
Leveraging Deep Reinforcement Learning for Reaching Robotic Tasks

Kapil. Katyal I-Jeng Wang Philippe Burlina

Johns Hopkins University Applied Physics Laboratory and Dept. of Computer Science

Abstract

This work leverages Deep Reinforcement Learning

(DRL) to make robotic control immune to changes in the

robot manipulator or the environment and to perform reach-

ing, collision avoidance and grasping without explicit, prior

and fine knowledge of the human arm structure and kine-

matics, without careful hand-eye calibration, solely based

on visual/retinal input, and in ways that are robust to

environmental changes. We learn a manipulation policy

which we show takes the first steps towards generalizing

to changes in the environment and can scale to new manip-

ulators. Experiments are aimed at a) comparing different

DCNN network architectures b) assessing the reward pre-

diction for two manipulators with varying kinematics and

c) performing a sensitivity analysis comparing a classical

visual servoing formulation of the reaching task with the

proposed DRL method.

1. Introduction

There have been several efforts using reinforcement

learning (RL) and DRL (since the seminal work by Google

DeepMind in DRL [4] ) in the context of robotic navigation

or manipulation tasks [1, 3, 5, 8]. Reaching and grasping

manipulation have been less studied using DRL [7]. This is

a unique contribution made by this study along with these:

we develop a general approach that is agnostic and can

adapt to new manipulators via DRL. We demonstrate ro-

bust and direct mapping from image to action domain which

exploits simulation for learning. We compare different net-

work architectures and show that the proposed control pol-

icy addresses robotic control that adapts to environmental

changes and does so robustly when compared to a classical

approach.

2. Method

Conventional RL can be formalized as a Markov Deci-

sion Process (MDP) which consists of an agent interacting

with the environment. The agent selects actions that result

in a reward causing a change to the environment as observed

as the next state. Q-Learning is a form of RL using a pol-

icy where the agent selects an action based on current state

that maximizes expected reward. The Q-value correlates to

the quality of choosing the action given the state and is it-

eratively updated. With Q-Learning, typically the assump-

tion of a compact system state representation is made for

computational efficiency. For manipulation, the state of the

system could be modeled as the Denavit-Hartenberg (DH)

parameters defining the robot kinematics, the current joint

angles and the location of the target object. But doing so

would make the state application specific and would not ap-

ply to other manipulators. A preferred route is to model

the state using raw image pixels input. This would allow

maximum generalization but lead to curse of dimensional-

ity: assuming a state represented by 4 frames of an 84×84

pixel grayscale image, the state space is ≈ 10
67970 dimen-

sions. This motivates using DRL: Instead of using a table

to represent Q-values, a deep neural network (DNN) is used

to map raw image pixels to Q-values corresponding to po-

tential actions. Our architecture consists of the DRL frame-

work and the robot interface including a module able to ef-

fect manipulator joint angles discrete changes (+/- 5 degrees

to 3 joints angles) and compute the Euclidean distance be-

tween the endpoint and the closest target object. The DRL

Framework inputs raw image pixels from the robotics sim-

ulator and outputs one of six discrete joint biasing actions.

It is only aware of the number of actions available and is

making decisions solely based on the reward. We use and

compare two different CNN architectures (Table 1). During

Table 1. DRL DCNN Network Architectures

SMALLER NETWORK ARCHITECTURE
Layer Input Kernel Size Stride Num Filters Activation Output

conv1 4 × 84 × 84 8 × 8 4 32 ReLU 20 × 20 × 32

conv2 20 × 20 × 32 4 × 4 2 64 ReLU 9 × 9 × 64

fc3 9 × 9 × 64 N/A N/A 256 ReLU 256
fc4 256 N/A N/A 18 ReLU 18

LARGER NETWORK ARCHITECTURE
Layer Input Kernel Size Stride Num Filters Activation Output

conv1 4 × 84 × 84 8 × 8 4 32 ReLU 20 × 20 × 32

conv2 20 × 20 × 32 4 × 4 2 64 ReLU 9 × 9 × 64

conv3 9 × 9 × 64 3 × 3 1 64 ReLU 7 × 7 × 64

fc4 7 × 7 × 64 N/A N/A 512 ReLU 512
fc5 512 N/A N/A 18 ReLU 18

training, the goal is to learn a Q-value for each action corre-

sponding to the current state that represents a best estimate

of the quality of selecting the given action. An ǫ-greedy

approach is used for random exploration with ǫ = 0.1. A

discount reward factor, γ is set to 0.95. During the learning

1 18



phase, the loss function is used to update the weights of the

DQN network after every episode consisting of 75 training

steps. The reward function is based on the Euclidean dis-

tance between the end effector position and the target ob-

ject. If the distance decreases since the last timestep, the

reward is incremented by one. Conversely, if the distance

increases since the previous timestep, the reward is decre-

mented by one. The DRL Framework and the correspond-

ing neural network approximation of the Q-Value function

are implemented using Caffe [2].

The simulator used to demonstrate trajectory planning is

based on the open source Robotics Library simulator [6].

The simulator also allows capturing of image pixels of the

screen and provides the ability to detect distances to other

objects in the scene. It was modified to take as input in-

coming commands to control the robot joints and to output

the screen pixels and the Euclidean distance over a network

interface.

3. Experiments

Our first goal was to assess the ability to perform learn-

ing for disparate manipulators. We then turned our attention

to characterize the resulting error for both a classical and

DRL based method when altering the manipulator charac-

teristics (here the link dimension).

Generalizing to different manipulators We evaluated

the proposed control framework with two different indus-

trial robots: the Unimation Puma 560 and the Mitsubishi

RV-6SL with varying kinematics. The objective was to de-

termine if the same neural network and hyperparameters

can be used to provide a motion plan trajectory for both

arms even with varying kinematics. Plots in Figure 1 rep-

resent the average reward over time during the training pro-

cess using the DRL framework. In both cases, the network

and hyperparameters were held constant to demonstrate the

generalizability of the framework. Both robot arms were

able to satisfactorily reach the desired targets requiring 9

hours of training using a Titan X GPU.

Sensitivity analysis and robustness to manipulator al-

terations Our next set of experiments were focused on a

sensitivity analysis where we evaluated whether the pro-

posed DRL approach could accommodate changes in the

robotic manipulator link lengths relative to a baseline kine-

matic model. To demonstrate this, we conducted a series

of tests where the link lengths of the model in simulation

were increased by a factor ranging from 5% and up to 20%,

in increments of 5% using the robotic simulation frame-

work. We then evaluated whether the DRL-based approach

could still learn to reach the target object. In both scenar-

ios, the target position remained fixed and collisions were

not considered. In future efforts, our goal is to relax these

constraints. We measured the final Euclidean distance be-

tween the manipulator and the target object after allowing

Table 2. Sensitivity Analysis

Model Error DRL Error (cm) IK/FK Error (cm)

5% 0.04 2.39

10% 0.09 6.29

15% 0.03 10.52

20% 0.10 13.95

the training to converge and compared it to the error associ-

ated to a control policy using a traditional inverse/forward

kinematics which relies on a kinematic model. We used in-

verse kinematics to find a baseline set of joint angles that

reach the desired object. We then used forward kinematics

with the varying link lengths to compute the actual pose of

the end effector. As the link lengths increase from the kine-

matic model, the error between the observed and estimated

end effector position also increases whereas the DRL ap-

proach is able to learn the new kinematic model to prevent

the error from increasing as presented in Table 2.

Comparisons between both network architectures

Lastly, in Fig. 1 (left) we compared the average reward

based on the reaching error between DRL1 and DRL2 net-

work architectures. As can be seen the two network archi-

tectures perform about the same.

Videos and model Trained model weights

and videos are made available under

https://github.com/kdk132/drl reach task.

Figure 1. (left) comparison DRL1 and DRL2 networks architec-

tures. (middle) Average Reward per Epoch (500 Steps per Epoch)

for Puma Robot (right) and Mitsubishi Robot

4. Conclusion

This work describes a DRL-based manipulator control
algorithm for a reaching task that takes the first steps to-
wards generalizing to new manipulators and environmental
changes. Our goal is to extend this to the physical robot
domain and emphasize transfer learning from simulation to
the the real robot arm.

References
[1] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation. arXiv preprint

arXiv:1610.00633, 2016. 1

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 2

[3] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic grasping with

deep learning and large-scale data collection. arXiv preprint arXiv:1603.02199, 2016. 1

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with

deep reinforcement learning. In NIPS Deep Learning Workshop. 2013. 1

[5] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. arXiv

preprint arXiv:1509.06825, 2015. 1

[6] M. Rickert. Efficient Motion Planning for Intuitive Task Execution in Modular Manipulation Systems. Disserta-

tion, Technische Universität München, Munich, Germany, 2011. 2

[7] H. Yousef, M. Boukallel, and K. Althoefer. Tactile sensing for dexterous in-hand manipulation in roboticsa review.

Sensors and Actuators A: physical, 167(2):171–187, 2011. 1

[8] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. I. Corke. Towards vision-based deep reinforcement learning

for robotic motion control. CoRR, abs/1511.03791, 2015. 1

19


