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Abstract

Global motion estimation (GME) algorithms are typi-

cally employed on aerial videos captured by on-board UAV

cameras, to compensate for the artificial motion induced in

these video frames due to camera motion. However, exist-

ing methods for GME have high computational complexity

and are therefore not suitable for on-board processing in

UAVs with limited computing capabilities. In this paper, we

propose a novel low complexity technique for GME that ex-

ploits the characteristics of aerial videos to only employ the

minimum, yet, well-distributed features based on the scene

complexity. Experiments performed on a mobile SoC plat-

form, similar to the ones used in UAVs, confirm that the

proposed technique achieves a speedup in execution time of

over 40% without compromising the accuracy of the GME

step when compared to a conventional method.

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly be-

ing deployed for wide area monitoring and surveillance to

collect high resolution video imagery of the area that could

otherwise be remote and inaccessible [25]. These battery-

powered UAVs operate on very stringent power and weight

budgets that determine not only their flight duration but also

the on-board processing and communication capabilities.

The limited on-board processing capability and the need for

achieving real-time surveillance, necessitates that the video

data be expeditiously relayed to a ground station to extract

useful information, such as the presence of moving objects,

since they represent interesting events in surveillance [1].

However, the limited communication bandwidth itself may

not allow high resolution videos to be transmitted. There-

fore, low-complexity video processing algorithms, which

can run effectively on the limited on-board processing sys-

tems, are essential to extract relevant information on-board

and communicate only this information, in real-time [12].

Several computer vision techniques for motion detection

have been proposed in the existing literature that separate

moving objects from the scene [24]. This has also enabled

Feature 
DeteĐtioŶ

Feature 
TraĐkiŶg

Roďust 
EstiŵatioŶ

Video 
Fraŵes

Global 
MotioŶ 
Model

;ĐͿ

ϮϬ
ϮϮ
Ϯϰ
Ϯϲ
Ϯ8
ϯϬ
ϯϮ
ϯϰ
ϯϲ

Ϭ
ϮϬ
ϰϬ
ϲϬ
8Ϭ

ϭϬϬ
ϭϮϬ
ϭϰϬ
ϭϲϬ

ϱϬ ϭϬϬ ϮϬϬ ϯϬϬ ϰϬϬ ϱϬϬ

AĐ
Đu
ra
ĐǇ
 ;d

BͿ

Eǆ
eĐ
ut
io
Ŷ 
Ti
ŵ
e 
;ŵ

sͿ

No. of Features

GME: Coŵpleǆ SĐeŶe

Tiŵe

BPSNR

;aͿ ;ďͿ

ϮϬ
ϮϮ
Ϯϰ
Ϯϲ
Ϯ8
ϯϬ
ϯϮ
ϯϰ
ϯϲ

Ϭ
ϮϬ
ϰϬ
ϲϬ
8Ϭ

ϭϬϬ
ϭϮϬ
ϭϰϬ
ϭϲϬ

ϱϬ ϭϬϬ ϮϬϬ ϯϬϬ ϰϬϬ ϱϬϬ

AĐ
Đu
ra
ĐǇ
 ;d

BͿ

Eǆ
eĐ
ut
io
Ŷ 
Ti
ŵ
e 
;ŵ

sͿ

No. of Features

GME: Siŵple SĐeŶe

Tiŵe

BPSNR

Figure 1. Feature-based GME: Execution time and accuracy for

(a) Simple scene condition (b) Complex scene condition, and (c)

Overall pipeline

efficient compression techniques such as region-of-interest

coding of aerial videos, by compressing the moving objects

separately from the background scene [16]. However, these

algorithms are highly complex in terms of computations,

especially due to the complexity in the global motion esti-

mation (GME) step, which is one of the critical and time

consuming steps in these algorithms [16]. GME is typically

the first step in processing aerial videos captured from mov-

ing cameras, since it removes the artificial motion induced

in the video frames, due to camera motion.

Figures 1 (a) and 1 (b) show the execution time and accu-

racy results of the GME step for two scenarios. Figure 1 (a)

shows the results when GME is applied on a video with

few moving objects and simple translation motion, whereas

Fig. 1 (b) shows the results for a video with large num-

ber of moving objects and a global rotation. As shown in

Fig. 1 (c), the GME step operates on features obtained from

the current frame, using interest point detectors such as Shi-

Tomasi [22]. It can be observed from Fig. 1 (a) and 1 (b)

that while the execution time increases significantly with

increasing number of features in both scenarios, accuracy

only improves in Fig. 1 (b), for the scene with large num-

ber of moving objects. Therefore, in order to keep the ex-

ecution time (and hence the complexity) of the GME step
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low, it is prudent to use less number of features for simpler

scene conditions (e.g. smaller number of moving objects)

and intelligently ramp up the number of features for com-

plex scenes, e.g. with large number of moving objects.

In this paper, we exploit this behavior to propose sparse-

GME, a low-complexity GME method that employs only

essential number of features depending on scene conditions.

The main contributions of this work are:

• A simple online evaluation strategy to detect successful

completion of GME.

• A repopulation strategy to intelligently ramp up the num-

ber of features, in case GME fails with lower number of

features.

• In addition to evaluating the proposed methods on a PC,

as done in most of the existing work, we have also evalu-

ated and proved the effectiveness of the proposed tech-

niques on an ARM processor-based mobile embedded

development platform, Odroid XU4 [3], to closely repli-

cate [2][21] the on-board processing systems in UAVs.

2. Related Work

Feature-based GME methods, as shown in Fig. 1 (c), are

preferred for their lower complexity. In this method, fea-

tures are first detected in the current frame using interest

point detectors such as Shi-Tomasi [22]. Next, their corre-

sponding location in the previous frame is determined us-

ing a feature tracker such as the Lucas-Kanade (KLT) algo-

rithm [14]. Finally, these feature correspondences are ro-

bustly fit to a global motion model using a robust estimator

such as RanSaC [9].

In literature, low-complexity methods have been pro-

posed for each of the stages in the GME pipeline. In fea-

ture detection, the cost of windowing operations is reduced

in [15] and pruning methods have been used [19]. Lower-

precision computations have been employed in [17] for low-

complexity KLT. The complexity of RanSaC has been ad-

dressed through efforts for faster convergence: with early

rejection of bad hypotheses [6], ordering feature correspon-

dence based on their quality [7] and simultaneous ranking

of multiple hypotheses [18]. However, all these methods

still assume that a large number of feature correspondences

is available, and therefore incur the associated computation

overhead of tracking for a large feature set. Therefore, the

proposed GME technique only employs a minimal number

of well-distributed features for most of the time and intel-

ligently ramps up the number of features if and when the

scene becomes complex.

In [10], a light-weight feature matcher has been proposed

to remove the camera motions in HDR photography. The

authors effectively exploit the minimal translation between

the successive images taken to generate an HDR image to
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Figure 2. Illustration of Random Sample Consensus (RanSaC) al-

gorithm [4] (a) Data points with noise (b) Compute error for a

hypothesis set (c) Determine the corresponding consensus set (d)

Find and report the largest consensus set after several iterations

lower the complexity of their feature-based image regis-

tration pipeline. However, in the context of aerial video

surveillance, a much wider range of displacement is en-

countered due to varying vehicle speed and motion. Hence,

a more robust feature tracker such as KLT [14] is essential,

which while being more complex than the one used in [10],

can effectively deal with wider translations to generate ac-

curate feature correspondences. Hence, in this paper the

proposed method employs a KLT based tracker on an in-

telligently selected set of features to ensure high tracking

accuracy while still reducing the overall complexity.

3. Background

GME computes the parameters of a global (camera) mo-

tion model that defines the camera motion between succes-

sive frames I and J . For aerial videos, a homography model

H is widely used [24] that associates every pixel at (x, y)
in I to a new location (u, v) in J as:
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For each feature XI = (x, y) in frame I , its correspond-

ing location in frame J , given by XJ = (x′, y′) is deter-

mined by the feature tracking step. A set of N feature cor-

respondences are used to solve for the parameters of H in a

least-squared manner where the error E, between the mea-

sured correspondence (x′
i
, y′

i
) and the estimated correspon-

dence (ui, vi), is minimized:

E =

N
∑

i

(x′
i
− ui)

2 + (y′
i
− vi)

2 (2)

Feature correspondences can be noisy due to errors in fea-

ture localization and tracking. This is dealt with a large

number (N ) of feature correspondences that leads to higher

accuracy in the estimation, in the presence of noise.

In addition, feature correspondences may belong to mov-

ing objects, and therefore need to be excluded as outliers

from the estimation. Random Sample Consensus (RanSaC)

[9] is a classic robust estimation algorithm that can deal with

a large number of outliers. As shown in Fig. 2, it selects a
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random sample set and estimates the model (in this case a

straight line) for this sample. It then computes the error,

also known as reprojection error, of all data points to this

model. By applying a threshold on the reprojection error

as in Fig. 2 (b)(c), it generates a consensus set containing

inliers. This process is used iteratively, until the probability

of finding a consensus set larger than what has already been

found is very small. The largest consensus set is reported as

the inliers, as shown in Fig. 2 (d). With a large number of

feature correspondences, it is expected that there are suffi-

cient feature correspondences adhering to the global motion

(in other words, belonging to the background) and they be-

come inliers during RanSaC, thereby making all features

that belong to the foreground or are too noisy, as outliers.

Aerial surveillance videos, captured by on-board cam-

eras on UAVs, have the following characteristics that are of

interest during GME:

1. Small foreground: The background occupies the ma-

jority of the scene and moving objects are sparse and

present only occasionally in surveillance videos [13].

This implies that the outlier ratio can be expected to be

fairly small for most of the video frames in the aerial

video.

2. Predominantly simple camera motion: The camera

motion experienced by successive frames in aerial

surveillance videos is predominantly translational.

Large rotations are only experienced when the vehicle

performs bank turns [25]. This implies that the feature

tracker can be setup for a smooth translation motion,

and be expected to provide highly accurate feature cor-

respondences for most of the video sequence. This, in

turn, implies that the noise in the data used for GME

can be expected to be low for most of the video frames

in an aerial video.

Therefore, when the outlier ratio as well as the overall

noise in the data is expected to be small, employing a large

number of features, leads to wasted computations for the

GME. By a careful selection of features, even a sparse set

can achieve high quality GME for most of the video frames.

It is proposed that the number of features should be adaptive

to the scene content and camera motion, such that when

scene conditions are conducive, the GME can be performed

with sparse features and only when needed, higher density

of features is employed.

4. GME with Sparse Features

The objective of the proposed sparse-GME method is to

adapt to the complexity of the scene, in terms of the number

of features used for GME, such that minimal number of fea-

tures are employed for GME. The key idea is to begin with a

careful selection of a sparse set of features, that works well
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Figure 3. Flow of proposed sparse-GME method

for simple scene conditions, i.e. small number of moving

objects (small outlier ratio) and translational camera motion

(small noise in feature correspondences). GME is predom-

inantly performed with this sparse set and only if it fails,

then we intelligently ramp up the features to improve its ac-

curacy.

Spatial distribution of the detected features is a criti-

cal criterion for the usefulness of feature detectors [8, 5].

Hence, we use this criterion to select sparse features, as it

reduces the redundancy in representing local motion when

camera motion is simple, and also ensures that not all the

features fall on a few moving objects. Therefore, we pro-

pose to select a sparse feature set by choosing features that

are well spread out in the frame. As shown in Fig. 3, the

frame is processed in a block-based manner, extracting the

best feature in each block of the grid and using this feature

correspondence to represent the local motion in that block.

An evaluation method is proposed to determine if the

GME can be successfully completed with the sparse fea-

ture set. To cater for situations where the GME cannot be

completed successfully with the sparse feature set, we also

proposed a repopulation strategy that systematically injects

additional features to improve the accuracy of the GME.

This leads to an iterative GME process as shown in Fig. 3.

These steps are described in detail in following subsections.
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Figure 4. Illustration of RanSaC outcomes with sparse features:

(a) Successful estimation with clear classification of inliers and

outliers (b) Failed estimation with a single feature correspondence

(grey) skewing the estimation (c) Failed estimation with very poor

agreement between the inliers

4.1. Online Evaluation of GME

We propose a simple low-complexity strategy to evaluate

the GME, which can be used to determine whether another

iteration with additional features is needed to successfully

complete the GME.

Figure 4 shows the possible outcomes of GME with

sparse features by illustrating the feature correspondences

in the model parameter space (as was described in Fig. 2).

Figure 4 (a) is an example of a successful estimation: the in-

lier feature correspondences (black circles) are close to the

fitted model (bold line), and the outliers (empty circles) are

distinctly far from the inliers set. In this case, the RanSaC

algorithm is able to correctly classify the inliers and out-

liers, and the model fitted by the inliers represents global

motion.

Failure in estimation, i.e. when the estimated model does

not represent the actual global motion experienced, is due to

the following reasons:

1. Inaccurate correspondences or foreground features

participate and skew the estimation. This means that

the inlier/outlier classification itself is faulty. Two pos-

sible scenarios arise in this case:

(a) As shown in Fig. 4 (b), majority of the cor-

respondences are useful, however a very small

number of inaccurate correspondences or fea-

tures on moving objects (represented by grey cir-

cles) are responsible for erroneous estimation.

Removing or replacing these feature correspon-

dences could still lead to correct estimation.

(b) As shown in Fig. 4 (c), majority of the corre-

spondences are not agreeing well to the model.

Therefore a higher density of features is needed

so that the camera motion can be captured with

sufficient number of features representing the

global motion.

2. Inlier/outlier classification is correct, however the in-

liers form a degenerate set due to insufficient coverage
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Figure 5. Proposed 2-RanSaC strategy to select high-confidence

inliers: Apply RanSaC with two reprojection thresholds, T1 and

T2, with T2 < T1

of the frame.

The aim of the evaluation strategy is to distinguish be-

tween these outcomes, so that additional features are em-

ployed for GME, only when the current estimation has

failed. The proposed evaluation strategy involves the iden-

tification of features that agree with the estimated model

well, referred to as high-confidence inliers. We then ap-

ply two criteria: (1) Inlier agreement (2) Spatial distribution

constraint, on these features to detect GME success/failure.

4.1.1 High-Confidence Inliers

In order to evaluate the accuracy of the estimation, the first

step is to determine if the set of feature correspondences

tightly agree with the estimated model. In RanSaC, the re-

projection threshold, used to separate the inliers from the

outliers, determines how tightly the inlier set agrees with

the estimated model. We propose to invoke RanSaC with

two reprojection thresholds, T1 and T2 such that T2 < T1,

called 2-RanSaC as shown in Fig. 5. If the inlier/outlier

classification remains the same for both T1 and T2, then

the inliers can be relied upon for further evaluation. The

correspondences that are inliers for both the estimations are

considered as high-confidence inliers. The correspondences

that change their inlier/outlier status when the threshold is

tightened are considered shaky correspondences.

4.1.2 Inlier Agreement

Next, we ensure that the inliers strongly agree to the model.

The location error, LE of the inliers is computed and

checked if it is below a threshold as follows:

LE = |Hest(xi, yi)− tracker(xi, yi)| (3)

LE < TLE (4)

where for feature at (xi, yi), Hest(xi, yi) represents the

GM estimated location by applying the homography Hest
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and tracker(xi, yi) represents the tracked location. All the

high-confidence inliers need to have a low location error.

Successful estimation as in Fig. 4 (a) should first meet the

above inlier agreement criterion.

4.1.3 Spatial Distribution Constraint

An additional check for the spatial distribution of the high-

confidence inliers is proposed to rule out the possibility of

a degenerate inlier set - i.e. the scenario when inliers agree

well to the estimated model, but do not represent global mo-

tion due to lack of coverage of the frame. Although the

frame coverage is ensured during feature detection, features

may be lost during tracking or as outliers during estimation,

resulting in poor coverage of inliers after GME. It is there-

fore necessary that sufficient number of high-confidence in-

liers that cover a majority of the image content are present

at the end of the 2-RanSaC step, for the GME to be declared

successful.

Finally, the online evaluation of the GME is performed

as follows:

• The GME is considered successful as in Fig. 4 (a) if

there are sufficient number of high-confidence inliers

satisfying the spatial distribution constraint, with low

location errors.

• The GME is considered to have failed due to a small

number of incorrect feature correspondences skew-

ing the estimation as in Fig. 4 (b) when the high-

confidence inliers have high inlier agreement but fail

the spatial distribution check.

• The GME is considered to have failed as in Fig. 4 (c)

when both the high-confidence inliers fail both the

checks for inlier agreement as well as spatial distri-

bution.

As seen in Fig. 5, with the 2-RanSaC, two models for

homography H1 and H2 are estimated. In the case of a suc-

cessful GME, H2 with the tighter threshold T2 is reported

if it passes the inlier agreement check, otherwise H1 com-

puted with threshold T1 is reported.

Figure 3 illustrates the flow of the evaluation steps de-

scribed thus far, for the GME with the sparse set. A sparse

set of feature correspondences are selected in phase 1 (P1).

RanSaC is applied with two thresholds T1 and T2 as

shown in Fig. 5 in the step: 2-RanSaC, providing the esti-

mated homographies H1 and H2 respectively and the high-

confidence inliers. Next, the inlier agreement is checked

for the high-confidence inliers with H1 and H2. It is also

checked if sufficient high-confidence inliers meet the spatial

distribution constraint. If both these checks are passed, the

model among H1 and H2 that had better inlier agreement,

is reported. When either of these checks fails, a system-

atic repopulation as shown in phases P2-P4 is undertaken,

as described in the next subsection.

4.2. Repopulation

Repopulation with additional features, to improve the ac-

curacy of the GME, is performed in a phased manner, when

a failure is detected by the proposed online evaluation of

GME strategy. Phase 1 (P1) represents the first pass of the

estimation with a sparse well-distributed feature set with n1
features per block in a k ∗ k grid. When the estimation in

P1 fails, subsequent phases of repopulation are performed,

as detailed below:

1. Selective injection of alternate features: When the fea-

ture correspondences are lost during the 2-RanSaC

step - as either outliers or shaky features, the spatial

distribution check fails, as there are not sufficient well-

spread high-confidence inliers. This GME failure sce-

nario corresponds to Fig. 4 (b). A selective injection

of features only in the blocks that have lost representa-

tion is performed, referred to as phase P2 in Fig. 3. It

is to be noted that the spatial distribution check is per-

formed after the check for inlier agreement. Therefore,

the high-confidence inliers are in high degree of agree-

ment. Additional features are needed only to support

the homography model estimated by the current GME.

Therefore, in the blocks that have lost representation,

additional feature correspondences are generated. For

each such alternate feature, it is determined if it sup-

ports the current estimation by checking if its location

error, using Eq. 3, is small. If sufficient supporters

with these alternate features are found, the correspond-

ing homography H is reported. This process is un-

dertaken for H2 first, if it passes the inlier agreement

check and if not, then H1 is considered.

2. Uniform increase in density of features: If neither of

the estimates H1 and H2 pass the inlier agreement

check (i.e. have low location errors for all their high-

confidence inliers), then it indicates that the confidence

in the estimation by the sparse set in P1 is low. This

corresponds to the GME failure scenario in Fig. 4 (c).

A higher density of features, n2 (> n1), is then ap-

plied and the inlier agreement is determined as shown

in phase P3. If this fails as well, then the estimation is

performed with the worst case dense set of features n3
(> n2) in phase P4.

4.3. Robust Tracking

In the presence of drastic camera motions, such as those

experienced during bank turns by aerial vehicles, the accu-

racy of the KLT feature tracking falls [23] leading to an in-

crease in the noisy feature correspondences used for GME.
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Figure 6. Aerial video datasets [16] for evaluation (a) TNT-350m

(b) TNT-500m (c) TNT-1000m (d) TNT-1500m

Figure 7. Odroid XU-4 platform [3]

In this case, increasing the density of features does not guar-

antee improved GME accuracy as the additional features

employed are also likely to be noisy. Instead, a robust fea-

ture tracker such as [20] can be employed with the sparse

feature sets in the proposed sparse-GME method.

5. Performance Evaluations

The proposed sparse-GME method is evaluated against

a conventional approach that typically uses a dense set of

features, irrespective of scene conditions. This approach,

referred to as dense-GME in this paper, uses 1000 Shi-

Tomasi corners [22] as features. In the sparse-GME, the

Shi-Tomasi corners are selected in a block-based manner in

a 4x4 grid (k = 4), with these number of features detected

per block in each phase of repopulation: n1 = 1, n2 = 5
and n3 = 10. The KLT tracker [14] is applied to com-

pute the feature correspondences. RanSaC [9] algorithm is

used with a reprojection threshold T = 3.0 for the dense-

GME. In contrast, the sparse-GME applies RanSaC with

two thresholds T2 = 3.0 and T1 = 1.0. Additionally, for

the inlier agreement criterion, the threshold on the location

error, TLE = 0.5 is used. The check on spatial distribution

requires all high-confidence inliers in phase P1 and 80% of

the high-confidence inliers in phase P3 to have a low loca-

tion error.

Experimental Platforms: Similar to the plethora of ex-

isting work, we evaluated the proposed sparse-GME tech-

nique first on a laptop PC (specifications - Intel Core i7-

2670QM CPU @ 2.20GHz and 8 GB RAM, running Win-

dows 7). In addition, we also evaluated the proposed tech-

niques on an ARM processor based mobile embedded de-

velopment platform, Odroid XU4 [3] as shown in Fig. 7.

This allowed us to validate the effectiveness of the sparse-

GME method on a platform with comparable processing ca-

pabilities as on a UAV. The XU4 platform runs on a Ubuntu

14.04 LTS Linux OS and contains an octa-core Samsung

Exynos 5422 with 4 high performance/high power Cortex

A15 cores and 4 low performance/low power Cortex A7

cores in a big.LITTLE arrangement. We pinned the sparse-

GME to a single A15 core for our experiments to simulate

an extremely constrained UAV platform.

Aerial Video Dataset: We have used the video se-

quences from the TNT Aerial dataset [16] for our experi-

ments, as shown in Fig. 6. These videos were recorded on

a UAV with a downward looking camera with a full-HD

resolution (1920x1080, 30 fps). To evaluate the accuracy

of GME performed on a pair of frames I and J , the back-

ground peak signal-to-noise ratio (PSNR), as presented in

[11], is calculated between the actual frame I and the es-

timated frame I ′ = H(J), where H is the homography

reported by the GME.

The moving objects (foreground) are excluded from the

PSNR computation so that the differences are related to

only GME errors and non-foreground changes between the

frames. The PSNR is computed as:

PSNR = 10× log10

(

2552

MSE

)

(5)

Here, MSE is the mean of the squared-error of the pixel

intensities between the actual frame I and estimated frame

I ′ after the foreground has been removed.

For the video dataset, we obtain the absolute differ-

ence in the background PSNR between the outputs from

the sparse-GME and the conventional dense-GME meth-

ods. This absolute difference is represented as ∆PSNR and

computed as follows:

∆PSNR = |PSNRsparse − PSNRdense| (6)

We also count the number of frames that have a PSNR

difference less than a pre-defined threshold value (TPSNR),

and report them as successful cases of GME. We have used

(TPSNR = 1 dB) for our evaluations. The number of suc-

cessful frames (φ) given total number of nF frames, can be

calculated as follows:

φi =

{

1 ∆PSNRi < TPSNR

0 Otherwise
(7)

φ =

∑

nF

i=1 φi

nF

(8)
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Table 1. Accuracy results of sparse-GME with aerial video

datasets [16]

Dataset Avg. ∆PSNR (dB) Successful frames φ (%)

350m -0.07 100

750m -0.20 97.5

1000m -0.14 99.7

1500m -0.08 99.7

Table 2. Efficiency results of sparse-GME for aerial video datasets

[16]

Speedup (%) Repopulation Phases (%)

ψPC ψEmbedded P1 P2 P3 P4

350m 46.8 39.6 97.4 2.6 0 0

750m 44.4 38.8 94.9 2.6 2.6 0

1000m 43.1 37.3 98.0 0.4 1.5 0

1500m 42.7 44.2 98.7 0.1 1.1 0

Table 1 shows the accuracy results for the video se-

quences. The sparse-GME achieves background PSNR

similar (i.e. within 1 dB) to the baseline dense-GME for

over 97% of the frames in all the video sequences. This

is represented as the % of successful frames, φ, in the sec-

ond column of Table 1. Column 1 shows that the average

difference in background PSNR (∆PSNR) while using the

proposed sparse-GME method in place of the conventional

dense-GME, is less than -0.2 dB. This clearly proves that

the sparse-GME method achieves comparable accuracy as

dense-GME.

The average execution time per frame for all video se-

quences is 149 ms for dense-GME. On the other hand, the

average execution time drops to 83 ms when the proposed

sparse-GME is applied. In addition, we also measured the

execution time on the Odroid-XU4 platform [3]. On the

Odroid-XU4 platform, the average execution time per frame

for all video sequences is 679 ms for dense-GME and drops

to 408 ms for sparse-GME.

We computed the relative speedup in execution time (ψ)

achieved with sparse-GME in comparison to dense-GME

as:

ψ =
(tdense − tsparse)

tdense
(9)

The relative speedup is shown in columns 1 and 2 of Ta-

ble 2. While, expectedly, the average execution time on

the Odroid-XU4 platform increases significantly for both

sparse- and dense- GME methods, the relative speedup re-

mains similar to the one achieved on the laptop PC. This

speedup can be directly attributed to the substantial reduc-

tion in the number of feature correspondences that need

to be computed for sparse-GME that eventually leads to

computations saved in the feature tracking stage. With the

sparse-GME for each frame, the GME is evaluated by em-

ploying the proposed 2-RanSaC strategy, as described in

Figure 8. Images used for the simulated data for evaluation of the

proposed sparse-GME method

;aͿ ;ďͿ ;ĐͿ

Figure 9. Simulated Frames: (a) Frame1 (b) Frame 2 (c) Optical

flow generated by the KLT tracker on Frame 1; 7 moving objects

with in-plane rotation of 5 degrees

Section 4.1. However, the savings achieved by remaining

sparse far outweighs this additional computation.

In Table 2, the repopulation phases needed for the sparse-

GME, are also shown for each sequence in Columns 4

through 7. These results were nearly identical for the PC

and the Odroid-XU4, as expected, since they are indepen-

dent of the platforms used. It can be observed that in over

94% of the frames, for all the video sequences, sparse-GME

is able to complete with only a single phase P1. The slightly

denser phases P3 and P4 are only needed by at most 2.6% of

the frames. This shows that the proposed method is effec-

tive in detecting when the GME has been successful, lead-

ing to substantial savings in computations by using a very

sparse set of features for most of the aerial video frames.

Simulated frames: As the videos from the TNT dataset

do not contain challenging scenarios with significant cam-

era motion and large number of moving objects, we gen-

erated simulated data to evaluate the proposed method for

such scenarios. We use the images shown in Fig. 8 to gen-

erate simulated frames for these evaluations. In Fig. 9, the

applied simulations are illustrated. Moving objects are sim-

ulated using overlaid black square patches. Random local

motion is applied to the simulated objects in a range of ±10
pixels. The simulated frames contain 0-10 moving objects.

The camera motion is simulated as 1-10 degrees of in-plane

rotation. All the frames have a resolution of 352x288.

The proposed sparse-GME is also compared with a naive

approach of only using sparse features in the phase P1, with-

out employing the repopulation step. This naive approach

is referred to as 4x4x1 for our discussions. Figure 10 (a)

shows the evaluation results for simulated frames with 0-

10 moving objects in the frames (with a camera motion of

in-plane rotation of 2 degrees). As seen in the figure, the
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Figure 10. Evaluation results of sparse-GME with complex scene

condition (large number of moving objects) (a) Accuracy (b) Effi-

ciency
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Figure 11. Accuracy of sparse-GME with a conventional KLT

tracker [14] and robust KLT tracker [20] for drastic camera mo-

tion (simulated in-plane rotation)

sparse-GME matches the accuracy of the baseline dense-

GME, even with a large number of moving objects. Clearly,

as the number of moving objects increases, the naive sparse

feature set in 4x4x1 fails, while the sparse-GME success-

fully detects when the sparse feature set in Phase P1 fails,

and ramps up the required number of features, thereby

achieving good GME accuracy. Figure 10 (b) shows that as

number of moving objects increases, the sparse-GME em-

ploys the later phases of repopulation P2-P4 to increase the

feature correspondences representing global motion. How-

ever, it is noteworthy that an average speedup in execution

time of over 45% on PC and 60% on the embedded Odroid

platform, is still achieved by the sparse-GME when com-

pared to the dense-GME.

Figure 11 (a) shows the results when an in-plane rota-

tion of 1-10 degrees is applied. It can be observed that in

this case the accuracy of GME falls for both the sparse as

well as dense feature sets, due to complex inter-frame cam-

era motion. This is because the conventional KLT feature

tracker is unable to deal with the drastic distortions caused

by the rotation, resulting in inaccurate feature correspon-

dences. Therefore, the proposed method also deteriorates in

performance as it is using a subset of the KLT feature corre-

spondences used by the dense-GME. However by employ-

ing a robust feature tracker such as the one presented in [20],

the accuracy of GME can be substantially improved for both

the dense-GME and sparse-GME, as shown in Fig. 11 (b).

With the robust feature tracker, the sparse-GME still leads

to 37-69% speedup in execution time on PC, compared to

the dense-GME.

6. Conclusion

In this paper, we presented a strategy for low-complexity

global motion estimation technique with minimal number

of features, that adapts the number of features needed for

GME with the complexity of the scene and the camera mo-

tion. This leads to substantial reduction in computations for

GME in aerial surveillance videos. It was shown that by

ensuring good spatial distribution, a very sparse set of fea-

tures is sufficient for accurate GME in typical aerial surveil-

lance videos which have predominantly simple scene con-

ditions. In addition, a computationally simple online evalu-

ation strategy for GME was proposed that can rapidly detect

failure in GME when scene conditions become complex. A

systematic repopulation process is employed in such cases

when failure is detected. Our extensive evaluations show a

substantial speedup in execution time of around 40% with-

out compromising accuracy on both a laptop PC as well as

a mobile embedded platform that closely resembles the on-

board processing capabilities of a UAV. We also show that

for complex scene conditions due to significant camera ro-

tations, high accuracy of GME can be achieved with very

sparse set of features when a robust feature tracking is em-

ployed. The proposed sparse-GME method therefore en-

ables low-complexity GME for rapid processing of aerial

surveillance videos. In future, optimized implementations

of the proposed method will be explored that efficiently ex-

ploit the multi-core CPU and the on-chip GPU in the Odroid

platform. In addition, we would also like to study and opti-

mize the energy consumption of the proposed techniques.
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