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1. Introduction

Reinforcement learning algorithms aim at learning poli-

cies for achieving target tasks by maximizing rewards pro-

vided by the environment. However, in many real-world

scenarios, rewards extrinsic to the agent are extremely

sparse or missing altogether, and it is not possible to con-

struct a shaped reward function. This is a problem as the

agent receives reinforcement for updating its policy only if

it succeeds in reaching a pre-specified goal state.

Motivation/curiosity [7, 10] have been used both to ex-

plain the need to explore the environment and discover

goal states, but also, more generally, as a way of learn-

ing new skills which might come handy for pursuing re-

wards in the future. Most formulations of intrinsic re-

ward can be grouped into two broad classes: 1) encour-

age the agent to explore “novel” states [1, 3, 6] or, 2) en-

courage the agent to perform actions that reduce the er-

ror/uncertainty in the agent’s ability to predict the conse-

quence of its own actions (i.e. the agent’s knowledge about

the environment) [2, 5, 8, 9, 11].

This work belongs to the broad category of methods that

generate an intrinsic reward signal based on how hard it is

for the agent to predict the consequences of its own actions,

i.e. predict the next state given the current state and the

executed action. However, we manage to escape most pit-

falls of previous prediction approaches with the following

key insight: we only predict those changes in the environ-

ment that could possibly be due to the actions of our agent

or affect the agent, and ignore the rest. That is, instead of

making predictions in the raw sensory space (e.g. pixels),

we transform the sensory input into a feature space where

only the information relevant to the action performed by

the agent is represented. We learn this feature space us-

ing self-supervision – training a neural network on a proxy

inverse dynamics task of predicting the agent’s action given

its current and next states. Since the neural network is only

required to predict the action, it has no incentive to repre-

sent within its feature embedding space the factors of vari-

ation in the environment that do not affect the agent itself.

We then use this feature space to train a forward dynam-

ics model that predicts the feature representation of the next

(a) learn to explore in Level-1 (b) explore faster in Level-2

Figure 1: Discovering how to play Super Mario Bros without

rewards. (a) Using only curiosity-driven exploration, the agent

makes significant progress in Level-1. (b) The gained knowledge

helps the agent explore subsequent levels much faster than when

starting from scratch. Watch the video at http://pathak22.

github.io/noreward-rl/

state, given the feature representation of the current state

and the action. We provide the prediction error of the for-

ward dynamics model to the agent as an intrinsic reward to

encourage its curiosity.

2. Curiosity-driven Exploration

Our agent is composed of two subsystems – a reward

generator that outputs a curiosity-driven intrinsic reward

signal and a policy that outputs a sequence of actions to

maximize that reward signal. Let the intrinsic curiosity re-

ward generated by the agent at time t be rit and the extrinsic

reward be ret . The policy sub-system is trained to maximize

the sum of these two rewards rt = rit + ret . We represent

the policy π(st; θP ) by a deep neural network with parame-

ters θP . Given the agent is in state st, it executes the action

at ∼ π(st; θP ) sampled from the policy. θP is optimized to

maximize the expected sum of rewards,

max
θP

Eπ(st;θP )[Σtrt] (1)

Our Intrinsinc Curiosity Module (ICM) can potentially be

used with a range of policy learning methods; in the ex-

periments here, we use asynchronous advantage actor critic

policy gradient (A3C) [4]) for learning a policy. Instead of

hand-designing a feature representation for every environ-

ment, our aim is to come up with a general mechanism for
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Figure 2: Comparing the performance of the vanilla A3C agent

with no curiosity against the proposed curious A3C agent on a hard

exploration task in VizDoom-fixed (c.f. Section 3) indicates that

the curiosity based intrinsic reward signal helps solving the task.

learning feature representations such that the prediction er-

ror in the learned feature space provides a good intrinsic

reward signal. We propose that such a feature space can

be learned by training a deep neural network with two sub-

modules: the first sub-module encodes the raw state (st)
into a feature vector φ(st) and the second sub-module takes

as inputs the feature encoding φ(st), φ(st+1) of two conse-

quent states and predicts the action (at) taken by the agent

to move from state st to st+1 (i.e. the inverse dynamics

model). In order to generate the curiosity reward, we train

another neural network that takes as inputs at and φ(st)
and predicts the feature encoding of the state at time step

t + 1
(

i.e. φ̂(st+1)
)

. The curiosity reward, rit is set to

‖φ(st+1)− φ̂(st+1)‖2.

3. Results

We qualitatively and quantitatively evaluate the perfor-

mance of the learned policy with and without the proposed

intrinsic curiosity signal in two environments, VizDoom and

Super Mario Bros. Three broad settings are evaluated: a)

sparse extrinsic reward on reaching a goal; b) exploration

with no extrinsic reward; and c) generalization to novel sce-

narios. In VizDoom, generalization is evaluated on a novel

map with novel textures, while in Mario, it is evaluated on

subsequent game levels.

Sparse Reward: We evaluated the sparse external reward

cases on VizDoom, where the agent is always spawned at a

fixed room which is ∼ 350 steps away from the goal under

an optimal policy. A long sequence of directed actions is

required to reach the goals from these rooms, making these

settings hard goal directed exploration problems. Figure 2

shows that while the baseline A3C agent fails to solve the

task, the curious A3C agent (ICM + A3C) is able to learn

the task quickly. In other experiments 1, we show that our

agent is superior to VIME [2] and robust to uncontrollable

environment dynamics.

No Reward Setting: In order to test if our agent can learn

a good exploration policy, we trained it on Mario without

any rewards from the environment. We then evaluated how

much progress it made (for Mario) in this setting. To our

surprise, the no-reward Mario agent can learn to cross over

30% of Level-11. The agent received no reward for killing

or dodging enemies or avoiding fatal events, yet it automat-

ically discovered these behaviors. To the best of our knowl-

edge, this is a first demonstration where the agent learns

to act with relatively complex visual imagery directly from

pixels without any extrinsic rewards.

Generalization to Novel Scenarios: In Mario, we show

that policies learnt by maximizing only curiosity reward

on Level-1 outperform policies learnt on Level-3 on Level-

3 itself. In VizDoom, we show that the ICM agent pre-

trained only with curiosity on the training maps learns faster

and achieves higher reward than a ICM agent trained from

scratch to jointly maximize curiosity and the external re-

wards on the testing map.
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