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1. Introduction

Reinforcement learning algorithms aim at learning poli-
cies for achieving target tasks by maximizing rewards pro-
vided by the environment. However, in many real-world
scenarios, rewards extrinsic to the agent are extremely
sparse or missing altogether, and it is not possible to con-
struct a shaped reward function. This is a problem as the
agent receives reinforcement for updating its policy only if
it succeeds in reaching a pre-specified goal state.

Motivation/curiosity [7, 10] have been used both to ex-
plain the need to explore the environment and discover
goal states, but also, more generally, as a way of learn-
ing new skills which might come handy for pursuing re-
wards in the future. Most formulations of intrinsic re-
ward can be grouped into two broad classes: 1) encour-
age the agent to explore “novel” states [I, 3, 6] or, 2) en-
courage the agent to perform actions that reduce the er-
ror/uncertainty in the agent’s ability to predict the conse-
quence of its own actions (i.e. the agent’s knowledge about
the environment) [2,5,8,9, [ 1].

This work belongs to the broad category of methods that
generate an intrinsic reward signal based on how hard it is
for the agent to predict the consequences of its own actions,
i.e. predict the next state given the current state and the
executed action. However, we manage to escape most pit-
falls of previous prediction approaches with the following
key insight: we only predict those changes in the environ-
ment that could possibly be due to the actions of our agent
or affect the agent, and ignore the rest. That is, instead of
making predictions in the raw sensory space (e.g. pixels),
we transform the sensory input into a feature space where
only the information relevant to the action performed by
the agent is represented. We learn this feature space us-
ing self-supervision — training a neural network on a proxy
inverse dynamics task of predicting the agent’s action given
its current and next states. Since the neural network is only
required to predict the action, it has no incentive to repre-
sent within its feature embedding space the factors of vari-
ation in the environment that do not affect the agent itself.
We then use this feature space to train a forward dynam-
ics model that predicts the feature representation of the next
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Figure 1: Discovering how to play Super Mario Bros without
rewards. (a) Using only curiosity-driven exploration, the agent
makes significant progress in Level-1. (b) The gained knowledge
helps the agent explore subsequent levels much faster than when
starting from scratch. Watch the video at http://pathak22.
github.io/noreward-rl/

state, given the feature representation of the current state
and the action. We provide the prediction error of the for-
ward dynamics model to the agent as an intrinsic reward to
encourage its curiosity.

2. Curiosity-driven Exploration

Our agent is composed of two subsystems — a reward
generator that outputs a curiosity-driven intrinsic reward
signal and a policy that outputs a sequence of actions to
maximize that reward signal. Let the intrinsic curiosity re-
ward generated by the agent at time ¢ be ¢ and the extrinsic
reward be 7. The policy sub-system is trained to maximize
the sum of these two rewards r, = ri + 7. We represent
the policy 7(s¢; 0p) by a deep neural network with parame-
ters 6 p. Given the agent is in state s, it executes the action
a; ~ m(s¢; 0p) sampled from the policy. 8 p is optimized to
maximize the expected sum of rewards,

max E(s,.0,) [E¢7] 1)
0p

Our Intrinsinc Curiosity Module (ICM) can potentially be
used with a range of policy learning methods; in the ex-
periments here, we use asynchronous advantage actor critic
policy gradient (A3C) [4]) for learning a policy. Instead of
hand-designing a feature representation for every environ-
ment, our aim is to come up with a general mechanism for
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Figure 2: Comparing the performance of the vanilla A3C agent
with no curiosity against the proposed curious A3C agent on a hard
exploration task in VizDoom-fixed (c.f. Section 3) indicates that
the curiosity based intrinsic reward signal helps solving the task.

learning feature representations such that the prediction er-
ror in the learned feature space provides a good intrinsic
reward signal. We propose that such a feature space can
be learned by training a deep neural network with two sub-
modules: the first sub-module encodes the raw state (s;)
into a feature vector ¢(s;) and the second sub-module takes
as inputs the feature encoding ¢(s; ), ¢(s¢+1) of two conse-
quent states and predicts the action (a;) taken by the agent
to move from state s; to s, (i.e. the inverse dynamics
model). In order to generate the curiosity reward, we train
another neural network that takes as inputs a; and ¢(s;)
and predicts the feature encoding of the state at time step
t+1 (ie. $(5t+1)). The curiosity reward, 7! is set to

[6(s141) = D(s141) 2.

3. Results

We qualitatively and quantitatively evaluate the perfor-
mance of the learned policy with and without the proposed
intrinsic curiosity signal in two environments, VizDoom and
Super Mario Bros. Three broad settings are evaluated: a)
sparse extrinsic reward on reaching a goal; b) exploration
with no extrinsic reward; and c) generalization to novel sce-
narios. In VizDoom, generalization is evaluated on a novel
map with novel textures, while in Mario, it is evaluated on
subsequent game levels.

Sparse Reward: We evaluated the sparse external reward
cases on VizDoom, where the agent is always spawned at a
fixed room which is ~ 350 steps away from the goal under
an optimal policy. A long sequence of directed actions is
required to reach the goals from these rooms, making these
settings hard goal directed exploration problems. Figure 2
shows that while the baseline A3C agent fails to solve the
task, the curious A3C agent (ICM + A3C) is able to learn

the task quickly. In other experiments ', we show that our
agent is superior to VIME [2] and robust to uncontrollable
environment dynamics.

No Reward Setting: In order to test if our agent can learn
a good exploration policy, we trained it on Mario without
any rewards from the environment. We then evaluated how
much progress it made (for Mario) in this setting. To our
surprise, the no-reward Mario agent can learn to cross over
30% of Level-1'. The agent received no reward for killing
or dodging enemies or avoiding fatal events, yet it automat-
ically discovered these behaviors. To the best of our knowl-
edge, this is a first demonstration where the agent learns
to act with relatively complex visual imagery directly from
pixels without any extrinsic rewards.

Generalization to Novel Scenarios: In Mario, we show
that policies learnt by maximizing only curiosity reward
on Level-1 outperform policies learnt on Level-3 on Level-
3 itself. In VizDoom, we show that the ICM agent pre-
trained only with curiosity on the training maps learns faster
and achieves higher reward than a ICM agent trained from
scratch to jointly maximize curiosity and the external re-
wards on the testing map.
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