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Abstract

This paper introduces an end-to-end fine-tuning method

to improve hand-eye coordination in modular deep visuo-

motor policies (modular networks) where each module is

trained independently. Benefiting from weighted losses, the

fine-tuning method significantly improves the performance

of the policies for a robotic planar reaching task.

1. Introduction

Recent work has demonstrated robotic tasks based di-

rectly on real image data using deep learning, for example

robotic grasping [2]. However these methods require large-

scale real-world datasets, which are expensive, slow to ac-

quire and limit the general applicability of the approach.

To reduce the cost of real dataset collection, we used

simulation to learn robotic planar reaching skills using the

DeepMind DQN [3]. The DQN showed impressive results

in simulation, but exhibited brittleness when transferred to

a real robot and camera [4]. By introducing a bottleneck

to separate the DQN into perception and control modules

for independent training, the skills learned in simulation

(Fig. 1A) were easily adapted to real scenarios (Fig. 1B)

by using just 1418 real-world images [5].

However, there is still a performance drop compared

to the control module network with ideal perception. To

reduce the performance drop, we propose fine-tuning the

combined network to improve hand-eye coordination. Pre-

liminary studies show that a naive fine-tuning using Q-

learning does not give the desired result [5]. To tackle

the problem, we introduce a novel end-to-end fine-tuning

method using weighted losses in this work, which signifi-

cantly improved the performance of the combined network.

2. Methodology

We consider the planar reaching task, which is defined

as controlling a 3 DoF robot arm (Baxter robot’s left arm)

so that in operational space its end-effector position x ∈ R
2

moves to the position of the target x∗ in a vertical plane

(ignoring orientation). The reaching controller adjusts the

robot configuration (joint angles q ∈ R
3) to minimize the
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Figure 1. A technique to improve hand-eye coordination for bet-

ter performance when transferring deep visuo-motor policies for a

planar reaching task from simulated (A) to real environments (B).
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Figure 2. A modular neural network is used to predict Q-values

given some raw pixel inputs. It is composed of perception and

control modules. The perception module which consists of three

convolutional layers and a FC layer, extracts the physically rele-

vant information (Θ in the bottleneck) from a single image. The

control module predicts action Q-values given Θ. The action with

a maximum Q-value is executed. The architecture is similar to that

in [5], but has an additional end-to-end fine-tuning process using

weighted perception and task losses. Note that the values in Θ are

normalized to the interval [0, 1].

error between the robot’s current and target position, i.e.,

‖x− x∗‖. At each time step 1 of 9 possible actions a ∈ a

is chosen to change the robot configuration: 3 per joint –

increasing or decreasing by a constant amount (0.04 rad)

or leaving it unchanged. An agent is required to learn to

reach using only raw-pixel visual inputs I from a monocular

camera and their accompanying rewards r.

The network has the same architecture and training

method to [5], but with an additional end-to-end fine-tuning

using weighted losses, as shown in Fig. 2. The perception

network is first trained to estimate the scene configuration

Θ = [x∗ q] ∈ R
5 from a raw-pixel image I using the

quadratic loss function

Lp =
1

2m

m
∑

j=1

∥

∥y(Ij)−Θj
∥

∥

2
,
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where y(Ij) is the prediction of Θj for Ij ; m is the num-

ber of samples. The control network is trained using K-

GPS [5] where network weights are updated using the Bell-

man equation which is equivalent to the loss function

Lq =
1

2m

m
∑

j=1

∥

∥

∥

∥

∥

Q(Θj
t , a

j
t )− (rjt + γmax

a
j

t+1

Q(Θj
t+1, a

j
t+1))

∥

∥

∥

∥

∥

2

,

where Q(Θj
t , a

j
t ) is the sum of future expected rewards

∑

∞

k=0
γkr

j
t+k when taking action a

j
t in state Θ

j
t . γ is a

discount factor applied to future rewards.

After separate training for perception and control in-

dividually, an end-to-end fine-tuning is conducted for the

combined network (perception + control) using weighted

task (Lq) and perception (Lp) losses. The control network

is updated using only Lq , while the perception network is

updated using the weighted loss

L = βLp + (1− β)LBN
q ,

where LBN
q is a pseudo-loss which reflects the loss of Lq in

the bottleneck (BN); β ∈ [0, 1] is a balancing weight. From

the backpropagation algorithm [1], we can infer that δL =
βδLp

+ (1 − β)δLBN
q

, where δL is the gradients resulted

by L; δLp
and δLBN

q
are the gradients resulting respectively

from Lp and LBN
q (equivalent to that resulting from Lq in

the perception module).

3. Experiments and Results

We evaluated the feasibility of the proposed approach us-

ing the metrics of Euclidean distance error d (between the

end-effector and target) and average accumulated reward

R̄ (a bigger accumulated reward means a faster and closer

reaching to a target) in 400 simulated trials. For compari-

son, we evaluated three networks: Initial, Fine-tuned and

CR. Initial is a combined network without end-to-end fine-

tuning, which is labelled as EE2 in [5] (comprising FT75

and CR). FT75 and CR are the selected perception and con-

trol modules which have the best performance individually.

Fine-tuned is obtained by fine-tuning Initial using the pro-

posed approach. CR works as a baseline indicating perfor-

mance upper-limit.

In fine-tuning, β = 0.8, we used a learning rate between

0.01 and 0.001, a mini-batch size of 64 and 256 for task

and perception losses respectively, and an exploration pos-

sibility of 0.1 for K-GPS. These parameters were empiri-

cally selected. To make sure that the perception module

remembers the skills for both simulated and real scenarios,

the 1418 real samples were also used to obtain δLp
. Sim-

ilar to FT75, 75% samples in a mini-batch were from real

scenarios, i.e., at each weight updating step, 192 extra real

samples were used in addition to the 64 simulated samples

in the mini-batch for δLq
.
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Figure 3. The box-plots of distance errors of different networks,

with median values displayed. The crosses represent outliers.

Table 1. Planar Reaching Performance

Nets
dmed dQ3 R̄

[cm] [pixels] [cm] [pixels] [\]

Initial 4.598 1.929 6.150 2.581 0.319

Fine-tuned 3.568 1.497 4.813 2.020 0.626

CR 3.449 1.447 4.330 1.817 0.761

Results are summarized in Fig. 3 and Table 1. dmed and

dQ3 are the median and third quartile of d. The error dis-

tance in pixels in the 84 × 84 input image is also listed.

We can see that Fine-tuned achieved a much better per-

formance (22.4% smaller dmed and 96.2% bigger R̄) than

Initial. The fine-tuned performance is even very close to

that of the control module (CR) which controls the arm us-

ing ground-truth Θ as sensing inputs. We also did the same

evaluations in 20 real-world trials on Baxter, and achieved

similar results.

The experimental results show the feasibility of the pro-

posed fine-tuning approach. Improved hand-eye coordina-

tion in modular deep visuo-motor policies is possible due

to fine-tuning with weighted losses. The adaptation to real

scenarios can still be kept by presenting (a mix of simulated

and) real samples to compute the perception loss.

References

[1] Y. LeCun. A theoretical framework for back-propagation. In

D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of

the 1988 Connectionist Models Summer School, pages 21–28, CMU,

Pittsburgh, Pa, 1988. Morgan Kaufmann.

[2] S. Levine, P. P. Sampedro, A. Krizhevsky, and D. Quillen. Learn-

ing hand-eye coordination for robotic grasping with deep learning and

large-scale data collection. In International Symposium on Experi-

mental Robotics (ISER), 2016.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

et al. Human-level control through deep reinforcement learning. Na-

ture, 518(7540):529–533, 2015.

[4] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke. To-

wards vision-based deep reinforcement learning for robotic motion

control. In Australasian Conference on Robotics and Automation

(ACRA), 2015.

[5] F. Zhang, J. Leitner, B. Upcroft, and P. Corke. Transferring vision-

based robotic reaching skills from simulation to real world. Technical

report, 2017.

2 25


