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Abstract

Generative Adversarial Networks (GANs) have been

shown to produce synthetic face images of compelling re-

alism. In this work, we present a conditional GAN ap-

proach to generate contextually valid facial expressions in

dyadic human interactions. In contrast to previous work

employing conditions related to facial attributes of gener-

ated identities, we focused on dyads in an attempt to model

the relationship and influence of one person’s facial ex-

pressions in the reaction of the other. To this end, we in-

troduced a two level optimization of GANs in interviewer-

interviewee dyadic interactions. In the first stage we gen-

erate face sketches of the interviewer conditioned on facial

expressions of the interviewee. The second stage synthesizes

complete face images conditioned on the face sketches gen-

erated in the first stage. We demonstrated that our model

is effective at generating visually compelling face images

in dyadic interactions. Moreover we quantitatively showed

that the facial expressions depicted in the generated inter-

viewer face images reflect valid emotional reactions to the

interviewee behavior.

1. Introduction

Advances in automated speech recognition and natural

language processing have made possible virtual personal

assistants such as Apple Siri, Amazon Alexa and Google

Home among others. These virtual assistants have found

application in a plethora of everyday activities from help-

ing people manage daily schedules and appointments, to

searching the Internet for their favorite songs. However,

being primarily speech driven, such virtual agents are in-

herently limited in their ability to sense and understand user

behavior and thereby adequately address their needs. Hu-

man interaction is a highly complex interplay of verbal and

non-verbal communication patterns that among other skills

demonstrates a keen ability to convey meaning through

finely calibrated facial expressions [9]. Recent research

in autonomous avatars [6, 22] aims to develop powerful

human-computer interfaces that mimic such abilities. Not

only do these avatar systems sense human behavior holisti-

cally using a multitude of sensory modalities, they also aim

to embody ecologically valid human gestures, paralinguis-

tics and facial expressions.

However, producing realistic facial expressions in

avatars that are appropriately contextualized and responsive

to the interacting human remains a significant challenge.

Early work on facial expression synthesis [4, 5] often relied

on rule based systems that mapped emotional states to pre-

defined deformation in 2D or 3D face models. Such knowl-

edge based systems have traditionally utilized the Facial

Action Coding systems [8], which delineates a relationship

between facial muscle contractions and human emotional

states. Later, statistical tools such as principal component

analysis were introduced to model face shapes as a linear

combination of prototypical expression basis. By varying

the base coefficients a shape model is optimized to fit exist-

ing images or create new facial expressions [3]. A key chal-

lenge for such approaches is that the full range of appear-

ance variations required for convincing facial expression is

far greater than the variation captured by a limited set of

rules and base shapes. Advanced motion capture techniques

have also been used to track facial movement of actors and

transfer them to avatars [16] recreating highly realistic fa-

cial expressions. However, these solutions are not scalable

to autonomous systems as they require a human actor in

the loop to puppeteer avatar behavior. Recently, deep belief

nets were utilized as a powerful yet flexible representation

tool to model the variation and constraints of facial emo-

tions and to produce convincing expression samples [27].

In [32] temporal restricted Boltzmann machines were used

to transfer facial expression from one person to another tar-

get. While these approaches have shown promising results

in transferring the same facial expression from one identity

to another, they have not purported to model interaction dy-

namics of multiple person conversations.

In this paper, we studied human dyadic interactions

to tackle the problem of facial expression generation in

human-avatar dyadic interactions using conditional Gener-
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Figure 1. DyadGAN is composed of two stages of GANs, one to generate sketches and the other one to generate facial expressions of the

interviewer. The inputs are facial expression features extracted from images of interviewees that serve as the conditioning vector ct.

ative Adversarial Networks (GANs). Our goal is not sim-

ply to map the same facial movement of one individual to

another but rather to build a model that takes into account

behavior of one individual in generating a valid facial ex-

pression response in their virtual dyad partner. Previous

work based on GANs and conditional GANs has shown suc-

cess on producing synthetic images in various object cat-

egories and on predicting possible future frames in video

sequences, including face images with different facial at-

tributes such as emotion states, appearance cues or tempo-

ral information [24]. Our work differs from these in that

we do not employ conditions related to facial attributes of

generated identities, but consider the relationship and in-

fluence of one person’s facial expressions in the reaction of

the other. To this end, we introduce a two level optimization

of GANs in interviewer-interviewee dyadic interactions, as

shown in Figure 1. In the first stage, we generate expres-

sive face sketches of the interviewer conditioned on facial

expressions of the interviewee. The second stage generates

complete face images conditioned on the face sketches gen-

erated during the first stage. This two stage approach allows

us to learn an intermediate representation, the expressive

face sketch, which could also be used to generate real facial

expression images for a number of different identities. We

demonstrate that our model is effective at generating visu-

ally compelling face images in dyadic interactions. More-

over we quantitatively show that the facial expressions de-

picted in the generated interviewer face images reflect valid

emotional reactions to the interviewee behavior.

2. Related Work

Significance of facial expressions in dyadic interac-

tions. Communication involves both verbal and nonver-

bal ways of making sure our message is heard. A sim-

ple smile can indicate our approval of a message, while a

scowl might signal displeasure or disagreement. Moreover,

the sight of a human face expressing fear elicits fearful re-

sponses in the observer, as indexed by increases in auto-

nomic markers of arousal [26] and increased activity in the

amygdala [15]. This process whereby an observer tends

to unconsciously mimic the behaviour of the person being

observed [2, 19] has been shown to impact a variety of in-

terpersonal activities such as collaboration, interviews and

negotiations among others [1, 2, 28, 11]. The classic study

by Word et al. [30] demonstrated that interviewees fared

worse when they mirrored less friendly body language of

the interviewer, compared to what they did in the friendly

condition. In parallel with the unconscious face processing

route there is a conscious route, which is engaged, for exam-

ple, when volunteers are explicitly asked to identify facial

expressions or to consciously use facial expression as com-

municative signals in closed loop interactions. In many situ-

ations, an additional cue (an ostensive signal such as briefly

raised eyebrows when making eye contact) is produced to

indicate that the signaling is deliberate [7, 17].

Conditional generative adversarial networks . Con-

ditional GANs [10, 23] are generative models that learn a

mapping from random noise vector z to output image y

conditioned on auxiliary information x: G : {x, z} → y.

A conditional GAN consists of a generator G(x, z) and a

discriminator D(x, y) that compete in a two-player mini-

max game: the discriminator tries to distinguish real train-

ing data from generated images, and the generator tries to

fail the discriminator. That is, D and G play the following

game on V (D,G):

min
G

max
D

V(D,G) = Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))]. (1)

In [24], various techniques from Deep Convolutional

Networks have been introduced into GAN models to fix

some of the previous limitations and produced compelling

results. Previous works has employed different auxiliary

conditional information such as labels [23], text [25] and

images [14]; GANs based methods have tackled text-to-

image/image-to-image translation [25, 14], face image syn-

thesis [24], future frame/state prediction [21, 33], image

manipulation guided by user constraints [34], style trans-

fer [20] and 3D shape modeling [31].

3. Dyadic Dataset and Facial Expression De-

scriptors

As mentioned earlier, in this study we explored

interviewer-interviewee dyadic interactions. Our dataset
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consists of 31 interviews for undergraduate university ad-

missions process. The purpose of interviews was to assess

English speaking ability of the candidates. All participants

were consenting adults that agreed to release of data for sci-

entific research. The interviewees were prospective college

students from a variety of ethnic backgrounds with a nearly

even gender split (16 male and 15 female candidates). Each

candidate was interviewed by the same interviewer (Cau-

casian female) who followed a predetermined set of aca-

demic and nonacademic questions designed to encourage

open conversation and gather evidence of the candidate’s

English speaking ability. The interviews were conducted

using Skype videoconferencing so the participants could see

and hear each other and the video data from each dyadic

interaction was captured. The duration of interviews var-

ied from 8 to 37 minutes and the total dataset consists of

24 hours of video data (when including both interviewee

and interviewer videos). It should be noted that since the

interviewer is the same in each dyad we believe an advan-

tage of this dataset is that it provides a significant amount

of data under varying stimuli (31 different candidates) to

adequately model the interviewer’s behavior in this context.

Facial expression descriptor. We used Emotient’s Facet

SDK [12] to process the dataset and generate per-frame, 8-

dimensional facial expression descriptor vectors, represent-

ing likelihoods of the following classes: Joy, Anger, Sur-

prise, Fear, Contempt, Disgust, Sadness and Neutral. Each

value in the original descriptor represents the likelihood, in

logarithmic (base 10) scale, of a target expression/affect be-

ing present. The evidence values typically range from -2 to

2 and can be easily transformed into the probability of an

expression/attitude as follows:

P =
1

1 + 10−r
. (2)

In table 1, we illustrate the computed expression prob-

ability values of two participants in a dyad in Figure 3 at

Time 00:17. We used the transformed facial expression de-

scriptor d containing calculated probabilities of emotions.

4. Approach

Humans display a wide range of facial expressions, of-

ten with subtle differences to convey highly contextualized

emotional states. We address the challenge of generating

this highly complex process with a two stage model. The

first stage is a conditional deep convolutional generative

adversarial network (DC-GAN) [13] designed to produce

expressive facial sketch images of the interviewer that are

conditioned on the interviewee’s facial expressions. The

second stage is another DC-GAN to transfer refined sketch

images into real facial expression images. In addition to be-

ing a more computationally tractable optimization problem,

our two stage approach has the added advantage of learning

an intermediate representation, the expressive facial sketch,

which could be used to generate real facial expression im-

ages for a number of different identities.

On both stages we adapted generator and discrimina-

tor architectures from [24] and used modules of the form

convolution-BatchNorm-ReLu [13] to stabilize optimiza-

tion. In the training phase, we followed the standard ap-

proach to use mini-batch SGD and apply the Adam solver.

To avoid the fast convergence of discriminators, generators

were updated twice for each discriminator update, which

differs from original setting [24] in that the discriminator

and generator update alternately.

4.1. Expressive face sketch generation

Network architecture. Figure 2 summarizes the train-

ing procedure of the first stage. In the generator G, at first a

100 dimension noise z is sampled from the uniform prior

U(−1, 1) and encoded with a temporal facial expression

feature ct computed from interviewee videos as shown in

equation (3). For each frame of the interviewer at time t

we considered the facial expression descriptors of the asso-

ciated interviewee data between [t − δt, t]. We empirically

used a time weighted average on all expression descriptors

in [t− δt, t]:

ct =

∑
τ∈[t−δt,t] wτdτ

∑
τ∈[t−δt,t] wτ

, (3)

wτ = exp(
τ − t

δt
). (4)

Each element in ct was normalized to [0, 1] before we

used ct as input conditional vectors in the first level of our

model.

The input is passed to two fully connected layers fol-

lowed by batch normalization and rectified linear (ReLU)

processing. The inference then proceeds as in a normal

up-sampling layer followed by a Sigmoid function. In our

model, the auxiliary information ct is combined with inter-

mediate features in all layers to magnify its influence: in

full connection layers, ct is simply concatenated with in-

put/output features; in up-sampling layers, ct is replicated

spatially and depth-concatenated with feature maps.

In the discriminator D, at first a real or fake (generated)

sketch image is depth concatenated with ct. The combined

input goes through two layers of stride-2 convolution with

spatial batch normalization followed by leaky ReLU. Again

two full connection layers are employed and the output is

produced by a Sigmoid function. Similarly, the facial ex-

pression feature is concatenated with features in all layers

in the discriminator.

Sketch training set generation. On each image frame

of the interviewer sampled from dyadic interview videos, a

face shape predictor similar to Kazemi et al. [18] is utilized

3 13



Figure 2. The architecture of the first stage, showing how the expression feature is concatenated in each feature layer of the generator and

discriminator.

to obtain a set of 68 landmark points which depict compo-

nents of human faces, such as eyes, eyebrows, nose, mouth

and face out-contour. These landmarks were then linked by

piece-wise linear lines of one pixel width. Figure 1 demon-

strates the procedure of generating a sketch image from a

sampled frame of the interviewer.

(a) (b) (c)
Figure 3. The interviewer and the interviewee interacted through

online video-conferencing. Cropped image pair (a), (b) and (c)

shows the corresponding facial expressions at 00:17, 07:10 and

11:33 respectively.

4.2. Sketch to image generation

Network architecture. We adopted the framework of

Isola et al. [14] to learn the transformation of generated

face sketches to complete facial expression images. To ful-

fill the training of this stage and construct sketch-image

pairs, we used the sketch training set for the first stage as

input to the generator and corresponding sampled facial ex-

pression images as the input to the discriminator. For each

pair the sketch is strictly aligned with the corresponding

face image, A sketch is passed through an encoder network

containing 8 down-sampling layers and then a decoding net-

work composed of 8 up-sampling layers to produce an im-

age. To share the low-level information between input and

output, a U-Net strategy [14] is utilized to concatenate cor-

responding feature maps of encoding and decoding layers,

that is, all feature maps at the layer i of the encoding net-

work are combined with those at layer ni in the decoding

networks, where n = 8.

In the training phase of our sketch to image generation

stage the GAN objective in equation 1 is combined with a

L1 loss to enhance image quality of outputs:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[||y −G(x, z)||1], (5)

G∗ = L(D,G) + λLL1(G), (6)

where G∗ is our final objective. In practice we fixed

λ = 100 and found it worked well. In such an approach,

the discriminators task remains unchanged, i.e., distinguish

real facial expression images from generated ones, but the

generator’s job is to not only fail the discriminator, but also

to produce images matching the real samples y (the input to

the discriminator) in an L1 sense. The noise signal of z is

not explicitly fed into this stage; instead randomness is only

provided in the form of dropout, applied on first 3 layers in

the encoding network of the generator at both training and

inference time.

Input sketch denoising by landmark relocating. As

introduced above, the sketches used in training are pro-

duced by linking the landmarks detected from real images.

The lines in these sketches are noise-free and strictly with a

width of one pixel. However, during the inference phase

noisy sketches generated from our first stage (expressive

face sketch generation) are used as inputs for reference. As

shown in Figure 4, these noisy sketches deteriorate the qual-

ity of output images. To fix this issue, we trained a shape

predictor by using pairs of sketches and landmark sets. We

then deployed this shape predictor on noisy sketches to lo-

cate key landmarks and connected them with piece-wise lin-

ear lines to obtain cleaned sketches. Figure 4 demonstrates

how our sketch de-noising process benefits the facial ex-

pression generation.

5. Experiments

Evaluating generative models that can sample but not

estimate likelihood directly is a challenging problem.
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Joy Anger Surprise Fear Contempt Disgust Sadness Neutral

Interviewer 1.0 2.45e-5 8.31e-7 8.07e-4 9.17e-10 9.41e-4 4.13e-9 8.50e-12

Interviewee 1.0 7.95e-6 6.81e-6 0.0166 4.05e-5 4.02e-4 3.82e-5 3.68e-8

Table 1. Expression/attitude probability scores of the interviewer and the interviewee in Figure 3 at Time 00:17 (first image pair). High

level of Joy expression is consistent with the image content.

(a) (b) (c) (d) (e)
Figure 4. The de-noising process for generated sketches from

Stage 1. Column (a) to (e) show the noisy sketches, the landmark

relocation (denoted in red dots), the cleaned sketches, output facial

expressions using (a) as input and output facial expressions using

(c) as input. In the first row the initial sketch only contains very

limited noise and broken lines on chin and mouth, but the cleaned

sketch still largely suppress the defects in (d). In the second row

the twisted and broken initial sketch fails to generate a reasonable

face while the denoised sketch synthesizes an adequate one.

Goodfellow et al.[10, 23] used Parzen window-based log-

likelihood to estimate probability of the test set data under

pg (the generators distribution). Radford et al.[24] applied

its GAN model as a feature extractor on supervised datasets

and evaluate the performance of linear models (such as

SVM) fitted on top of these features. Those metrics do

not assess the joint probability of x and y, therefore do not

measure the effectiveness of our model to generate facial

expressions in dyadic interaction. In order to quantitatively

evaluate the quality of generated images, we organized two

experiments.

In the first experiment we randomly sampled video clips

of 5 seconds from interviewees and calculated their facial

expression features ct according to Equation 3. We input

these feature vectors as conditions to our framework and

generated facial expression frames of the interviewer. Once

more we used Emotient’s Facet SDK to extract two sets Sg

and Sr. Sg contains facial expression descriptors d
g
t com-

puted from the generated interviewer images and Sr con-

tains descriptors drt computed from the real interviewer im-

ages that temporally aligned with interviewee video clips.

We then analyzed the statistical properties of these two sets

to determine if they have significant differences.

In the second experiment we input canonical expression

descriptors of interviewees (pure Joy, Anger, Surprise etc.)

to analyze the generated responses of the interviewer. Our

intuition is that a set of interviewer’s facial expressions gen-

Population 1 Population 2

Number of Observation 8000 8000

Sample Mean 1.3049 1.3802

Sample STD 0.17875 0.067433

Significance level 0.05

p-level 1.706× 10−30

Table 2. Results of a lower-tailed, two sample t-test on Population

1 and Population 2.

erated in reaction to a canonical emotion of the interviewee

(e.g. Joy) would be similar to each other and different from

those generated in response to a different canonical expres-

sion (e.g. surprise) of the interviewee.

5.1. Experiment 1

We randomly sampled 1000 short video clips of intervie-

wees for each of eight major emotions in Table 1 and com-

puted expression features ct according to Equation 3. We

enforced to only select those video clips whose last frame

produces at least one emotion (in corresponding d) with a

probability above 70%. In this way we obtained 8000 ex-

pression feature vectors ct. For the real frames of inter-

viewers that temporally aligned with those 8000 clips, we

extracted expression descriptor drt to form an set Sr.

By using each ct, we randomly generated 15 images

of interviewers, computed 15 face expression descriptors

(d
g
t [1] to d

g
t [15]). We calculated the Euclidean distance be-

tween drt and d
g
t for 15 times and get the average distance

dist. In this way we produced a population set (Population

1) of 8000 distance values which measure the expression

difference between real interviewer images and generated

interviewer images. Each distance value in this set corre-

sponds to a specific ct described above.

We also built another population set of distances (Popu-

lation 2) to compare with Population 1. For each drt , we ran-

domly sampled 100 dg which is not corresponding to ct (of

drt ). Again we calculated the Euclidean distance between

drt and those dgs for 100 times and get the average distance

disrandt ; in this way our Population 2 also contains 8000

distance values. The sample means and sample standard

deviations of two populations are illustrated in Table 2. For

simplicity, we ignored the correlations among those values

and assumed the independence of them.

Our hypothesis is that the expression distance between

a real interviewer image and generated images w.r.t. the

same ct should be smaller than that of randomly computed
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Joy Anger Surprise Fear Contempt Disgust Sadness Neutral

Joy 0.5770 1.2014 1.1011 1.1787 1.1602 0.9533 0.9280 1.0610

Anger 1.2014 0.9090 0.9815 0.9230 1.0314 0.9877 0.9522 0.9166

Surprise 1.1011 0.9815 0.9087 1.0422 1.0571 1.004 0.9590 0.9820

Fear 1.1787 0.9230 1.0422 0.8172 1.037 0.9906 0.9962 0.9006

Contempt 1.1602 1.0314 1.0571 1.0370 0.8169 1.0873 1.0505 0.9054

Disgust 0.9533 0.9877 1.0038 0.9906 1.0873 0.9222 0.9020 0.9636

Sadness 0.9280 0.9522 0.9590 0.9962 1.0505 0.902 0.8434 0.8856

Neutral 1.0610 0.9166 0.9820 0.9006 0.9054 0.9636 0.8856 0.7472

Table 3. Comparison on intra-set and inter-set average distances between different sets of the second experiment.

Figure 5. Each row represents exemplar generated expressions of the interviewer when interacting with eight canonical emotions of in-

terviewees: Joy, Anger, Surprise, Fear, Contempt, Disgust, Sad and Neutral. These samples demonstrate that the generated interviewer

response is qualitatively consistent for each of the interviewee emotions.

one in the control set (Population 2). This could be tested

by using a lower-tailed, two sample t-test in which the

null/alternative hypotheses is defined as H0: µ1 = µ2 and

Hα: µ1 < µ2 respectively, in which µ1 (µ2) represents the

mean of Population 1 (Population 2). We adopted Matlab

function ttest2 to conduct this test in which Satterthwaite’s

approximation [29] was used for the case that equal vari-

ances of two data populations are not assumed. As shown in

Table 2, at a significance level of 0.05, the computed p-value

is very close to 0. So we accept the alternative hypothesis

Hα (µ1 < µ2) at the 0.05 significance level, which con-

cludes a statistically significant reacting effect of our gener-

ative model.
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Figure 6. Intensity of Expression: Each row represents exemplar

generated expressions of the interviewer when interacting with

interviewee emotions of varying intensity. Top to bottom: Joy,

Anger, Surprise, Fear, Contempt, Disgust, Sad and Neutral. Left

to right, the emotion intensity: 0, 0.25, 0.50, 0.75 and 1 respec-

tively.

5.2. Experiment 2

In this experiment we test how consistently our model

generates valid interviewer facial expression images in re-

sponse to interviewee behavior. A set of 8 canonical inter-

viewee facial expression features ct are fed to our model

as one-hot vectors, for instance [1, 0, 0, 0, 0, 0, 0, 0] repre-

senting interviewee Joy expression with a probability of 1,

[0, 1, 0, 0, 0, 0, 0, 0] representing Anger and so forth. We

then use our GAN model to randomly generate 1000 in-

terviewer expression images for each interviewee canonical

expression feature. Figure 5 shows some examples from

these generated images. It can be observed that for each in-

terviewee canonical expression, the generated interviewer

response (images on the same row) is valid and consistent

with each other. To verify this quantitatively we extract

facial expression descriptors dg from the generated inter-

viewer face images (see section 3 for facial expression de-

scriptor details) and group these into 8 sets corresponding

to each of the canonical interviewee facial expressions. Ta-

ble 3 shows the average Euclidean distances of the facial

expression descriptors from one set to another. As can be

seen the intra-set average distance on the diagonal of Ta-

ble 3 (computed between descriptors of the same set i.e.

interviewer response to one of the 8 canonical interviewee

expressions) is generally smaller than inter-set average dis-

tances.

Facial expression transition effect. To demonstrate the

ability of our system to generate consistent facial expres-

sions of the interviewer w.r.t interviewees’ expression fea-

tures of different intensity levels, for eight expression inputs

we presented an expression transition effect in Figure 6.

For Joy, a series of 5 interpolation expression features be-

tween [0, 0, 0, 0, 0, 0, 0, 0] and [1, 0, 0, 0, 0, 0, 0, 0] illustrate

that the interviewer not only ‘reacted’ to interviewees’ joy

expressions according to the intensity level, but also exhib-

ited a smooth transition from left to right.

6. Conclusion

In this paper we have presented an approach to generate

face images depicting contextually valid facial expression

during interviewer-interviewee dyadic interactions. A key

novelty in our approach is that the face image generation

is conditioned not on the generated identity’s own/self at-

tributes but rather the facial expressions of their dyadic con-

versation partner. We believe this allows us to better capture

the influence of dyad partner’s behavior in generating a re-

sponse. It should be noted that since our model was trained

on a dataset consisting of a single individual interviewing

many candidates, inferences drawn from our experiments

do not necessarily generalize to a multitude of interviewer

personalities. To extend our approach to multi-interviewer

scenarios, in addition to having a larger dataset with multi-

ple interviewer identities, standard style transfer techniques

could be utilized, or more sophisticated shape registration

methods could be performed to align face shapes of differ-

ent identities to a tangent space before the GAN training. To

enhance the generation quality, different forms of loss func-

tion could also be used to better regularize the GAN objec-

tive. Finally, our approach can be combined with a temporal

recurrent networks such as LSTM to synthesize continuous

video frames of facial expressions in dyadic interactions.
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