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Abstract

We introduce a long short-term memory recurrent neu-

ral network (LSTM-RNN) approach for real-time facial an-

imation, which automatically estimates head rotation and

facial action unit activations of a speaker from just her

speech. Specifically, the time-varying contextual non-linear

mapping between audio stream and visual facial movements

is realized by training a LSTM neural network on a large

audio-visual data corpus. In this work, we extract a set

of acoustic features from input audio, including Mel-scaled

spectrogram, Mel frequency cepstral coefficients and chro-

magram that can effectively represent both contextual pro-

gression and emotional intensity of the speech. Output fa-

cial movements are characterized by 3D rotation and blend-

ing expression weights of a blendshape model, which can be

used directly for animation. Thus, even though our model

does not explicitly predict the affective states of the tar-

get speaker, her emotional manifestation is recreated via

expression weights of the face model. Experiments on an

evaluation dataset of different speakers across a wide range

of affective states demonstrate promising results of our ap-

proach in real-time speech-driven facial animation.

1. Introduction

Human-machine interaction has been one active research

area for decades, with the ultimate goal to make human-

machine interaction transparent. Speech, as a natural form

of communication among various modes of interactions,

is becoming more immersive, evidenced by the increasing

popularity of virtual voice assistants, such as Microsoft’s

Cortana or Amazon’s Alexa, in our daily lives. Further-

more, not only the contextual sound units (phonemes) are

carried in the audio recording, but also emotional states of

the speaker via speed or intensity of her speech [18, 6, 4,

17, 5]. Thus, a lively animated 3D head representing the

speaker will certainly enhance the speech perception expe-

rience in many applications. One such application is the

development of talking agent, either in the form of virtual

or physical (i.e. robotic) avatars, for face-to-face human-

machine interaction, as in computer-assisted voice agent.

In this scenario, the recorded speech can easily be manip-

ulated, by changing the speed or pitch, to reflect the arti-

ficial emotion of the digital assistant. These changes can

be automatically reflected visually on the avatar, and make

the interaction more engaging. On the other hand, it can

also make inter-person telecommunication more enjoyable

by expressing speech via personalized avatars, especially in

interactive role-playing games, where the gamers commu-

nicate with other characters in the virtual world.

In this work, we aim to recreate a talking 3D virtual

avatar that can naturally rotate and make micro facial move-

ments to reflect the time-varying contextual information and

emotional intensity carried in the input speech. Intuitively,

this work is analogous to visual 3D face tracking [20, 19],

however, it is more challenging as we try to map acous-

tic sequence to visual space, instead of conveniently rely-

ing on textural cues from input images. Moreover, speech-

emanating facial movements involve different activations of

correlated regions on the geometric surface, thus it is diffi-

cult to achieve realistic looking, emotion-aware facial de-

formation from speech sequence.

Thus, we propose a regression framework based on long

short-term memory recurrent neural network to estimate ro-

tation and activation parameters of a 3D blendshape face

model [7] from sequence of acoustic features, for real-time

life-like facial animation. We extract a wide range of acous-

tics features to capture contextual and emotional progres-

sion of the speech. To tackle the difficulty of avatar gen-
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eration, we utilize the blendshape model in [7], which is

purposely designed with enough constraints to ensure that,

the final model would always look realistic given a specific

set of control parameters. In addition, it can represent var-

ious emotional states, e.g. sadness, happiness, etc., with-

out explicitly specifying them. In order to directly map the

input features to face shape parameters, we use deep recur-

rent neural network with LSTM cells [15] to model the long

range context of the sequence.

2. Related Work

Text or speech-driven facial animation. Usually re-

lated in the literature as ”talking head”, various approaches

have been developed to animate a face model driven by ei-

ther text or speech. A text-driven approach typically con-

sists of a text-to-speech and a text-to-face shape synthe-

sizing unit, and are combined to generate facial anima-

tion [24, 9]. Speech-driven techniques often share a com-

mon approach: directly map an input sequence of acoustic

features to a sequence of visual features [13, 29, 22].

The above approaches can also be categorized according

to the underlying face model, into model-based [2, 1, 23,

28, 10, 8] and image-based [3, 9, 12, 25, 29, 13]. Image-

based approaches compose the output video by concate-

nating short clips, or stitch different regions from a sam-

ple database identified by a classifier, together. These ap-

proaches usually generate photo-realistic video output, as

they compose the result from real images with natural tex-

tures. However, their performance and quality are limited

by the amount of samples in the database, thus it is difficult

to generalize to a large corpus of speeches, which would re-

quire a tremendous amount of image samples to cover all

possible facial appearances. In contrast, although lacking

in photo-realism, model-based approaches enjoy the flexi-

bility of a deformable model, which is controlled by only a

set of parameters, and more straightforward modeling.

Essentially, every talking head animation technique re-

quires a particular algorithm in order to map an input to

visual features, which can be formulated as a regression or

classification task. Classification approaches usually iden-

tify phonetic unit (phonemes) from speech and map to vi-

sual units (visemes) based on specific rules, and animation

is generated by morphing these key images. Regression ap-

proaches, on the other hand, can directly estimate visual pa-

rameters from input features and generate continuous trajec-

tories. Early successes in speech-driven talking head were

achieved by using Hidden Markov models (HMMs) for tra-

jectory estimation [25, 26]. However, HMM-based tech-

niques incur certain limitations of generative model, e.g.

wrong model assumption, or over-smoothing because of the

maximum likelihood framework. In recent years, deep neu-

ral networks have been successfully applied to speech syn-

thesis [21, 30] and facial animation [10, 31, 13] with supe-

rior performance. This is because deep neural networks are

able to learn the correlation of high-dimensional input data,

and, in case of recurrent neural network, long-term relation,

as well as the highly non-linear mapping between input and

output features.

Long short-term memory recurrent neural networks.

Recurrent neural networks (RNNs) [27] have demonstrated

highly desirable performance in sequence modeling with

the ability to integrate temporal contextual information.

Hochreiter et al. [15] introduced the Long short-term mem-

ory (LSTM) cell in RNN to overcome the vanishing gra-

dient problem [14] in modeling long-term relation. In this

work, we aim to estimate the facial transformation trajec-

tory in real-time, hence we utilize unidirectional (forward)

LSTM-RNN that only memorizes the past data.

3. System Overview

Figure 1 illustrates the architecture of our proposed

speech-driven facial animation framework, which includes

a training stage and an animation stage. In the training

phase, the speech-to-facial parameters mapping is learned

by a LSTM-RNN model from the RAVDESS database [16],

a large audio-visual corpus that consists of high resolution

videos of various speeches and emotions (cf. 6 for more de-

tails). High quality videos allow accurate visual tracking of

3D facial deformations, which subsequently enable the deep

model to learn complex mapping between speeches and fa-

cial actions. Our method is totally language-independent,

hence it can be extended with more samples of other sub-

jects speaking different languages. In the animation phase,

the trained LSTM model converts input acoustic features

into head rotation and facial deformation parameters to

drive a 3D blendshape face model.

At the first step in the training phase, various input

acoustic features and expected visual output, including head

rotation and local deformation parameters, are extracted

from training videos (cf. 4 for details on feature and pa-

rameter extraction). Subsequently, they are used to train a

discriminative LSTM-RNN model by minimizing a squared

loss, in order to effectively learn the non-linear mapping be-

tween input features and output parameters. The animation

phase is very straightforward: given a recorded speech se-

quence and its features, the LSTM-RNN model estimates

head rotation and deformation parameters, which are then

used to animate a 3D face model to visually recreate the fa-

cial movements and expression carried in the input speech.

4. Feature Representation

4.1. Face Model Parameterization

In this work, we utilize the 3D blendshape face model

from the FaceWarehouse database [7], in which, an arbi-

trary shape S including head pose of a subject can be com-
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Figure 1: The proposed speech-driven facial animation framework.

posed as:

S = R

(

B0 +

N
∑

i=1

(Bi −B0)ei

)

, (1)

where (R, e) are rotation and expression blending param-

eters, respectively, {Bi|i = 1..N} are personalized ex-

pression blendshape bases of a particular person, calculated

from a 3D tensor, and their combinations are consistent

across users. Note that {ei} are constrained within [0, 1].
Readers are encouraged to find more details about the Face-

Warehouse face model and its parameterization in [7].

Rotation and deformation parameters (R, e) are the out-

put of our deep model, where R is represented by three

free parameters of a quaternion. In our implementation,

the number of expression bases N is 46, hence the out-

put parameter vector holds 49 values in total. We use the

real-time 3D face tracker in [20], using only RGB input, to

extract these parameters from training videos. In particu-

lar, the face tracker recovers facial parameters in each input

video frame by performing two steps: 3D face alignment

and refinement. In the alignment step, 3D facial param-

eters are rapidly estimated by a random forest-based het-

erogeneous regression pipeline trained upon regular image

datasets, which also predicts 2D landmarks corresponding

to a set of specific 3D vertices of the blendshape model in

order to account for unseen identities and expressions. In

such cases, 2D displacement errors tend to be large, i.e. the

predicted 2D landmarks differ from the 2D projection of

their corresponding 3D vertices considerably, and these er-

rors are minimized in the subsequent refinement step. In

this step, 3D facial parameters are fine-tuned by deform-

ing the 3D face model to fit 2D landmarks estimated by the

regressor, while maintaining temporal coherency w.r.t. pre-

vious frames. Figure 2 shows a few sample frames from the

RAVDESS training set.

Figure 2: A few samples from the training data, where a 3D

facial blendshape is aligned to the face of the actor in the

input frame. Green dots mark 3D landmarks of the model

projected to image plane. The blendshape rendered here is,

however, a generic model animated given parameters esti-

mated by the tracker. We also use this 3D shape model in

our animation experiments.

4.2. Input Feature Extraction

The input to our system can be any arbitrary speech of

any length. As we only use low-level acoustic features, our

model is not tied to any particular language, and it can be

easily extended given more training samples. Specifically,

we extract Mel-scaled spectrogram, Mel frequency cepstral

coefficients (MFCCs) and chromagram from the audio se-

quence. Mel-scaled spetrogram and MFCCs are standard
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Figure 3: The tracking framework in [20], including a

multi-stage regression pipeline that predicts (R, T, e), and

a refinement step that fine-tunes those transformation pa-

rameters, plus identity parameters. However we do not use

depth data in this work, as RAVDESS only contains regular

RGB videos, and translation T and identity parameters are

not used. We are only interested in estimating head rotation

and facial action deformations from speech.

acoustic features proven to be very effective in presenting

the contextual information, whereas chromagram is neces-

sary to determine the pitch in the speech, which reflects

the affective states of the speaker throughout the entire se-

quence.

We assume that every input audio sequence is synchro-

nized to the corresponding video at 30 FPS and the audio

sampling rate is at 44.1 kHz. Thus, for every video frame,

there are 1,470 corresponding audio samples. We include

additional samples from the previous video frame, such that

for each video frame there is enough audio data to extract

three windows of 25ms each, with hop length of 512 sam-

ples. In every audio window, values of 128 Mel bands,

13 Mel frequency cepstral coefficients and their delta and

delta-delta coeffcients, and 12 chroma bins, are extracted.

In summary, the input feature vector for every video frame

has 537 dimensions, and each variable is normalized to zero

mean - unit variance. Figure 4 illustrates different feature

sequences extracted from videos of the same actor speaking

the same sentence in different emotional states.

Figure 4: Feature sequences extracted from videos of the

same actor speaking the same sentence ”Kids are talking by

the door” under different emotional states. From top row:

Neutral, Happy, Sad and Disgust, respectively.

5. Deep LSTM-RNN for Facial Animation

5.1. LSTMRNN

Figure 5: A long short-term memory block.

Recurrent neural networks (RNNs) have the ability to

memorize past inputs in internal states. They are able to in-

corporate temporal contextual information, thus RNNs are

very suitable for sequence modeling. However, conven-

tional RNNs can only remember limited range of past con-

text because of the vanishing gradient problem [14]. Long

short-term memory (LSTM) unit, shown in Figure 5, is de-

signed to overcome this limitation. LSTM unit is able to

store its value for long period of time by controlling the flow

of information into and out of its memory. A forward pass

in the recurrent hidden layer of LSTM-RNN is as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,
ft = σ (Wxfxt +Whfht−1 +Wcict−1 + bf ) ,
at = τ (Wxcxt +Whcht−1 + bc) ,
ct = ftct−1 + itat,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,
ht = otτ(ct),
yt = η (Whyht + by) ,

(2)

where σ and τ are sigmoid and tanh activation functions,

i, o, f, a and c are input gate, output gate, forget gate, cell

input activation and cell memory, respectively. t = 1..T ,

where T is the sequence length. xt is the input at time t,

while ht is the output of the hidden layer, yt is the final

output of the network, and η is the activation function of

the output layer. {W} and {b} are weight matrices and bias

vectors, respectively.

5.2. LSTMRNN for Facial Action and Rotation
Synthesis

Our framework maps input acoustic feature vector se-

quence of xt, t = 1..T to output sequence of shape pa-

rameter vectors yt, where T is the number of video frames.

Thus, at any given time t, the deep LSTM model estimates

yt = (Rt, et) from an input feature vector xt. Blending
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Figure 6: The architecture of our deep LSTM-RNN model

for facial action and rotation synthesis. In this figure we

only show two hidden layers, which we empirically found

to perform reasonably well on the RAVDESS dataset.

weights et in particular have to be constrained within [0, 1],
hence we split the output into two separate layers, YR for

rotation and Ye for expression weights. YR is simply a lin-

ear layer, whereas Ye uses ReLU activation to enforce non-

negativity on the output:

yRt = WhyR
ht + byR

,

yet = ReLU (Whye
ht + bye

) ,
yt = (yRt, yet) .

(3)

The architecture of our deep LSTM-RNN model is illus-

trated in Figure 6. We train the model by minimizing the

square error:

E =
∑

t

∥

∥

∥
yt −

⌢

y t

∥

∥

∥

2

, (4)

where ŷt is the expected output, which we extract from

training videos.

6. Experiments

Dataset. We use the Ryerson Audio-Visual Database of

Emotional Speech and Song (RAVDESS) [16] for train-

ing and evaluation. Specifically, the database consists of 24

professional actors (12 male and 12 female, respectively)

speaking and singing with various emotions. The speech

set consists of eight general emotional expressions: neu-

tral, calm, happy, sad, angry, fearful, surprise, and disgust,

where each video sequence is associated with one among

eight affective states. Similarly, the song set, in which the

actors sing short sentences, consists of six general emo-

tional expressions: neutral, calm, happy, sad, angry, and

fearful. Both sets are used for training and testing. We

use video sequences of the first 20 actors for training, with

around 250,000 frames in total, and evaluate the model on

the data of four remaining actors.

Implementation Details. Our framework1 is imple-

mented in Python, based on the deep learning toolkit

CNTK2. We train the deep models in 300 epochs, where

learning rate is chosen as 0.003 for the first two epochs,

0.0015 for the next 12, and 0.0003 for the remaining epochs.

Excluding the time for acoustic feature extraction, it takes

about 5ms on average to estimate output vector yt from one

input frame xt, on a laptop equipped with a relatively low-

end Quadro K1000M GPU. Thus, our model is suitable for

real-time speech-driven animation task.

Evaluations. We train and evaluate performance of three

different LSTM-RNN topologies, as listed in Table 1, in

which we also compare their performance with support vec-

tor regression (SVR) [11]. The metrics in this table is mean

squared error of parameters over all video frames in the

held-out test set:

ε =
1

M

M
∑

i=1

∥

∥

∥
yi −

⌢
,

y i

∥

∥

∥

2

,

where M is the number of video frames, y and ŷ are model

and expected output, respectively. According to this table,

all deep models outperform the SVR baseline, and Net 1

achieves the smallest training error after 300 epochs, but

its testing error is slightly higher than other two network

models across all affective states in the database. Moreover,

we use the speech model-generated parameters and tester-

specific blendshape expression units estimated by the visual

tracker to calculate a person-specific 3D shape as in (1), and

extract its landmarks in order to compare to visual track-

ing results. In particular, Table 2 and 3 contain root mean

squared error (RMSE) of 3D landmarks in millimeters and

RMSE of projected 2D landmarks normalized over average

head size, which equals to 400 pixels in RAVDESS, respec-

tively. Figure 8 shows histogram of landmark errors of a

few key landmarks.

According to Table 2, the average 3D error of deep mod-

els is about 10mm. It is expected because speech-driven

models cannot accurately estimate head rotation. Specifi-

cally, each actor has a different person-specific rigid head

movement pattern, whereas the deep models learn to esti-

mate head rotation by averaging over all training samples as

in (4). Thus, these models are unable to effectively repro-

duce accurate rigid head movement on the test data. How-

ever, rigid rotations, temporally smoothed by RNN, can

augment the 3D animation for more realistic visual effect,

compared to a stationary head. In general, in terms of shape

error, all three network models achieve similar errors, with

Net 3 slightly outperforms the other two, but the difference

in 3D error is less than 1mm. These results demonstrate

that our deep models can generate consistently realistic 3D

1Code available at: research.cs.rutgers.edu/∼hxp1/SpeechProject.html
2Microsoft Cognitive Toolkit (cntk.ai)

84



(a) Actor 24 - Surprised

(b) Actor 21 - Happy

Figure 7: Two sequences from the test set. For each sequence, shown from top to bottom: the original video, the 3D

blendshape animated by the visual tracker [20] and the speech-driven animation generated by our deep model, respectively.

Table 1: Training and testing errors of different network configurations. For example, 1:600-2:200 means this is a 2-hidden-

layer LSTM-RNN whose 1st and 2nd hidden layers have 600 and 200 units, respectively. Testing error is also separated

corresponding to eight affective states, e.g. the ”Happy” column contains mean squared error over all frames in videos

labeled with ”happy” general emotion.

Configuration Train. Err. Test Err. Neutral Calm Happy Sad Angry Fear Disgust Surprised

Net 1 1:600-2:200 0.59 3.22 3.22 3.26 3.44 3.27 2.96 3.06 3.53 3.17

Net 2 1:300-2:200 1.08 3.03 2.98 2.98 3.25 3.09 2.81 2.89 3.30 3.10

Net 3 1:600-2:600 0.79 3.06 3.02 3.14 3.37 3.10 2.69 2.94 3.30 3.02

SVR n/a 3.39 3.50 3.52 3.40 3.84 3.45 3.32 3.34 3.62 3.70
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Table 2: RMSE (in mm) when comparing reconstructed 3D landmarks using the speech model-generated parameters to visual

tracking results. Net 3 achieves smaller error overall.

Overall Neutral Calm Happy Sad Angry Fear Disgust Surprised

Net 1 10.11 9.15 9.87 9.31 10.89 9.19 10.70 12.70 8.99

Net 2 10.58 9.47 10.61 9.50 11.18 9.56 10.98 13.67 9.95

Net 3 9.91 8.60 9.90 8.96 10.68 8.84 10.60 12.39 9.04

SVR 20.30 21.55 30.33 20.62 19.88 18.82 19.63 23.06 20.65

Table 3: Normalized RMSE when comparing reconstructed 2D landmarks using the speech model-generated parameters to

visual tracking results. 2D landmarks are created by projecting 3D corresponding landmarks onto the image plane.

Overall Neutral Calm Happy Sad Angry Fear Disgust Surprised

Net 1 0.050 0.041 0.048 0.045 0.055 0.045 0.053 0.063 0.044

Net 2 0.053 0.045 0.054 0.047 0.056 0.047 0.054 0.070 0.050

Net 3 0.050 0.040 0.050 0.044 0.054 0.044 0.053 0.063 0.045

SVR 0.070 0.064 0.073 0.066 0.073 0.066 0.073 0.079 0.067

facial animation, despite the limitation in rigid motion esti-

mation, thanks to the underlying blendshape model. How-

ever, a thorough user study is desirable in order to measure

the quality of animation generated by these models, which

we look forwards to conducting in the future.

From our visual observation, Net 1 consistently outper-

forms other networks, in terms of local facial deformation

quality, especially in lower lip movements, indicated by

smaller landmark error as shown in Figure 8. In order to

explain this phenomenon, we further categorize estimation

errors into separate bins for individual blending weights ei
for each network, as shown in Figure 9.

According to this figure, Net 2 and Net 3 have very sim-

ilar errors across all coefficients with the exception of units

20 and 24, whereas Net 1 has higher errors with expression

units 7, 8, 32 and 46. However, these units carry very subtle

facial deformations, and thus do not affect the face recon-

struction quality of Net 1 in general. A possible explanation

is that, Net 2 and Net 3 tend to smooth output parameters

to achieve lower mean error, trading off the ability to model

spontaneity of facial expressions. Further investigation is

needed in order to understand how the unbalanced architec-

ture of Net 1 contributes to this phenomenon. Figure 10

demonstrates that Net 1 achieves smallest errors on the pa-

rameters most relevant to the ”Surprised” state of Actor 24.

Figure 7 shows two example sequences from the test set.

Both actors speak the same sentence, ”Kids are talking by

the door”, but under different emotions, tones and speeds.

Facial parameters are estimated by Net 1. Speech-driven

animation quality on the first sequence from Actor 24 is

rather good, where micro facial movements estimated by

our model match closely to that of the visual tracker [20].

However, our model cannot effectively recreate lip defor-

mations in the ”Happy” sequence of Actor 21.

Poor estimation performance on ”happy” sequences in

general, as shown in Table 1, can be accounted for by a

couple of reasons. First, the amount of ”happy” frames

is only one seventh of the entire dataset. It causes bias

of the model towards more similar emotions, such as ”an-

gry”, ”fearful” and ”disgust”. Second, it is difficult to dis-

tinguish the ”happy” speech from ”surprised” or ”angry”

from speech alone as under these emotions, speakers tend

to speak equally loudly. Lastly, although smiling is a very

strong visual cue, it is not reflected via speech in an obvious

way. Note that in these ”happy” sequences, the actors do not

actually laugh at any time, but rather smile while speaking,

hence it is difficult to recognize the smiling gesture from

speech. More analysis on ”happy” speeches is required in

order to identify the smiling cue from audio data.

7. Conclusion and Future Work

This paper presents a deep recurrent learning approach

for speech-driven 3D facial animation. Our regression

framework, based on deep long short-term memory recur-

rent neural network, directly maps various acoustic features

of an input speech sequence to head rotation and facial de-

formation parameters of a 3D blendshape model for realis-

tic animation in real-time. Experimental results on a real

audio-visual corpus consisting of speeches under various

emotions demonstrate the effectiveness of our approach in

recreating the affective state and facial deformation of the

speaker. We believe our work is a reasonably good baseline

for further research in speech-driven facial animation. In the

future, we will explore the ability to learn features directly

from the raw waveform data, and incorporate deep genera-

tive model in our framework to improve its facial parameter

generation quality.

86



Figure 8: Histograms of landmark error distributions corresponding to eyebrows, upper eyelids, chin, cheeks, upper lip and

lower lip. Data points in bins closer to the center of the histogram have smaller errors.

Figure 9: Parameters errors of three LSTM models, categorized by expression units.

Figure 10: Parameter errors across time of the ”Actor 24 - Surprised” sequence. We plot errors corresponding to six action

units: left/right eyebrow raiser small/strong and jaw dropper small/strong. From top to bottom: plots of of Net 1, Net 2, Net

3 and SVR, respectively. Net 1 achieves smallest errors w.r.t. these action unit parameters. Error curves of the deep models

are smoother than that of SVR, thanks to temporal coherency imposed by recurrent networks.
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