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Abstract

Wearable Augmented Reality (AR) devices1 are being ex-

plored in many applications for visualizing real-time con-

textual information. More importantly, these devices can

also be used in tele-assistance from remote sites when

on-field operators require off-field expert’s guidance for

trouble-shooting. For an effective communication, touch-

less hand gestures are the most intuitive to select a Region

Of Interest (ROI) like defective parts in a machine, through

a wearable. This paper presents a hand gestural interaction

method to localize the ROI in First Person View (FPV). The

region selected using freehand sketching gestures is high-

lighted to the remote server setup for expert’s advice. Nov-

elty of the proposed method include (a) touchless finger-

based gesture recognition algorithm that runs on smart-

phones, which can be used with wearable frugal modality

like Google Cardboard/Wearality, (b)reducing the network

latency and achieving real-time performance by on-board

implementation of recognition module. We conducted user

studies that suggest the ease and usefulness of the proposed

method. Further, we evaluated the the effectiveness of the

ROI gesture using the PASCAL Visual Object Classes(VOC)

criteria.

1. Introduction

As mobile devices are equipped with increasingly pow-

erful processors and high-speed network access, it is pos-

sible to explore mobile devices as a platform for AR ap-

plications. In this paper, we present an AR tele-assistance

framework for remote assistance and remote scene explo-

ration into a natural collaborative interface. This frame-

work helps in reducing the high costs of having the expert

on the site and also long downtimes due to travel. Applica-

tions of tele-presence include customer calling a call center

to help troubleshoot a printer, video-conferencing, repair,

maintenance and inspection in industries, wiring in aircraft

1Head Mounted Devices such as Google Glass, BT Moverio, and Vuzix

and remote control of the machinery amongst others [28, 9].

Our tele-assistance framework involves an expert personnel

present at server location, assisting the novice inspector at

a remote location, by observing the video stream sent from

user’s head mount to the server via the network.

Touchless hand gestures are more effective to highlight

the ROI in industrial outdoor setting, where audio com-

munication is hard to comprehend owing to ambient noise.

This helps the expert in understanding the problem and as-

sist the on-site inspector via audio/text instructions, so as

to solve the desired task accurately and quickly. Despite

the availability of high-end sophisticated AR gadgets such

as Microsoft Hololens, Daqri smart helmet2 etc., our work

focuses on frugal smartphone based head mounts such as

Google Cardboard/Wearality due to its economically viable

nature, portability and scalability to the mass market. Us-

ing the stereo-rendering of camera feed and overlaying the

related information on the smartphone screen, these devices

can also be extended to AR applications.

To achieve this, an efficient algorithm for hand gesture

recognition in FPV, which focuses on highlighting the ROI

in the Field-of-View (FoV) for smartphones, through a sin-

gle monocular camera is proposed. This poses further chal-

lenges such as (i) lack of additional sensors like the depth

sensing and IR sensors on smartphones, (ii) the hand por-

tions may fall under different illuminations, the background

might be static or noisy, and (iii) robust tracking of ROI ap-

proximated via a bounding box is required to point desired

location correcting the motion due to ego centric view.

The summary of contributions are as follows:

• A novel hand gesture for highlighting ROI in FPV for

frugal AR devices has been explored. This can enable

the wider reach of frugal devices such as Google Card-

board and Wearality in AR.

• Our gesture recognition algorithm is explored for (i)

the suitability to work with RGB channel stream or the

2https://daqri.com/,https://www.microsoft.com/microsoft-hololens/en-

us
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Figure 1. Our proposed tele-assistance setup: (a) showing user with wearable (for eg. a smartphone with Google Cardboard) performing

ROI marking and server setup for expert feedback, and (b) high-level blocks of ROI recognition algorithm from ego centric view.

pixel data from a single smartphone monocular rear-

camera without built-in depth sensors, (ii) the large

scale deployments in real-time implementations with-

out network dependency, and (iii) reliability and accu-

racy in dynamic outdoor settings.

2. Related Works

Several systems have proposed the use of tele-assistance

in tasks involving manipulation of physical objects which

shows that it is important to provide the remote expert with

the user’s FoV and maintain a shared context of the de-

sired task to be performed [9, 8, 21]. Szalavri et al.[27]

proposed a client-server architecture of multi-user AR to

support operators and enhance the assistance of visualisa-

tion experts. Participants can see the same spatially aligned

model while independently controlling virtual content in

their FoV. TeleAdvisor [9] and Shared Space [4] AR sys-

tems allowed remote expert to work with user’s traditional

tools and overlay virtual objects in user’s FoV through a

computer interface.

Recent studies have also revealed that in addition to shar-

ing the user’s FoV with the remote expert, it is also neces-

sary to provide the expert and worker with right interface

and functionality to collaborate and work efficiently. To ad-

dress this problem, Bauer et al. [2] conducted an empirical

study aiming at expert using telepointer to highlight region

in wearable video conference system. GestureCam [14]

explains a system in which expert hand gestures on touch

screen device are captured and sent to user’s wearable. The

results have shown that the experts preferred telepointer or

gesture based interaction over verbal communication in as-

sisting tasks. But, there are no existing formal studies on

highlighting the ROI from a wearable.

In this paper, we address the problem of providing the

user an interface to highlight region in his FoV to commu-

nicate efficiently via intuitive free-form gestures. Since user

performs a task wearing Head Mounted Device(HMD), pro-

viding an additional hardware would amount to increased

cost and complexity. Therefore, we propose a novel touch-

less/air hand gestures in user FoV to highlight the ROI on

frugal smartphone based head mounts such as Google Card-

board/Wearality. The recent work by Perla et al.[20] has

discussed an industrial inspection framework where exten-

sion of Google Cardboard, which was initially envisioned

for VR, was extended to AR. Further, [11] and [18] dis-

cussed simple hand gestures for wearables with egocentric

view. This work motivated the idea of highlighting the ROI

for frugal AR headsets.

Recognizing hand gestures from single monocular RGB

data captured from FPV has been a challenging task in com-

puter vision as smartphones are not equipped with depth

sensors. Serra et al. [23] proposed random forest su-

per pixel classification for hand segmentation in egocen-

tric videos. In [12], effective skin pixel extraction using

Gaussian mixture model has been proposed. Betancourt

et al. [3] presents a four stage approach for hand gesture

recognition which does hand-presence detection followed
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Figure 2. ROI Selection: (a) RGB Image frame acquired from a smartphone, (b) detection of skin-like pixels, (c) Largest boundary/contour

segmentation for reduction of false positives, (d) point gesture detection using convexity defects, (e) Intermediate frame showing point

gesture detection and ROI highlighting, (f) Bounding box overlaid on the object of interest.

by segmentation using a Bayesian approach. The trajecto-

ries of hand shape using centroids are further analysed for

high level motion inferencing. Kalal et al. [13] proposed

a novel object tracker called Median Flow Tracker that de-

tects tracking failures with the help of Forward-Backward

error method and selects consistent trajectories for track-

ing in video sequences. While these methods propose so-

phisticated detection and tracking; they are computationally

heavy and difficult to port on a smartphone. In this work,

we consider the factors such as real-time performance, ac-

curacy, usability and latency of algorithm on smartphone.

We also conducted a feasibility study evaluating ease and

usefulness of the application in tele-assistance applications.

3. Proposed Method

We propose a novel marker-less and real-time two stage

sequential gesture recognition method to highlight the ROI

in the user’s FOV. First, we detect a dynamic gesture which

involves detecting the presence of a stable hand, followed

by raising the index finger while rest of the fist closed

(termed as point gesture, as shown in Figure 1(a)) to trigger

ROI Selection. This is followed by another dynamic gesture

involving moving point gesture around the object of inter-

est. The main blocks of the algorithm as shown in Figure

1(b) are: (i) point gesture detection, (ii) ROI selection, (iii)

ROI tracking, and (iv) subsequent updating of bounding box

around the ROI. From Figure 2, the image frames obtained

from the smartphone camera are first down-scaled to a res-

olution of 640×480, to reduce the processing time, without

compromising much on image quality. Figure 2(b), (c), and

(d) show the detection of skin pixels, largest contour seg-

mentation which correspond to the hand (assumed as hand

occupies prominent region while performing gesture from

wearable), and point gesture detection respectively.

The point gesture recognition (Refer Section 3.1) will

trigger ROI selection module 3.2 which performs fingertip

detection on subsequent frames and draws an approximated

bounding box around the object of interest following the lo-

cus of detected fingertips. The resultant bounding box is

then tracked (3.3) as shown in Figure 3. Robust tracking

of the marked ROI is an important challenge for a comfort-

able user experience at the remote site3. We utilize Shi-

Tomasi feature points[24] for representing the marked ROI

which is tracked in the subsequent frames using forward-

backward(FB)[13] error method. The application scenario

discussed in the paper will not have abrupt motion unless

the user’s object of interest is changed. FB error is an ef-

ficient method to deal with small motion and requires less

computing resource. The blocks in Figure 1 (b) are dis-

cussed in the following sections:

3.1. Point Gesture Detection

Morerio et al. [19] observed that Y CbCr color space

shows better clustering of skin pixels data; the histogram of

chroma channels (Cb and Cr) exhibit unimodal distribution

while changing luminosity results in multimodal Y channel

histogram. Reference [6] exploits the spatial characteristics

of human skin color using chroma channel values. Thus, we

use the Chroma channel information for skin pixel detection

3Tracking is incorporated for two reasons (a) as the relative distance

between the object and user can vary and bounding box needs to be reg-

istered to object of interest (b) to address egocentric motion of user and

object motion.

71



Figure 3. ROI Tracking: (a) Highlighted ROI and key Shi-Tomasi features[24] within the bounding box region, (b) Forward optical flow

trajectories on the subsequent frames during the egocentric motion, (c) Backward optical flow trajectories on the previous frame[13], and

(d) Updated bounding box approximation over the ROI.

making the hand detection process illumination invariant.

Equation 1 describes the Chroma range used for segmenting

the hand region from the background scene.

77 < Cb < 127

133 < Cr < 173 (1)

Since the objective is for gesture recognition from FPV,

it is safe to assume that the hand region would be the most

prominent object present in user’s FoV. We retain only the

largest blob which covers a significant part of hand region

by contour segmentation, using topological structural anal-

ysis of digitized binary images by border following algo-

rithm, discussed in reference [26]. This step effectively re-

moves all the skin-like background objects segmented in the

previous step as shown in Figure 2(c). The binary mask

from contour extraction is combined with the original im-

age to produce the segmented hand region, which can be

further used to recognize the point gesture. Point Gesture

for ROI highlighting is initialized after the following condi-

tions are satisfied:

• The hand region should occupy atleast 12% of the FOV

which is empirically determined on the basis of the

distance of the user hand from the wearable (Google

Cardboard in our case). This helps in avoiding false

detection of skin-like blobs.

• The steady hand is detected by observing centroid of

the blob within certain radius for short duration. This

is followed by user raising his index finger to highlight

the ROI. The distance of the farthest point(fingertip)

from the centroid is tracked and the gradual increase in

this distance is verified to qualify foreground contour

to be a point gesture.

3.2. ROI Selection

The point gesture recognition will trigger ROI selection

which performs fingertip detection on subsequent frames

and draws an approximated bounding box around the ob-

ject of interest following the locus of detected finger tips.

Fingertip detection is performed by computing convex hull

of foreground hand contour (as shown in Figure 2 (c) and

(d)) using the Sklansky’s algorithm [25] and convexity de-

fects (comprises of start, end and defect points). A start or

end point which (i) is farthest from centroid of the convex

hull, and (ii) lies above the centroid (avoids false positives),

qualifies to be fingertip. The same conditions are verified

for subsequent frames and fingertip locus is stored.

Since free-form drawing might look cluttered, we ap-

proximate it by superimposing the bounding box over the

ROI. The procedure described in Section 3.1 is followed for

subsequent frames to compute the fingertip location. The

false positive (or outlier) fingertip detections which can dis-

tort ROI are eliminated by thresholding the distance be-

tween consecutive frames detections. The distance is em-

pirically determined and set to 100 pixels. This distance

is observed over subsequent frames and when it decreases

gradually, ROI is assumed to be near to completion and an

up-right approximated bounding box is fitted over fingertip

locus.

3.3. ROI Tracking

Figure 3 shows the steps involved in the tracking of the

ROI. The block Figure 3(a) shows the highlighted region

and key Shi-Tomasi feature points [24] determined on it.
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Figure 4. ROI highlighting through Google Cardboard: A yellow

box indicating output from the proposed algorithm while the green

box is the ground truth. We note the IoU between the two is >

50%

These feature points are tracked every 3rd frame to reduce

the processing time using Lucas-Kanade optical flow [5]

with pyramidal approach. Figure 3 (b) and (c) shows the

optical flow trajectories of the feature points on the subse-

quent frames.

In order to improve the accuracy of tracking, we employ

the Forward-Backward error method. In this method, the

feature points are tracked twice, firstly from the previous

image to the current image (forward in time) which yields a

point set Pf , and then from the current image to the previ-

ous image, using Pf set to yeild a point set Pb. The points

from the previous frame are used as validation points. The

FB error is defined as the distance between these two track-

ing trajectories. We have used the Euclidean distance to

determine the error, (D(Pf ,Pb) = ‖xf (i)− xb(i)‖). The

displacements that are within 5 pixels are considered as the

reliable point trajectories and the corresponding forward

tracked point is marked as inlier. Bounding box is then

drawn onto the reliable point set thus obtained. This filters

out the noisy feature points.

4. Results

We conducted an initial user evaluation to examine the

use of ROI highlighting module in our framework, using

the touchless gestures. We report measures both objectively

and subjectively.

4.1. Objective Metrics

Quantitatively, we measure the ROI accuracy using

PASCAL object detection criteria/ Intersection over Union

(IOU)[7] to measure the bounding box overlap of ground

truth image with our algorithm detected ground truth. We

tried to highlight 30 different parts of 3D printer, Lathe

Milling machine and desktop computer parts. We achieved

IOU of minimum 50%, which is sufficient for an expert to

understand the object of user’s interest.

We carried out experiments to assess the application

qualitatively and determine its usefulness. The participants

in workplace (our research lab) consisted of 24 subjects of

which 9 were females and 15 were males with average age

of 26 years. The Lathe Milling workshop comprised of 24
participants, of which all were males with average age of

30 years. None of them had prior experience with respect

to the usage of Google Cardboard(Nexus 6 and Nexus 5X

mobiles are used for experiments) and touchless interface

(hand gestures). All participants were asked to test the ap-

plication 4 times each. Figure 4 shows some sample true

detections of the object. In over 90% of the situations, the

IoU was over 50% which we find adequate to spot the defect

quickly via a telepresence set-up.

4.2. Subjective Metrics

A set of subjective metrics were obtained that measure

both usability and user experience. These indicators mea-

sure human performance and user satisfaction. Users rat-

ings were collected using a five-point Likert scale (Refer

studies [10][16]) ranging from 1 to 5 ( where 1 - Very Poor,

2 - Poor, 3 - Fair, 4 - Good, 5 - Very Good). The list below

indicate 5 subjective metrics.

1 Ease: How easy was it to mark the ROI using air ges-

tures?

2 Responsiveness: Did the application perform near real

time while highlighting and tracking ROI? (We assume

decent network connectivity to ensure server client

communication happening smoothly)

3 Accuracy: How many times did the method detect the

ROI correctly?

4 Usefulness: Rate the usefulness of the application and

hands-free gestures in AR related tasks.

5 Comfort: Was there any strain in using the

app/device?

Figure 5 shows that in ambient lighting environment,

which was present in the workshop, the ratings for accu-

racy are relatively higher. This is because the algorithm

performs fairly well in backgrounds which does not have

much skin like colors. This would mean a much more ro-

bust skin model that works on a phone need to be developed.

The subjective metric - ease and usefulness of the applica-

tion were rated high as users found that it is more intuitive
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and comfortable to get assistance through tele-assistance

setup using hand gestures than audio communication solely.

Since the entire gesture recognition module is performed

on-board, responsiveness of the gesture is quick thereby re-

duces the turn-around-time by 60% in completing the de-

sired task efficiently. Comfort metric received lesser rating

as Google Cardboard was found to induce simulation sick-

ness in few users.

Figure 5. Mean Likert ratings of the subjective metrics, namely,

(1) Ease, (2) Responsiveness, (3) Accuracy, (4) Usefulness and (5)

Comfort.

4.3. Demo Video

The whole set-up of how the user performs the ROI high-

lighting is shown in the demo video at the URL: https:

//arc4224.github.io/AirGestures-ROI/

4.4. Hardware Setup

Motorola Nexus 6 and LG Nexus 5X, along with Google

Cardboard were used to conduct experiments. Google Glass

Explorer Edition 1 running Android 4.4 (Texas Instrument

OMAP 4430 SoC, 1.2 GHz Dual ARM 7 processor, 1GB

RAM, 5MP Camera) was used to test the application on

Google Glass. Since Google Glass has limited computing

power, the following backend server was used for compu-

tation of the ROI using hand gestures. The server-hardware

configuration: Tesla C2075, CUDA Driver Version : 7.0,

Computing Capability : 2.0, Total amount of Global Mem-

ory : 5375 Mbytes 14 Multiprocessors, 32 CUDA Cores

per MP, Max no. of threads per MP : 1536, and Max no. of

threads per block : 1024.

5. Discussion

A major problem in developing systems and interaction

through speech and gesture is to determine the object(s) to

which a user is referring, since irrelevant objects may likely

fall into the user’s gaze and pointing direction. To this end,

we address the problem through introduction of ROI selec-

tion of the desired object using a natural user interface. We

have developed an AR system in which the user, via free-

form air gestures, can select an object onto which a bound-

ing box is then superimposed. As a result, it is particularly

suitable for applications with dense targets and rich visual

elements.

Comparison with similar algorithms: Despite the avail-

ability of sophisticated algorithms for accurate hand de-

tection [17], our method differs in methodology and uses

simpler skin based model to achieve real-time performance.

The primary drawback of the existing methods is (i) the ne-

cessity of a large training set that covers multiple lighting

conditions, multiple skin tones and complex environments

for the initial classifier, and (ii) computational time taken

while testing. Several existing tele-presence frameworks

[22, 1] uses touch based interaction on a tablet/smartphone

for marking the ROI unlike our work which uses free-hand

gestures through wearable for marking the same giving

hands-free user experience while seeking assistance from

the expert. We observed that Hui et. al [29] uses Kinect for

depth detection as opposed to using just frugal devices such

as smartphone and Google Cardboard for detection of hand.

Limitations of our work: We acknowledge the problems

that may arise if the object of interest has relatively smooth

surface leading to detection of less feature points; in such

cases tracking might fail. Accuracy of the algorithm will

suffer while performing gesture recognition in conditions

such as (i) poor illumination, (ii) background scene blend-

ing with skin-like colors, and (iii) unexpected occlusions.

Despite the entire proposed gesture recognition module has

been implemented on smartphone for the use with Google

Cardboard, smartphones need to be sufficiently powerful

with atleast 2GB RAM and 1GHz processor to process

enough number of frames for the ROI selection and track-

ing. Devices/wearables with low processing power such as

Google Glass can’t be used to run gesture module on-board;

server side implementation had to be done to avoid battery

drain and heating issues on Google Glass.

6. Conclusion

An Augmented Reality tele-presence framework for

highlighting the region of interest from the wearable has

been presented. We have demonstrated a touch-less gesture

recognition algorithm on a smartphone with Google Card-

board in a dynamic background setting. This can enable the

wider reach of frugal devices such as Google Cardboard

for AR. Real-time performance is achieved by implement-

ing gesture recognition module on-board. The evaluation of

the framework has been done through set of subjective met-

rics and the accuracy of bounding box approximation over

the object of interest using PASCAL VOC criteria.

In future, we would work on a much more robust skin de-
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tection algorithm as the current algorithm still mis-classifies

skin-like background colors in some cases. We would also

work on improving pointing gesture detection.
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