This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Leveraging Deep Reinforcement Learning for Reaching Robotic Tasks

Kapil. Katyal

I-Jeng Wang

Philippe Burlina

Johns Hopkins University Applied Physics Laboratory and Dept. of Computer Science

Abstract

This work leverages Deep Reinforcement Learning
(DRL) to make robotic control immune to changes in the
robot manipulator or the environment and to perform reach-
ing, collision avoidance and grasping without explicit, prior
and fine knowledge of the human arm structure and kine-
matics, without careful hand-eye calibration, solely based
on visual/retinal input, and in ways that are robust to
environmental changes. We learn a manipulation policy
which we show takes the first steps towards generalizing
to changes in the environment and can scale to new manip-
ulators. Experiments are aimed at a) comparing different
DCNN network architectures b) assessing the reward pre-
diction for two manipulators with varying kinematics and
¢) performing a sensitivity analysis comparing a classical
visual servoing formulation of the reaching task with the
proposed DRL method.

1. Introduction

There have been several efforts using reinforcement
learning (RL) and DRL (since the seminal work by Google
DeepMind in DRL [4]) in the context of robotic navigation
or manipulation tasks [!, 3, 5, 8]. Reaching and grasping
manipulation have been less studied using DRL [7]. This is
a unique contribution made by this study along with these:
we develop a general approach that is agnostic and can
adapt to new manipulators via DRL. We demonstrate ro-
bust and direct mapping from image to action domain which
exploits simulation for learning. We compare different net-
work architectures and show that the proposed control pol-
icy addresses robotic control that adapts to environmental
changes and does so robustly when compared to a classical
approach.

2. Method

Conventional RL can be formalized as a Markov Deci-
sion Process (MDP) which consists of an agent interacting
with the environment. The agent selects actions that result
in a reward causing a change to the environment as observed

as the next state. Q-Learning is a form of RL using a pol-
icy where the agent selects an action based on current state
that maximizes expected reward. The Q-value correlates to
the quality of choosing the action given the state and is it-
eratively updated. With Q-Learning, typically the assump-
tion of a compact system state representation is made for
computational efficiency. For manipulation, the state of the
system could be modeled as the Denavit-Hartenberg (DH)
parameters defining the robot kinematics, the current joint
angles and the location of the target object. But doing so
would make the state application specific and would not ap-
ply to other manipulators. A preferred route is to model
the state using raw image pixels input. This would allow
maximum generalization but lead to curse of dimensional-
ity: assuming a state represented by 4 frames of an 84 x84
pixel grayscale image, the state space is ~ 1057970 dimen-
sions. This motivates using DRL: Instead of using a table
to represent Q-values, a deep neural network (DNN) is used
to map raw image pixels to Q-values corresponding to po-
tential actions. Our architecture consists of the DRL frame-
work and the robot interface including a module able to ef-
fect manipulator joint angles discrete changes (+/- 5 degrees
to 3 joints angles) and compute the Euclidean distance be-
tween the endpoint and the closest target object. The DRL
Framework inputs raw image pixels from the robotics sim-
ulator and outputs one of six discrete joint biasing actions.
It is only aware of the number of actions available and is
making decisions solely based on the reward. We use and
compare two different CNN architectures (Table 1). During

Table 1. DRL DCNN Network Architectures

[MALLER NETWORK ARCHITECTURE |
[Tayer I Tnput I Kernel Size I Stride I Num Filters I Activation I Output]

20 X 20 X 32
9 X 9 X 64

4 X 84 X 4 32 ReLU
X

4 X
conv2 20 X 20 32 4 X4 2 64 ReLU
fe3 9 X 9 X 64 N/A N/A 256 ReLU 256
eI 756 N N T ReLU T
[TARGER NETWORK ARCHITECTURE]
[[Taver Taput [KemelSize | Siride | NumFilters | Activation | Output]
convl 4 X 84 X 84 X 4 32 ReLU 20 X 20 X 32
conv2 20 X 20 X 32 4 X4 2 64 ReLU 9 X 9 X 64
conv3 9 X 9 X 64 X 3 T 64 ReLU 7T X 7 X 64
fed 7 X 7 X 64 N/A N/A 512 ReLU 512
Tcs T N7 N7 T ReLU T

training, the goal is to learn a Q-value for each action corre-
sponding to the current state that represents a best estimate
of the quality of selecting the given action. An e-greedy
approach is used for random exploration with e = 0.1. A
discount reward factor, v is set to 0.95. During the learning

18

phase, the loss function is used to update the weights of the
DQN network after every episode consisting of 75 training
steps. The reward function is based on the Euclidean dis-
tance between the end effector position and the target ob-
ject. If the distance decreases since the last timestep, the
reward is incremented by one. Conversely, if the distance
increases since the previous timestep, the reward is decre-
mented by one. The DRL Framework and the correspond-
ing neural network approximation of the Q-Value function
are implemented using Caffe [2].

The simulator used to demonstrate trajectory planning is
based on the open source Robotics Library simulator [6].
The simulator also allows capturing of image pixels of the
screen and provides the ability to detect distances to other
objects in the scene. It was modified to take as input in-
coming commands to control the robot joints and to output
the screen pixels and the Euclidean distance over a network
interface.

3. Experiments

Our first goal was to assess the ability to perform learn-
ing for disparate manipulators. We then turned our attention
to characterize the resulting error for both a classical and
DRL based method when altering the manipulator charac-
teristics (here the link dimension).

Generalizing to different manipulators We evaluated
the proposed control framework with two different indus-
trial robots: the Unimation Puma 560 and the Mitsubishi
RV-6SL with varying kinematics. The objective was to de-
termine if the same neural network and hyperparameters
can be used to provide a motion plan trajectory for both
arms even with varying kinematics. Plots in Figure 1 rep-
resent the average reward over time during the training pro-
cess using the DRL framework. In both cases, the network
and hyperparameters were held constant to demonstrate the
generalizability of the framework. Both robot arms were
able to satisfactorily reach the desired targets requiring 9
hours of training using a Titan X GPU.

Sensitivity analysis and robustness to manipulator al-
terations Our next set of experiments were focused on a
sensitivity analysis where we evaluated whether the pro-
posed DRL approach could accommodate changes in the
robotic manipulator link lengths relative to a baseline kine-
matic model. To demonstrate this, we conducted a series
of tests where the link lengths of the model in simulation
were increased by a factor ranging from 5% and up to 20%,
in increments of 5% using the robotic simulation frame-
work. We then evaluated whether the DRL-based approach
could still learn to reach the target object. In both scenar-
ios, the target position remained fixed and collisions were
not considered. In future efforts, our goal is to relax these
constraints. We measured the final Euclidean distance be-
tween the manipulator and the target object after allowing

Table 2. Sensitivity Analysis

Model Error | DRL Error (cm) | IK/FK Error (cm)
5% 0.04 2.39
10% 0.09 6.29
15% 0.03 10.52
20% 0.10 13.95

the training to converge and compared it to the error associ-
ated to a control policy using a traditional inverse/forward
kinematics which relies on a kinematic model. We used in-
verse kinematics to find a baseline set of joint angles that
reach the desired object. We then used forward kinematics
with the varying link lengths to compute the actual pose of
the end effector. As the link lengths increase from the kine-
matic model, the error between the observed and estimated
end effector position also increases whereas the DRL ap-
proach is able to learn the new kinematic model to prevent
the error from increasing as presented in Table 2.

Comparisons between both network architectures
Lastly, in Fig. 1 (left) we compared the average reward
based on the reaching error between DRL1 and DRL?2 net-
work architectures. As can be seen the two network archi-
tectures perform about the same.

Videos and model Trained model
and videos are made available
https://github.com/kdk132/dr]_reach_task.

weights
under

tures. (middle) Average Reward per Epoch (500 Steps per Epoch)
for Puma Robot (right) and Mitsubishi Robot

4. Conclusion

This work describes a DRL-based manipulator control
algorithm for a reaching task that takes the first steps to-
wards generalizing to new manipulators and environmental
changes. Our goal is to extend this to the physical robot
domain and emphasize transfer learning from simulation to
the the real robot arm.

References

1] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation. arXiv preprint
arXiv:1610.00633,2016. 1

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional archi for fast feature ing. arXiv preprint arXiv:1408.5093,2014. 2

[3] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection. arXiv preprint arXiv:1603.02199, 2016. 1

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with
deep reinforcement learning. In NIPS Deep Learning Workshop. 2013. 1

[5] L.Pintoand A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. arXiv
preprint arXiv:1509.06825, 2015. 1

[6] M. Rickert. Efficient Motion Planning for Intuitive Task Executior
tion, Technische Universitit Miinchen, Munich, Germany, 2011. 2

in Modular Systems. Disserta-

[7] H. Yousef, M. Boukallel, and K. Althoefer. Tactile sensing for dexterous in-hand manipulation in roboticsa review.
Sensors and Actuators A: physical, 167(2):171-187,2011. 1

[8] FE. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. I. Corke. Towards vision-based deep reinforcement learning
for robotic motion control. CoRR, abs/1511.03791, 2015. 1

19

