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Abstract

Often multiple instances of an object occur in the same

scene, for example in a warehouse. Unsupervised multi-

instance object discovery algorithms are able to detect and

identify such objects. We use such an algorithm to provide

object proposals to a convolutional neural network (CNN)

based classifier. This results in fewer regions to evaluate,

compared to traditional region proposal algorithms. Ad-

ditionally, it enables using the joint probability of multiple

instances of an object, resulting in improved classification

accuracy. The proposed technique can also split a single

class into multiple sub-classes corresponding to the differ-

ent object types, enabling hierarchical classification.

1. Introduction

Recent years have seen tremendous progress in object

detection and classification based on convolutional neural

networks (CNNs). One of the standard pipelines is using

an object proposal method and then classifying each region

using a CNN [2], as shown in Figure 1 (top). While gen-

eral object proposal methods work well for general scenes,

some scenes such as industrial and warehouse environments

have more structure and the objects show less variations in

appearance.

In this work, we exploit such structure by using a multi-

instance object discovery algorithm [1] that is able to dis-

cover, localize, and identify object instances that occur in

a scene multiple times. The algorithm uses an RGB-D im-

age as the input and searches for patterns of local features

that occur in multiple objects. The output of the algorithm

is clusters of the features, each corresponding to one in-

stance of an object. The clusters corresponding to multiple

instances of the same object are associated with each other.

As shown in Figure 1 (bottom), bounding boxes of the dis-

covered objects are used as the input to a classification net-

work. Our object proposal method also provides the identity

of the object, allowing to accumulate the probabilities and

further improve the classification accuracy.

∗Denotes joint first authorship

Figure 1. A typical object detection pipeline utilizing a CNN (top),

and the proposed pipeline using an alternative object discovery

method for region proposal (bottom).

2. Experiments and Results

A dataset consisting of ten scenes with six cereal boxes

on a table was captured using an ASUS XTion RGB-D cam-

era. There were three different object instances, two in-

stances of each type (Figure 2). We made sure the same

faces of the objects of the same type were visible so that

they could be discovered, identified, and localized properly.

For our method the bounding boxes were obtained by

expanding each feature cluster by 60 percent to ensure they

encapsulate the entire object. The resulting regions were

cropped from the images and resized to have 640 pixels

on the longest side and a Gaussian filter was applied to re-

duce interpolation artifacts. These images were then classi-

fied using ResNet-152 [3], pre-trained on ImageNet (1000

classes). This resulted in a vector of 1000 class probabili-

ties.

For the baseline method the bounding boxes returned

by selective search [4] were resized and classified using

the same ResNet-152. An extra non-maximum suppression

step was used with a maximum overlap threshold of 0.5.

A detection was considered correct if the intersection over

union (IOU) was at least either 0.25 or 0.50. The ground

truth poses of the boxes were manually annotated.

The sum of the probabilities of the categories “packet”

and “comic” was used as the probability of the object be-

ing a cereal box. To evaluate the classification results, the
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Figure 2. Detection and classification results using our method (top) and the baseline method (bottom). For our method the bounding box

colors indicate object association. We show both the individual (white) and joint (in color) probabilities. For the baseline method we only

show the regions with probability larger than 0.4 for better visualization.
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Figure 3. The precision-recall curves for our method with (blue)

and without (green) use of the joint probability. The orange and

red curves are the baseline method with minimal IOU set to 0.25
and 0.50 respectively.

precision and recall were calculated as

P =

∑
C

i=1
tpi

∑
C

i=1
(tpi + fpi)

, R =

∑
C

i=1
tpi

∑
C

i=1
(tpi + fni)

, (1)

with tpi, fpi, and fni the true positives, false positives, and

false negatives, respectively. These were summed over all

C = 1000 classes. Note that a single incorrect classification

might be counted as a false positive multiple times.

Figure 3 shows the precision-recall curves. For our

method we compared the result where we considered the

objects as independent (without computing the joint proba-

bility), and that where we computed the joint probability of

all instances of the same object. The joint probability was

computed by multiplying the class probability vectors of

these instances and re-normalizing them, which increased

the probabilities of correct classifications and improved the

precision-recall performance.

Figure 2 visually shows some of the scenes with the de-

tected and classified objects. As can be seen we have a

much smaller number of detected regions, while the base-

line method tends to generate many false positives. The

average number of proposed regions by our method was

six, while that of the baseline method was 94. After non-

maximum suppression the average number of remaining re-

gions was 15.

3. Discussion

Our object detection framework proposes object regions

based on discovering multiple instances of identical, feature

rich objects. While these are strong assumptions, several

real-world robotic scenarios satisfy these conditions, which

would benefit from our method. Currently our evaluation

was performed using a limited number of simplified scenes.

We plan to extend the evaluation using a larger number of

more complex scenes.
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