 24] use camera images for grass

and obstacle segmentation. The authors developed a simple

yet efficient grass segmentation algorithm based on color

and texture features using image moments. However, the

test set was very small and thus robustness and generaliza-

tion questionable. In [7] color and texture features are fused

with data from an infrared camera and a laser for outdoor

obstacle detection. The experiments show that the fusion

leads to a clear improvement with respect to color and tex-

ture features alone, however, the usage of infrared and laser

sensors makes the system quite costly.

There is also work using learning techniques to interpret

camera data. For example in [13] a classifier is used to seg-

ment the camera image into different terrain types. One

major problem faced here was the apparent color variation

with environmental condition. Thus, they introduced one

Gaussian mixture model for each environment state. Un-

fortunately, this makes the system quite complex and adds

another stage that might have a wrong classification. In

contrast, LeCun et al. [15] directly trained one convolu-

tional neural network on a robot to reproduce human ob-

stacle avoidance teleoperation. This approach may be more

generic, however, the model is more complex and there is

no clear quality assessment for different environment con-

ditions, which prevents a quantitative comparison.

In [27, 28] an omni-directional position estimation sys-

tem for an autonomous lawn mower was introduced. The

authors used an off-the-shelf autonomous mower and ex-

tended it with an omni-camera and an additional compute

unit. In the latest work [28] the equipment was nicely inte-

grated in a near-product fashion. Their work showed good

results in position estimation, however, no work on intelli-

gent obstacle avoidance has been done nor did the authors

perform a long-term test under different environment and

weather conditions.

Another activity is the EU project TrimBot 2020 [1]. The

final goal of this ambitious project is to demonstrate a proto-

type that is able to move in a garden environment, avoiding

obstacles and approaching hedges to trim them. Such an

(a) Prototype (b) Compute Board

Figure 1: (a) Prototype autonomous lawn mower with cam-

era module. (b) Internal compute board phyFLEX-i.MX6

on top of a base board providing interfaces.

approach may lead to more general-purpose service robots,

however, high requirements in robustness and safety makes

a product in the near future questionable.

In contrast to the above mentioned articles, we aim at a

low-power low-cost embedded system with special focus on

long-term robustness.

3. Approach

3.1. System Overview

For our vision prototype we use an off-the-shelf au-

tonomous lawn mower and extend it with a camera mod-

ule. Fig. 1a shows our prototype with the camera mod-

ule attached. The module replaces the maintenance lid and

thus seamlessly integrates into the lawn mower body. For

computing we use a phyFLEX-i.MX6 (Fig. 1b top board),

with an industrial grade Freescale i.MX6 quad-core proces-

sor running Linux OS, manufactured by Phytec Messtech-

nik GmbH (Mainz, Germany). The reason for the industrial

grade is the expected high burden on the electronics due to

heat and moisture in the garden environment. Especially, in

high summer heat can be a major issue as active cooling is

not possible because the cut grass snippets would clog the

air intake or the fan after a short time.

For seamless integration of the computing board with

the autonomous lawn mower, we use a custom base board

(Fig. 1b bottom board also by Phytec) that provides a CAN

interface to the phyFLEX-i.MX6 board and that allows a di-

rect connection to the battery power line of the autonomous

mower. The overall power consumption of the whole mod-

ule is 5-7W. Hence, the additional load to the mower battery

is small and the maximum mowing time is reduced by less

than 5%. Furthermore, the direct connection to the mower

power line allows a fully autonomous operation of our pro-

totype as the mower recharges autonomously without user

interaction.

For image capturing we use a Phytec camera board

that features an ON Semiconductors MT9V024 automo-

tive CMOS chip with a resolution of 752x480 pixels and
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Figure 2: System overview for the visual obstacle avoidance

on the autonomous lawn mower.

global shutter together with a Lensagon BM3618C lens

(f=3.6mm).

From a software point of view we kept the system as

simple as possible in order to get a robust fully autonomous

system. Fig. 2 shows a schematic overview of the system’s

software architecture. There are four main software sub-

modules: camera control, grass segmentation, obstacle de-

tection and command generation. These are explained in

more detail below.

3.2. Camera Control

The main challenge for outdoor vision processing are the

strongly varying environmental conditions. Firstly, there

are potential obstructions on the lens caused by rain drops,

moisture, or dirt that disturb the camera image and might

lead to misdetections. Although such obstruction can ef-

ficiently be detected for example by means of static pixel

detection [9], they require a user cleaning action that would

make the mower less autonomous.

Secondly, there is the outdoor lighting which on a sunny

day in central Europe varies from 100,000lx in the open

field to 10,000lx in the shadow, i.e. roughly a difference

of three f-stops (relative aperture) in terms of photogra-

phy. Furthermore, the sun can shine directly into the cam-

era leading to serious sun flares that strongly hamper im-

age algorithms. In order to cope with the difficult outdoor

lighting we applied two strategies: scene-dependent camera

control and HDR image processing. Note that no white bal-

ancing was used since we track the grass hue explicitly (see

Sec. 3.3).

The basic idea of the scene-dependent camera control is

to set exposure and gain in a way that the relevant scene el-

ements are captured optimally. In our garden scenario this

means it is of highest importance to have a good image of

the grass so that the grass segmentation algorithm works

optimally. All the other scene elements can be under- or

overexposed as they will be marked as non-grass anyway.

Hence, we employ a closed-loop camera control. As shown

in the system graph in Fig. 2, the grass segmentation mask

is input into the camera control module. The control mod-

ule will then use this mask to compute the average bright-

(a) Sun to Shade 0.5 (b) Shade to Sun 0.5

(c) Sun to Shade 0.25 (d) Shade to Sun 0.25

Figure 3: Influence of brightness target setting on image

information loss. While a target setting of 0.5 (a), (b) leads

to problems for shade to sun transitions (b) due to over-

exposure, a target setting of 0.25 (c), (d) leads to seemingly

darker images. However, as Fig. 4 shows, even the dark

areas carry sufficient information for the segmentation.

ness of all grass pixels and calculate new exposure and gain

values in order to reach a defined target brightness value.

Such masking is often used for camera control and calibra-

tion in omni-cameras [22, 20] which contain black image

parts where the omni-mirror does not project any light onto.

In the next time step the grass segmentation will get im-

ages with the new exposure and gain setting thus closing

the camera control loop.

Another important aspect is the choice of the target

brightness value for the camera images, which is often set to

0.5. This value offers good visibility of the camera images

on a computer screen for humans. However, computer algo-

rithms do not care for good on-screen visibility. A good tar-

get exposure value should have an similar amount of f-stops

towards the brightest and darkest pixel values. The darkest

reasonable value is determined by image noise, while the

brightest values should prevent color distortions caused by

overexposure. We experimentally found a target value of

0.25 to give good results. With this setting, pixels can be

four times brighter than the target gray value before they

get overexposed, and pixels four times darker than the tar-

get still have a value well above the chip’s noise level.

Fig. 3 depicts images for driving from a shady area to a

sunny area and the other way around. Fig. 3a and Fig. 3b

show images captured with a target brightness of 0.5 for sun

to shade transition and shade to sun transition, respectively.

While the sun to shade transition is without problems, in the
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Figure 4: Mean shift grass color tracking and grass segmentation.

shade to sun transition the sunny area gets overexposed and

thus the grass cannot be detected correctly anymore. In con-

trast, using a target brightness of 0.25 (Fig. 3c and Fig. 3d)

does not lead to an information loss due to overexposure.

The images indeed appear slightly dark but as the example

image in Fig. 4 shows, even the dark areas carry sufficient

information for the segmentation.

Unfortunately, in some extreme cases on sunny days

even a target brightness of 0.25 will lead to overexposure

when transiting from the shade to sun area. In order to fur-

ther improve this situation we propose an HDR control sys-

tem. Typically, HDR cameras merge information from two

consecutively captured images with different exposure set-

ting into one HDR image. The two major problems with

this approach are ghost artifacts and more severely an alter-

ation of the color caused by the merging. Since our system

relies mainly on color segmentation, the camera’s inbuilt

HDR mode led to unacceptable results and alternative HDR

cameras were not available at comparable cost.

As an alternative, we use a pair of consecutively captured

images with distinct exposures and compute the grass seg-

mentation on both of them. Afterwards we merge the two

segmentation results to get an HDR result based on the pro-

cessing and not on the input image. Finally, in rare events

when exposure changes are very high, the mower speed is

reduced in order to give more time for camera adaptation.

3.3. Grass Segmentation

One key component of our visual obstacle avoidance

system is the grass segmentation. We decided to model

the grass appearance instead of potential objects/obstacles

because the objects have a large variation in appearance.

Since grass is typically green and has a high saturation,

the hue and saturation components of the HSV space allow

easy segmentation, whereas V is less informative because it

varies strongly with illumination.

Mg(p) = fh(p) ∧ fS(p) (1)

fH(p) =

{

1, if hmin < H(p) < hmax

0, otherwise
(2)

fS(p) =

{

1, if smin < S(p)

0, otherwise
(3)

This means that a pixel p is marked as grass in the

grass mask Mg(p) if the hue H is in a range defined by

[hmin, hmax] and if the saturation S exceeds a threshold

smin. For saturation a range is not necessary as grass typi-

cally has a very high saturation, i.e. smin is quite large.

However, due to changing lighting conditions and differ-

ent state of grass health the color and saturation may change

during the operation of the autonomous lawn mower. Con-

sequently, fixed segmentation parameters are not feasible.

Here we decided to adopt the mean shift algorithm [5] and

use it in a temporally continuous update scheme in order to

continuously track the color of the lawn. In particular, we

track the mean hue µh and mean saturation µs as well as

the variance of the hue σ2

h and the variance of the saturation

σ2

c . From these we derive the segmentation parameters as

follows:

hmin = µh − 3 ∗ σh (4)

hmax = µh + 3 ∗ σh (5)

smin = µs − 3 ∗ σs . (6)

47



Figure 5: Example grass segmentation results (white: grass,

black: non-grass/obstacle).

Fig. 4 shows an example adaptation loop of the color

tracking. At time t a new image is captured and the color pa-

rameters from the last time step t−1 are used to get an initial

segmentation of the scene into grass (white) and non-grass

(black). From the grass pixels a new distribution is drawn

from which current color parameters are computed. These

new parameters are then used to get a better segmentation

of the current image into grass and non-grass. Due to image

noise the segmentation will be noisy. We solve this problem

with a simple connected component analysis [26]. All re-

gions smaller than a threshold will be assigned to the oppo-

site group, i.e. grass becomes non-grass and vice versa. In

all our experiments we used a threshold of 50 pixels which

roughly corresponds to an obstacle size of 5cm (or 30cm2

effective area).

In this work, we use a Gaussian model for the grass color

distribution. Thus, the mean and variance of the color is

computed by:

µt
c =

∑

p∈Mt
g

Ct(p) (7)

σ2t

c =
∑

p∈Mt
g

(µt
c − Ct(p))2 , (8)

where c ∈ {h, s} and accordingly C ∈ {H,S}. Fig. 5

shows some example segmentation results of our approach.

One big advantage of using the mean shift algorithm

for tracking the grass color parameters is processing speed.

The actual segmentation involves only the conversion of the

RGB image into HSV space and some threshold operations

using the estimated parameters. The update of the parame-

ters can also be calculated very efficiently as it mainly con-

sists of addition and multiplication operations and only a

few divisions. This makes the whole segmentation fast and

suitable also for very low-cost embedded processors that do

not have a floating point unit. On our embedded board the

computation without hardware acceleration takes roughly

10ms on 376x240 pixels using one ARM core (800MHz).

Figure 6: From left to right: corridor mask, left mask, right

mask. The corridor mask is used to determine which ob-

stacle pixels fall into the path of the autonomous mower.

The left and right masks are used to determine whether the

obstacle is more on the left or right side so that the mower

turns the other direction.

3.4. Obstacle Avoidance

Given the segmentation of an input image into grass

and non-grass areas, the system has to derive driving com-

mands for the autonomous mower control for visual obsta-

cle avoidance. First, it is necessary to interpret the segmen-

tation mask. Then the camera module needs to commu-

nicate with the motor controller to inform it about obsta-

cles. We decided to keep the interaction simple by creating

a contact-free vision avoidance behavior similar to the stan-

dard avoidance behavior after collision detection because

this has proven to be very robust. This means that the cam-

era module just triggers the random turn maneuver like a

collision would. However, in contrast to the collision sen-

sor, the camera module can easily extract some informa-

tion about the position of the obstacles allowing obstacles

avoidance before collision. In order to keep up with the fast

processing speed of the segmentation we also decided for a

simple and fast solution.

We use three fixed masks: a left mask, a right mask

and a corridor mask (see Fig. 6). The corridor mask cor-

responds to the future driving path of the autonomous lawn

mower on a plane. It depends on the width of the mower

and the position of the camera. Actually, one would need

a 3D information to do this correctly, but we found that a

simple ground plane assumption is often sufficient because

the driving speed and accordingly the brake distance of au-

tonomous lawn mowers is not very high. For detecting an

obstacle we just multiply the corridor mask with the inverse

grass mask. Note that this method may fail when objects are

not connected to the ground (e.g. an overhanging branch) or

when the slope in front of the robot changes extremely.

Additionally, the ground plane assumption allows us

to assign a rough distance value to the obstacle by the

y-position of the lowest obstacle pixel in the multiplied

grass and corridor mask. The distance estimation allows

a more smooth visual avoidance by reducing speed during

obstacle approach and by turning just before the object.

We use the left and right mask in order to give the motor

controller a hint concerning a favorable turn direction. If

more obstacle pixels are on the right side the mower should
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Figure 7: Camera example views from small scale test.

rather turn left and vice versa.

The system saves logs of internal states and events for

later analysis. Saving image data in our long-term test, how-

ever, was limited by available mass storage. We thus keep

a ring buffer of the last few seconds and only save this data

when an event occurs (collision or vision avoidance). Nev-

ertheless, the logs accumulated to a total of 1TB of stor-

age and required automated statistical analysis. We found

it helpful to also automatically generate HTML reports of

the logs to manually inspect the context of single events,

e.g., when annotating obstacle categories and false positive

events.

In order to circumvent complex priority negotiations be-

tween the camera module and the mower’s motor con-

troller we switch off the vision system at the boundary wire

and during homing while driving along the boundary wire.

We also excluded night time operation in our experiments.

Nevertheless, preliminary tests showed successful operation

with an additional headlamp.

4. Experiments

4.1. Small Scale Test

In a first and relatively small test, we evaluated the ob-

stacle avoidance performance of the camera systems. This

test took place in eight private gardens in the Frankfurt area

but also included additional objects placed in the gardens

for more efficient testing (see Fig. 7).

The overall detection rate of the camera system was 88%

with 11.9 false positive detections per hour. Regarding

some especially relevant categories, 99% of bare hand and

feet were detected by the camera system, and standing hu-

mans were detected with 86%.

4.2. European Field Test

The above test confirmed the working principle of the

approach but did not guarantee sufficient performance in

long-term unsupervised operation with naı̈ve testers in un-

controlled gardens. Thus, we designed a long-term test

over one season in eight European countries (see Fig. 8 and

Fig. 9) with more than 20 robot units with camera system

in as many different gardens. We evaluated performance,

robustness, and checked for systematically unmowed areas.

For evaluation of the testers subjective opinions, each tester

Figure 8: Map of test site locations

Figure 9: This figure shows some sample views of the Eu-

ropean test gardens.

was given a questionnaire.

The total recorded operation time was 3,494 hours. This

test differed from the earlier one: gardens, seasons, and

weather conditions were more diverse, fewer obstacles were

excluded by area wire (especially trees), and the robots

were not maintained by developers. On average, the robot

mower without a vision system would have 0.8 collisions

per minute. With visual obstacle avoidance, the collisions

were reduced by 76.9%. Obstacle categories, avoidance

rates, and frequencies are listed in Table 1. Small objects

like toys and tools are recognized with highest accuracy.

These objects are often not recognized by a collision sen-

sor, thus possibly causing damage to the blades and ob-

jects. People and animals are also easily detected, which

was noted by testers as giving a more friendly image. In

contrast, green and brown objects, like plants and trees,

are on the lower end of reliably detectable objects with our
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Table 1: Obstacle occurrences and avoidance rates. Data

based on manually annotated samples from each test site.

object class avoidance rate occurrence

toys, tools 96.3% 4.0%

people, animals 95.6% 1.3%

pots 92.8% 1.0%

furniture 90.7% 9.8%

misc objects 86.9% 37.5%

poles 75.4% 10.5%

plants (w/o trees) 60.0% 8.5%

trees 59.9% 27.4%

all 76.9% 100.0%

color-based system.

4.2.1 Encountered Problems and Non-Problems

During our large scale field test we encountered some unex-

pected problems, while some expected issues did not occur.

For example, no test unit had problems with water proof-

ness or overheating.

On well-kept and sufficiently irrigated lawns without

leafs, we measured only 0.15 false positive avoidance

events per minute, which were mostly caused by glares and

shadows. However, many of the gardens were in poorer

condition (earthy and sandy patches without grass) and

some were at times almost completely covered in leafs.

Hot and dry weather, especially in France, caused com-

pletely yellow-brown grass color in some lawns for multiple

weeks. On average, including these real-world conditions,

the false positive avoidance rate was 0.57 events/minute,

dominated by grassless patches and those with dry brown

grass (52.0%). Leafs (21.8%), glares (12.3%), and shadows

(11.7%) caused less false avoidances and were evaluated as

less critical, since their position is usually not fixed and a

mulching robot mower typically has to visit the same spot

multiple times for good results. In 1.3% of the cases we

found strong slope changes causing false avoidances and

surprisingly only 0.05% were caused by wet or dirty lens

conditions or an insect on the lens. Arguably, the mower

should detect very adverse conditions and stop or reduce

mowing.

Overall, we found that false positive avoidances caused

only a minor loss in mowing time. In no case did we find, or

get report of, unmowed garden areas. This is in line with our

observation that most false positives are caused by shadow

borders, which are not stationary. However, as expected,

gardens with distinct lawn areas separated by walkways or

driveways (but within one area wire) would not be mowed

completely. In these cases, we recommended to program

the mower’s starting point within each distinct area on dif-

ferent weekdays (a standard feature of the mower by fol-

Figure 10: Uncut area around a toy left on the lawn. On

the one hand side, this shows that we chose the avoidance

distance too conservative. On the other hand, it shows a

reliable obstacle detection.

lowing the area wire for a certain distance before starting

to mow). Possible future extensions here would be a classi-

fication of walkways as driveable or location-based excep-

tions for visual obstacle avoidance. All units showed cutting

result similar to the autonomous mower without camera,

which is an important requirement for using a camera on

autonomous lawn mowers because the cutting performance

should not be reduced. However, there is one aspect that

needs to be tackled in the future. Usually autonomous mow-

ers leave some uncut area around obstacles because of the

safety distance between blades and outer robot body. We

found that we set our avoidance distance too conservative

leading to a larger uncut region around obstacles. This is in

particular true for obstacles the autonomous mower with-

out camera would not detect with the collision sensor, e.g.

small toys (see Fig. 10). However, this image demonstrates

a reliable and high detection performance, since otherwise

such areas would not exist.

One case that our system currently does not cover is ob-

stacle avoidance while turning. Since we use a forward

looking camera, the system cannot see obstacles to its side,

which can lead to a turning into an obstacle. In the future,

we want to tackle this problem by implementing an obstacle

memory for storing obstacles just passed by.

Another issue, which was expected, is avoidance of

green or brownish obstacles with a color similar to the gar-

den’s grass. The majority of misdetections occurred with

bushes and trees. Note that trees are often covered with

lichens or moss near the ground, which shifts the bark color

towards brown and green. In the small scale test, we found

that these cases are easily avoided with a stereo camera sys-

tem using the algorithm in [8]. Alternatively, texture or ob-

ject recognition could reduce this problem.
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4.2.2 Smartphone

We additionally developed a smartphone app for interact-

ing with the mower. The app shows a live video of the

camera and an optional color-coded overlay of the classi-

fication of “mowability”. This app also allows a user to

switch to remote control (RC) mode. In order to avoid

problems with network configurations, we provided an An-

droid smartphone with preinstalled apps to each tester. Us-

age statistics showed that more than 90% of the testers used

remote control of the autonomous lawn mower very rarely

and only early in the testing period. Questionnaire results

also confirm that RC is perceived as not important to most

users, and that most users prefer a completely autonomous

operation. However, we found that during development, in

early testing, and for remote support the smartphone app

was more efficient and easier to handle than interaction with

remote login over ssh with a laptop.

4.2.3 Tester Feedback

Most testers returned questionnaires after testing and gave

additional oral feedback. Most notably, the majority of

testers assessed the quality of the mower with camera sys-

tem as significantly higher than without and would purchase

such a product if available. A minority, however, expected

near-perfect performance (“If he has eyes, why does he not

see this?”) and would prefer a stereo system with higher

performance even with increased cost. Most testers state

that the autonomous lawn mower and people (adults and/or

children) are on the lawn during operation. While safety of

the mower is guaranteed by the collision sensors, the per-

ceived friendliness increases with the camera system. Inter-

estingly, many testers gave a pet name to their mower and

many noted that the camera module increases the perception

of the robot as pet-like and that it increased their emotional

attachment. We conjecture that two factor play a role: the

increased complexity of the behavior, and the association of

the camera with an eye.

5. Conclusion

In this work we have presented an embedded camera

module prototype for autonomous lawn mowers for visual

obstacle avoidance. The major challenges were to make

the system robust against the varying outdoor weather and

lighting conditions. To tackle these we devised a closed-

loop between the camera control and a color-based grass

segmentation algorithm. The camera control optimizes the

visibility of the grass in the scene by taking the grass seg-

mentation output into account. In addition the grass seg-

mentation uses a mean shift algorithm to track the changes

in grass color due to the changing environment conditions.

The system was implemented on a small module which

was attached to an off-the-shelf autonomous lawn mower.

The module is connected via CAN for communication with

the mower control ECU and the module is connected to

the mower power for utilizing the self-charging capabilities

making the whole system able to run 24/7.

In order to test the developed system we first did a small

scale test that we also used to parameterize the algorithms

and to finalize the prototype. Afterwards we conducted

a large field test by deploying 20 units to eight European

countries. These prototypes where installed for one season

and recorded all avoidance events from both collision and

vision sensors. The analysis of the data revealed that we

could reduce collisions by 77% which strongly increases

comfort (less noise from collisions) and product appearance

(less scratches on the outer mower body).

Camera systems in outdoor environments face a multi-

tude of challenges. However, they provide a rich source

of environmental information allowing many functions, e.g.

obstacle avoidance. Our long-term field test demonstrated

that image processing can be sufficiently robust for an out-

door service robot. Compared to many modern computer

vision approaches, the color-based approach requires dras-

tically less computing power, which makes it realistic for

low-cost low-power systems. An extension to texture and

object recognition is interesting for the future. However,

we found that the color-based approach has a robustness

advantage when the lens is wet or dirty. In these rare cases,

the image becomes blurred, which may lead to a complete

breakdown of performance for some algorithms, whereas

the color-based approach showed graceful degradation of

performance.

Future steps encompass a local map to memorize ob-

stacles for improved obstacle avoidance in blind spots,

e.g. during turning maneuvers, and robust self-localization

[18, 19]. We also want to further investigate the feasibil-

ity to use a stereo camera for tackling the issue of detecting

obstacles close to grass color and to improve the obstacle lo-

calization with respect to the mower. Finally, we also want

to enable the mower to recognize certain types of obstacles

for a class specific behavior. For example to mow over weed

while avoiding the users favorite flower.
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